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ABSTRACT 

This paper presents a preliminary analysis to reduce patient waiting time for consultation in an outpatient 

eye clinic, using a data driven discrete event simulation model. This study is of interest and importance 

for a better understanding of the causes of patient long waiting in an actual clinic in an effort to reduce the 

patient waiting time for consultation. Several proposed strategies, such as pool scheduling of patients, 

uniform patient arrivals and improved process flow, have been studied. It is found that patients’ irregular 

arrival pattern during a day is one of the main causes of the long waiting time. Analysis and recommenda-

tions for reducing patient waiting time at the eye clinic are provided in this paper. Simulation model of an 

eye clinic located in Singapore is used as the base case and the effects are quantified against the base 

model. 

1 INTRODUCTION 

Public outpatient health care services in Singapore and elsewhere are facing challenges as increasing de-

mand for both primary care and specialty physicians as the baby boomer generation begins to enter its 

senior years. However, the health care resources, such as physicians and facilities, are not expanding ac-

cordingly. Hospitals or health services must therefore rely on improved flow control and better capacity 

allocation to minimize the negative effect of patient long waiting time.  

In this paper we first analyze the patient arrivals and the actual waiting time from the historical data 

at an eye clinic in Singapore. We then provide a preliminary simulation based analysis of the effect of 

smooth patient arrivals (applying strategies in order to make patients arrive evenly), patient appointment 

scheduling, and modified process flow. There are many more variables in healthcare management, such 

as the availability of resources in a station that influence the patient waiting time. However, selected fac-

tors that are considered controllable by the clinic management has been chosen for this analysis. The vari-

ables such as resource expansion are the constraints of the corporate planning and outside the scope of 

this work. 

The objective of the research is to identify the main causes of the prolonged patient waiting time for 

consultation through analyzing the impact of the selected controllable input variables on patient waiting 

time. Past historical data shows that 95 percentile waiting time at the clinic was about 2.5 hours. The ob-

jective is to help to reduce this overall patient waiting time for consultation. As an initial understanding, 

we expect this research to lead to simulation or analytical study in the future with more details and a nar-

rower focus. This research is initiated with a vision to resolve the patient long waiting time for consulta-

tion, and it is the first step towards achieving significant impact on shortening patient waiting time for 

consultation.
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In Section 2 the process steps at the eye clinic are presented, followed by a literature review in Sec-

tion 3. The simulation model is discussed in Section 4, followed by proposed strategies to be studied in 

Section 5. Experimental results are discussed in Section 6. Finally, conclusions have been drawn in Sec-

tion 7. 

2 EYE CLINIC AND PROBLEM DOMAIN 

Actual data over 26 days from the eye clinic in a hospital in Singapore are used for our analysis. This 

clinic currently serves an average of 415 patients per day. It has over 40 process stations, such as Regis-

tration, Visual Activity testing (VA), Consultation, Financial Counseling and Payment.  

The clinic serves both subsidized and non-subsidized patients. For this study, only the subsidized 

part of the clinic will be investigated. In the subsidized clinic, there are two types of patient visits which 

are: (1) Sub-specialty Visit, where a specific doctor is assigned for consultation; (2) General Visit, where 

a patient is assigned to any doctor on a first available basis. Thus, there are two separate doctor groups in 

the consultation area, one for general patients and the other one for sub-specialty patients. 

The clinic provides both consultation-centered service and test-centered service. As shown in Figure 

1, about 97 % of the patients go to the registration counter when they arrive at the clinic (the percentage 

numbers shown above or below the arrows represent the proportion of the total patients who goes through 

this route). For the consultation-centered service, most of the patients in this clinic go through VA, 

Humphrey Visual Field testing (HVF) or Refraction testing before they see doctors. For the test-centered 

service, patients only do selected testing, for example Biometry. Since the consultation-centered service 

covers about 81% of total patients, and the capacity constraints are mainly located at the consultation 

stage, we investigate the clinic with the primary focus on the consultation-centered service in this paper, 

shown as simulation scope in Figure 1. 
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Figure 1: Patient flow chart in the eye clinic. 

The clinic assigns appointments based on the number of available doctors in each clinic session. For 

example, the schedule of a doctor in one session (AM session is 9:00-11:30 or PM session is 14:00-16:30) 
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is divided into 30 slots with 5 minutes each. The assignment of patient’s appointment time is based on the 

beginning time of each slot. Most of the patients arriving to this clinic are with appointments. There are 

about 15 walk-in patients, which is around 7% of total arrivals, in each session who do not have appoint-

ments in one session. In the simulation model, we do not differentiate the walk-in patients. It is assumed 

that they have appointments as regular patients. 

3 LITERATURE REVIEW 

Various studies focusing on improving outpatient health care daily consultation in terms of reducing pa-

tient waiting time, physician idle time and physicians over time have been conducted. Most of the recent 

papers have investigated the patient appointment scheduling to improve the clinic performance. Cayirli 

and Veral (2003) and Lakshmi and Sivakumar (2013) gave an extensive review of the appointment 

scheduling research. In most of the analytical research on the appointment scheduling, an assumption that 

the patient arrives punctually if he/she will showed up for the appointment is made (Kaandorp and Koole 

2007; Koeleman and Koole 2012; Millhiser et al. 2012). Harper and Gamlin (2003) studied the perfor-

mance of different scheduling rules in the detailed simulation model of Ear, Nose and Throat outpatient 

department.  Klassen and Yoogalingam (2009) integrate analytical method and simulation to find the ap-

pointment scheduling. The method can contribute good quality results while capturing uncertainties in the 

system. 

Aside from research on appointment scheduling, this research examines patient arrival patterns to 

develop managerial policies to improve outpatient clinic performance. Some papers have studied similar 

problems. For example, Rising et al. (1973) analyzed the hourly arrival patterns in a day. Based on the ar-

rival patterns, they scheduled more appointment patients during periods of low walk-in demand to smooth 

the overall daily arrivals. Swartzman (1970) focused on analyzing patient arrival process through a statis-

tical method. It is suggested to use a time-varying poisson process to model the arrivals of unscheduled 

patients. It is evident that patient arrivals in a day vary through time. It is important to consider this phe-

nomenon in the daily outpatient operations. Patient arrival patterns can be considered as a result of pa-

tients’ behavior. Rockart and Hofmann (1969) firstly studied the behavior of physician and patient under 

different scheduling systems: pure block system and individual appointment system with pre-assigned or 

unassigned physicians. It is found that both physicians and patients tend to act more responsibly in the in-

dividual appointment system. Klassen and Rohleder (2004) considered using customers’ motivation to re-

duce the peak demand in banking services. 

Patient unpunctuality from the appointment also affect the patient arrival patterns. It is a challenge to 

model patient unpunctuality in the analytical analysis. A few papers have considered patient unpunctuali-

ty through simulation analysis. Fetter and Thompson (1966) examined the effect of patient load, patient 

unpunctuality and appointment intervals on patient waiting time through simulations. White and Pike 

(1964) studied the effect of patient unpunctuality on doctors’ idle time and patients waiting time. Tai and 

Williams (2012) examed a probability distribution which maps patient unpunctuality in an appointment-

driven outpatient clinic. 

Similar to our paper, other research has also used simulation to analyze factors affecting the perfor-

mance of an outpatient clinic. Swisher et al. (2001) used a factorial experiment to study the allocation of 

recourses. Zhu et al. (2012) reported that uneven appointment slots, early session start time and irregular 

calling sequence are main causes of long patient waiting time in a specific clinic. Jun et al. (1999) focused 

on the details in clinical simulation modeling. 

Since the patient arrival patterns involve many uncontrollable factors such as patient behavior and 

traffic condition, it is a challenge to study the arrival patterns in an analytical way for daily operations. 

This paper is probably one of the first to study patient arrival patterns or unpunctuality in a simulation 

based study. It presents the importance of considering patient behavior in the appointment system, since 

that will cause serious system congestion in the clinic. 
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4 SIMULATION MODEL 

4.1 Model Description 

A discrete event simulation model of the eye clinic is constructed using FlexSim Healthcare. As discussed 

in Section 2, this eye clinic provides consultation-centered service. The objective of this research is to 

help the clinic management to find ways to make significant reduction in patient waiting time for consul-

tation. In order to fulfill this, the model scope includes the process stations that preceded consultation 

rooms. Other stations providing services after consultation, such as Treatment station, Clerking station, 

Biometry station, Financial Counseling station and Payment counter are not modeled. Waiting time in the 

stations after the consultation process is not included in this preliminary study. 

 

 

Figure 2: Number of patients arriving in each 30 minutes for 26 days. 

To determine the patient arrival process, 26 working day clinic operation data has been analyzed. 

Figure 2 shows the mean/standard deviation value of the number of arrival patients in each 30 minute pe-

riod. It is indicated that patient inter-arrival time varies in each period. The arrival is not characterized by 

a single distribution because the characteristic changes depend on time of day. A probability distribution 

is applied to generate patient inter-arrival times for each 30 minute period in Figure 2, except the begin-

ning period (before 8:30), the ending period (15:30 onwards) and the period between 11:30-13:00. It is 

observed from the data that most of patient arrivals before 8:00 occurs in the period of 7:50-8:00. The in-

ter-arrival time in this period is similar to the period of 8:00-8:30. Thus, a single probability distribution is 

used to model the period of 7:50-8:30. In the period of 11:30-13:00, a single distribution is applied to 

model the merged arrivals in these three 30-minute periods since the arrivals are rare. Similarly, a single 

distribution is assumed in the period beyond 16:00. As a result, 14 probability distributions are used to 

generate patient inter-arrival times as indicated in Figure 2.  

Based on collected data, patient arrival is modeled on a probability of 0.65 for general patient and 

0.35 for sub-specialty patient. If a patient is assigned as sub-specialty, he or she is assigned to a specific 

doctor in the sub-specialty doctor group randomly. On the other hand, a general patient will be served by 

the first available doctor in the general group. The number of consultation doctors is listed in Table 1 ac-

cording to different sessions in a week. The patients are also assigned other characteristics based on past 

data and statistics, describing which type of tests they are required to go through, such as Refraction, VA 

and HVF. An abstracted model of the patient flow is shown in Figure 3. Another important characteristic 

is assigned to specify whether a patient does the dilation process during VA or after Consultation (as 
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shown in Figure 3). The dilation process will take at least 30 minutes to have an effect, and dilation is re-

quired before patients can be seen by the doctor in the consultation room. Repeat visit patients will have 

their dilation done at the VA station rather than after consultation. Only first visit patients are required to 

be seen by the doctor first before having dilation done. After dilation, the first visit patient will then be 

seen again by the same doctor for a full consultation. Thus he/she will have two consultation sessions in 

this process. 

Table 1： Allocation of consultation doctors during a week. 

Session 
Monday Tuesday Wednesday Thursday Friday 

AM PM AM PM AM PM AM PM AM PM 

No. of doctors 

in general group 

10 11 12 15 11 6 10 11 12 9 

No. of doctors 

in sub-specialty group 

4 3 5 4 4 5 3 6 4 5 

 

Consultation
VA

(+dilation)
Registration

Refraction

Dilation

Payment

Financial 

Counseling

Exit
HVF

 

Figure 3: An abstract patient flow in the simulation model. 

When patients are waiting for consultation, a general patient is called by the first available doctor in 

the general doctor pool, while a sub-specialty patient is served by a pre-specified doctor in the sub-

specialty doctor pool. All patients are called based on First-Come-First-Serve (FCFS) rule in the simula-

tion model. However, patients are called based on their appointment times in the clinic, and therefore at 

the actual clinic the patient with the earliest appointment time will be called first. 

4.2 Model Assumptions 

There are several assumptions made in the simulation model. It is assumed that the resources in the clinic 

(including staff and facilities) are either occupied by patients or available for patients. There will not be 

any other factor causing the unavailability of the resources, for example facility maintenance or staff rest. 

Secondly, we assume that the capacity at registration service is unlimited because there are adequate re-

sources (self-service kiosks and several reception counters) having a short processing time. It is assumed 

that patients are called based on the FCFS rule because of the unavailability of exact appointment times 

for this research. 

4.3 Model Input and Output 

The purpose of the simulation study is to analyze the impact of various input parameters on selected 

measurements of patient waiting time. There are three major inputs to the simulation model as shown in 

Figure 4. The first one is the patient arrival patterns. In the basic simulation model, 14 different arrival 

processes are used to generate patient arrivals for different time periods through a simulation day. In the 

experiments, alternative types of arrival pattern are used as described in Section 5.2. The second input is 

the appointment schedule. A pooling schedule is applied in the sub-specialty group in the experiments. In 

2196



Jin, Sivakumar, and Lim 

 

the pooling schedule, patients are assigned to the first available doctor for consultation. The third input is 

the process flow. Two improved process flows have been tested in the experiments. The output of the 

simulation model is patients’ waiting time for consultation, which is the duration between the registration 

time and the beginning time of patient’s last consultation. 

 

 

Figure 4: Input and output of the simulation model. 

4.4 Key Performance Measures 

Since the objective of this research is to find ways to reduce the waiting time for consultation, the perfor-

mance measure is mainly based on the daily patient waiting time for consultation. In the clinic, patient 

waiting time (WT) for consultation is defined as the duration from the arrival time of a patient to the be-

ginning time of the patient’s last consultation (some patients go through one consultation process, while 

others go through two consultation processes). There are three commonly used measures for daily patient 

waiting time measurement in the clinic and they are the daily average waiting time, the median waiting 

time and the 95 percentile waiting time. The median/95 percentile waiting time is defined as the shortest 

waiting time of the 50%/95% of the all patients in a day. Among all these three, the 95 percentile waiting 

time is the primary performance measure for the clinic. The waiting time unit used throughout this paper 

is minute. 

4.5 Model Verification and Validation 

The model verification is done by systematically walking through the patient flows and analyzing the ac-

tual operation data. The flow and model logic are verified by the hospital staff using “walk through” tech-

nique. 

The model is validated by comparing the outputs among actual system and simulation models. As 

shown in Model 1 from Figure 5, the actual arrivals from historical data are used in the simulation model. 

Since patient arrivals differ in different weekdays, several days of input are tested in the simulation model. 

In this model, six Wednesdays are simulated because they closely represent the clinic average perfor-

mance. Using the actual arrivals, inter-arrival distributions are to simulate arrival process on Wednesdays. 

In Model 2, the base model is built with the generated inter-arrivals as the input. In this validation process, 

30 instances are randomly generated for each simulation model, while the sample size of the actual histor-

ical data is 6. 

In Table 2, it is seen that the outputs of two simulation models are relatively close to the actual sys-

tem. It indicates that the inter-arrival distributions can truly represent the actual arrival process. It was al-

so observed that the prediction of mean/median daily waiting time through the two simulation models is 

around 20% less than the actual output. The 95% percentile daily waiting time predictions are much clos-

er to the actual output. 

As there are three model outputs and a number of parameters in each model, for brevity, we will only 

demonstrate our model validation using the 95 percentile daily waiting time from data and simulation 

with actual arrivals as an example. Also the 95 percentile daily waiting time is the primary objective of 

the hospital. The objective is to construct a 90% confidence interval and therefore α is 0.1. Let  ̅  be the 

average value of observations of the system data and  ̅   be the average value of the observations of the 

model output. n1 and n2 are the sample size of the system and Model 2, respectively. That is, 

  Simulation 

      model 

Different arrival patterns 

Different appointment 

      schedule rules 

Different process flows 

Patient waiting time 

   for consultation 
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 ̅        ,  ̅        ,      and      . 

 

 

Figure 5: Validation based on correlated inspection. 

Table 2: Comparisons among actual system outputs and simulation outputs from 30 replications. 

 Mean daily WT 

(mins) 

Median daily WT 

(mins) 

95 percentile 

daily WT (mins) 

Average Stdev Average Stdev Average Stdev 

Historical data from actual clinic 89.37 3.47 83.75 4.92 164.51 12.14 

Simulation with actual arrivals 71.03 5.25 57.53 3.04 151.95 27.85 

Simulation with generated arrivals 73.64 7.56 63.44 8.46 154.42 22.52 

 

Assuming that the output of the actual data and the simulation model are subjected to two independ-

ent normal distributions, a hypotheses test is built to validate whether there is a difference between the 

mean values,    and    from the populations of the system output and Model 1’s output, respectively. 
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The test statistic    is obtained through 

   
 ̅   ̅ 

  √
 
  
 
 
  

         

Therefore, using α = 0.1, we would fail to reject H0 because           (      ). 
The hypothesis test result shows that the output between the actual data and the simulation model do 

not show significant differences. Other hypothesis tests on 95 percentile daily waiting time also indicate 

that the base model is sufficiently valid to do a preliminary analysis on the system. 

5 STRATEGIES TO REDUCE PATIENT WAITING TIME FOR CONSULTATION 

Several strategies are studied to reduce patient waiting time for consultation. These strategies are pro-

posed based on improved schedules for physicians, better patient flow control and improved patient pro-

cess flow. A summary of design of experiments is illustrated in Table 3. From the table, the independent 

variables list the factors that we are considering to propose strategies. For each independent variable, 

Actual arrival data 

The eye clinic in Singapore   

Historical output 

data 

Actual arrival data 

Simulation model 

System output 

data 

Generated inter-arrivals 

Simulation model 

System output 

data compare compare 
compare 

System Model 1 Model 2 
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there are two levels, 1 is applied from the current actual eye clinic and 2 is proposed for investigation. 

Since the variables are independent and represent different aspects of the system, the study on the combi-

nations of these variables are out of the scope of this paper. Four different simulation experiments have 

been tested and analyzed, details of each are discussed in the following sub-sections. The results of the 

experiments are presented in Section 6. 

Table 3: Design of experiments on eye clinic simulation. 

Independent variables 
Levels 

1 2 

Appointment schedule rule Dedicated doctors for sub-specialty 

patients 

Pooling doctors for sub-specialty 

patients 

Arrival Pattern Historical arrival pattern Smoothing arrival pattern 

Change on process flow 

(1) 

Registration is open at noon idle time Registration is closed at noon idle 

time 

Change on process flow 

(2) 

Doctor in consultation room decides a 

patient need to have dilation or not 

Set up a triage before consultation 

to estimate dilation requirement 

5.1 Pooling Schedule for Sub-specialty Group 

As mentioned, sub-specialty patients are assigned to their pre-specified doctors. Without considering the 

privileges of the sub-specialty patients, it is certain that the utilization of the doctors in sub-specialty 

group can be improved if a pooling schedule, in which a patient is assigned to the first available doctor, is 

applied. A series of simulation runs are performed to examine the effect of pooling doctors in sub-

specialty group. The eye clinic validated pooling schedule as a feasible option. 

In the simulation model with pooling doctors, a patient in sub-specialty group will not be assigned to 

a specific doctor in this group, but to any available doctor in this group. 

5.2 Smoothing Patient Arrivals 

In the clinic, the doctors in consultation rooms schedule identical time slots for every patient. As a result, 

there should be the same number of patients arriving in each half an hour. However, the number of pa-

tients arriving in each half an hour varies dramatically according to Figure 2. Figure 2 shows the actual 

half-an-hour arrivals in a day. There are two peaks in 9:00-9:30 and 13:30-14:00, respectively. Less pa-

tient arrivals occur when getting further away from these two peaks. This situation causes a heavy con-

gestion in the system around these two peak hours. Patients have to wait for a long time before seeing the 

doctor. Therefore, there is an opportunity to reduce the waiting time for consultation by smoothing patient 

arrivals. 

In the simulation model with smooth patient arrivals, the number of patient arrivals in half an hour is 

identical throughout the day from 8:00-11:30 in AM session and 13:00-16:30 in PM session. However, 

the arrival rate changes for different weekdays according to the actual scenario. 

It is assumed that there are n doctors from either general group in one session. Generally, there are c 

identical appointments slots in a doctor’s one-session-schedule. The inter-arrival time is    (     
  ) (   ) mins, which is calculated by the time duration of a session (3 hours and 30 minutes) divided 

by number of patients. Hence the ith patient in general group arriving time is,    (   )  , assuming 

that the session starting time is 0. The inter-arrival time for sub-specialty patients having appointments 

with the same doctor is          mins. Assuming there are m doctors in the sub-specialty group, the 

ith patient in sub-specialty group arriving time is,     ⌊(   )  ⌋  . 
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5.3 Improved process flow 

The following two strategies are proposed to improve the patient waiting experience through improved 

process flow in the clinic. 

5.3.1 To Close Registration at Noon Idle Time 

The consultation rooms at the clinic are open from 9:00 to 11:30 in the AM session and from 14:00 to 

16:30 in the PM session. Although the consultation rooms are closed in the noon hour, it is observed that 

some patients also arrive and register during this period. In this situation, the patient arriving during the 

blank period will incur a long waiting time. It is suggested to close the registration counter between 12:00 

and 13:00. Thus, the patient waiting can be improved. 

From Figure 2, it is observed that only a few patients arrive during this period. It can be predicted that 

this strategy hardly affects the mean/median waiting time for consultation. However, some of the longest 

patient waiting times for consultation may be incurred by patients in this small category. It is an oppor-

tunity to reduce the 95 percentile patient waiting time for consultation. 

5.3.2 To Avoid of Patient Second Consultation  

In the normal procedure of the clinic, as stated in section 4.1 repeat visit patients have dilation done in the 

VA room before they are seen by the doctors, while first visit patients see doctors without a preliminary 

dilation. A doctor would require the patient to do dilation for a better examination. Thus, the patient will 

be required to leave the consultation room and have dilation done at the waiting area before seeing the 

doctor again when the eyes are fully dilated. Generally, it will take about 30 minutes for the dilation to 

take effect. In this case, the patient waiting time will be long because the patient has to queue twice to see 

the doctor, i.e. re-entry characteristics. System data at the clinic showed that about 36.54% of total pa-

tients have re-entry experience. In the simulation model, it is assumed that the portion of the first visit pa-

tients is 36.54%. If a triage station is set by a physician/optometrist for first visit patients before they go to 

consultation in order to determine whether they need to do dilation, the patients will only need one-time 

consultation. 

Based on this assumption, a simulation model is built and many replications are conducted. In this as-

sumption, the processing time of triage is not known yet, but it should be within a few minutes and with 

little variance. Thus the processing time of triage is considered as a part of the registration process in the 

simulation model in this preliminary research. 

6 SIMULATION RESULTS 

Table 4 summarizes the output statistics of the base model and four scenarios which reflect the strategies 

discussed in Section 5. For each scenario, the model is run for a day and for 30 replications. For a day run, 

there will be a daily mean/median/95 percentile patient waiting time for consultation. The aver-

age/standard deviation value is a statistic from 30-day replications. Figure 6 shows the 95 percentile daily 

waiting time on different scenarios. 

6.1 Pooling Schedule for Sub-specialty group 

Pooling should improve the doctor utilization rate in the sub-specialty group, and at the same time our 

conjecture is that the service level (patient waiting time for consultation) should be improved. Hypothesis 

tests are formed to compare the average value of the three estimators with the base model. However, the 

three waiting time measurements are not significantly reduced according to the results shown in Table 4 

(row 2). This is because the non-subsidize group only serves a small portion of the total patients (35%). It 

is hard to create a significant effect on the overall patient waiting time for consultation. 
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Table 4: Summary results of simulation model. 

 

Scenario 

Mean daily WT 

           (mins) 

Median daily WT 

          (mins) 

95 percentile 

 daily WT (mins) 

 Average Stdev Average Stdev Average Stdev 

1 Base model 73.64 7.56 63.44 8.46 154.42 22.52 

2 Pooling schedule for sub-specialty group 70.65 7.81 59.45 7.25 149.56 25.53 

3 Smoothing patient arrivals 55.11 4.05 47.69 3.28 100.48 12.11 

4 To close registration at noon idle time 70.17 6.82 61.92 6.33 139.37 18.32 

5 To avoid patient second consultation  56.18 4.03 44.26 4.58 110.71 10.10 

  

Figure 6: Results of 95 percentile daily waiting time on different scenarios. 

6.2 Smoothing Patient Arrivals 

Among all the other strategies, the effect of smoothing patient arrivals to reduce patient waiting time for 

consultation is one of the best as shown in Table 4 (row 3) and Figure 6. It reduces the average waiting 

time by about 30%. The standard deviation of the waiting time is also reduced by about 50%. It is indicat-

ed that the unpredicted patient arrival pattern causes high level of congestion in the system, which leads to 

long patient waiting. 

In order to smooth the patient arrivals, the clinic may either provide incentives to punctual patients or 

impose penalties to patients who arrive early or late. A revised patient appointment strategy could be used 

to minimize or eliminate peak arrivals. For example, the clinic can schedule more patients at the begin-

ning of the session and fewer patients at the peak hour. 

6.3 To Close Registration at Noon Idle Time 

Experiments are carried out to examine the effect of closing registration between 12:00 and 13:00. The 

comparisons of waiting times are listed in the Table 4. From the table, the mean and median value is not 

reduced significantly in the modified model. However, the 95 percentile of the waiting time has been re-

duced significantly as shown in Figure 6. This validates the assumption that part of the reasons for longest 

patient waiting in the system is caused by the patient arrival during this idle period. 
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6.4 To Set up a Triage to Avoid Patient Second Consultation 

Table 4 (row 5) shows the results of the effect of one-time consultation for all patients. The effect is as 

good as that of smoothing patient arrivals as shown in Figure 6. Hypothesis tests are performed to com-

pare the average value of the three estimators. It is known that the mean, median and 95% percentile daily 

waiting time have been significantly reduced if all patients only see doctors once without the break caused 

by dilation. In such a case, consultation capacity can be greatly saved. 

It is suggested to set up a triage station for first visit patients to determine whether the patients need to 

do dilation before he/she sees the doctor. In this case, the patient waiting time for consultation can be re-

duced by about 30%.  

7 CONCLUSION 

The work demonstrated initial understanding particularly in the area of identifying the effect of some 

strategies on the patient waiting time for consultation in an outpatient eye clinic. In this paper, we demon-

strate a discrete event simulation model of a subsidized part of an eye clinic and test strategies to reduce 

the patient waiting time for consultation. 

The most significant finding from our analysis is that, if patients arrive according to their appointment 

time punctually, the patient waiting time for consultation can be reduced significantly, by about 30%. It 

indicates that patients’ irregular arrival is the main cause of the congestion of the system and patients’ 

long waiting time. In order to obtain smooth patient arrivals, we recommend scheduling patient appoint-

ments avoiding the crowded arrivals during peak hours, or applying incentives or penalties to regular pa-

tient arrivals. Another important finding is that if the re-entry to consultation caused by dilation can be 

avoided, the patient waiting time can be reduced to a level equivalent to the effect of smoothing patient 

arrivals. A triage process may be setup to determine whether a first visit patient needs to do dilation be-

fore consultation. To close the registration counter at noon idle time when consultation rooms are closed 

can help prevent patient waiting for the consultation rooms to open. This research has a limitation because 

of the assumption on patient calling sequence rule, which is FCFS in the simulation model. 

In addition, this study highlights an opportunity for developing a method on scheduling patient ap-

pointments to smooth patient arrivals. This challenge is the focus of our ongoing research. The future 

work includes investigation of the impact of multiple strategies such as smoothing arrivals combined with 

improved process flow. 
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