
Combining Mathematical and Simulation Approaches to
Understand the Dynamics of Computer Models

Luis R. Izquierdo, Segismundo S. Izquierdo, José M. Galán & José I. Santos

PREPRINT

Authors’ information

Luis R. Izquierdo
Departamento de Ingeniería Civil
Universidad de Burgos, E-09001, Burgos, Spain.
luis@izquierdo.name

Segismundo S. Izquierdo
Departamento de Organización de Empresas y C.I.M.
Universidad de Valladolid, E-47011, Valladolid, Spain.
segis@eis.uva.es

José M. Galán
Departamento de Ingeniería Civil
Universidad de Burgos, E-09001, Burgos, Spain.
jmgalan@ubu.es

José I. Santos
Departamento de Ingeniería Civil
Universidad de Burgos, E-09001, Burgos, Spain.
jisantos@ubu.es

mailto:luis@izquierdo.name�
mailto:segis@eis.uva.es�
mailto:jmgalan@ubu.es�
mailto:jisantos@ubu.es�

Why would you want to read this chapter?
This chapter is about how to better understand the dynamics of computer models using
both simulation and mathematical analysis. Our starting point is a computer model
which is already implemented and ready to be run; our objective is to gain a thorough
understanding of its dynamics. This chapter shows how computer simulation and
mathematical analysis can be used together to provide a picture of the dynamics of the
model that could not be drawn by using one of the two techniques only.

Abstract
This chapter shows how computer simulation and mathematical analysis can be used
together to understand the dynamics of computer models. For this purpose, we show
that it is useful to see the computer model as a particular implementation of a formal
model in a certain programming language. This formal model is the abstract entity
which is defined by the input-output relation that the computer model executes, and can
be seen as a function that transforms probability distributions over the set of possible
inputs into probability distributions over the set of possible outputs.

It is shown here that both computer simulation and mathematical analysis are extremely
useful tools to analyse this formal model, and they are certainly complementary in the
sense that they can provide fundamentally different insights on the same model. Even
more importantly, this chapter shows that there are plenty of synergies to be exploited
by using the two techniques together.

The mathematical analysis approach to analyse formal models consists in examining the
rules that define the model directly. Its aim is to deduce the logical implications of these
rules for any particular instance to which they can be applied. Our analysis of
mathematical techniques to study formal models is focused on the theory of Markov
Chains, which is particularly useful to characterise the dynamics of computer models.

In contrast with mathematical analysis, the computer simulation approach does not look
at the rules that define the formal model directly, but instead tries to infer general
properties of these rules by examining the outputs they produce when applied to
particular instances of the input space. Thus, conclusions obtained with this approach
may not be general. On a more positive note, computer simulation enables us to explore
formal models beyond mathematical tractability, and we can achieve any arbitrary level
of accuracy in our computational approximations by running the model sufficiently
many times.

Bearing in mind the relative strengths and limitations of both approaches, this chapter
explains three different ways in which mathematical analysis and computer simulation
can be usefully combined to produce a better understanding of the dynamics of
computer models. In doing so, it becomes clear that mathematical analysis and
computer simulation should not be regarded as alternative –or even opposed–
approaches to the formal study of social systems, but as complementary. Not only can
they provide fundamentally different insights on the same model, but they can also
produce hints for solutions for each other. In short, there are plenty of synergies to be
exploited by using the two techniques together, so the full potential of each technique
cannot be reached unless they are used in conjunction.

1 Introduction
This chapter is about how to better understand the dynamics of computer models using
both simulation and mathematical analysis. Our starting point is a computer model
which is already implemented and ready to be run; our objective is to gain a thorough
understanding of its dynamics. Thus, this chapter is not about how to design,
implement, verify, or validate a model; this chapter is about how to better understand its
behaviour.

Naturally, we start by clearly defining our object of study: a computer model. The term
‘computer model’ can be understood in many different ways –i.e. seen from many
different perspectives–, and not all of them are equally useful for every possible
purpose. Thus, we start by interpreting the term ‘computer model’ in a way that will
prove useful for our objective: to characterise and understand its behaviour. Once our
object of study has been clearly defined, we then describe two techniques that are
particularly useful to understand the dynamics of computer models: mathematical
analysis and computer simulation.

In particular, this chapter will show that mathematical analysis and computer simulation
should not be regarded as alternative –or even opposed– approaches to the formal study
of social systems, but as complementary (Gotts et al. 2003a, 2003b). They are both
extremely useful tools to analyse formal models, and they are certainly complementary
in the sense that they can provide fundamentally different insights on the same model.
Even more importantly, this chapter will show that there are plenty of synergies to be
exploited by using the two techniques together, i.e. the full potential of each technique
will not be reached until they are used in conjunction. The remaining of this
introduction outlines the structure of the chapter.

Sections 2, 3 and 4 are devoted to explaining in detail what we understand by ‘computer
model’, and they therefore provide the basic framework for the rest of the chapter. In
particular, section 2 shows that a computer model can be seen as an implementation –
i.e. an explicit representation– of a certain deterministic input-output function in a
particular programming language. This interpretation is very useful since, in particular,
it will allow us to abstract from the details of the modelling platform where the
computer model has been programmed, and focus on analysing the formal model that
the computer model implements. This is clarified in section 3, which explains that any
computer model can be re-implemented in many different formalisms (in particular, in
any sophisticated enough programming language), leading to alternative representations
of the same input-output relation.

Most computer models in the Social Simulation literature make use of pseudo-random
number generators. Section 4 explains that –for these cases and given our purposes– it is
useful to abstract from the details of how pseudorandom numbers are generated, and
look at the computer model as an implementation of a stochastic process. In a stochastic
process, a certain input does not necessarily lead to one certain output only; instead,
there are many different paths that the process may take with potentially different
probabilities. Thus, in a stochastic process a certain input will generally lead to a
particular probability distribution over the range of possible outputs, rather than to a
single output only. Stochastic processes are used to formally describe how a system
subjected to random events evolves through time.

Having explained our interpretation of the term ‘computer model’, section 5 introduces
and compares the two techniques to analyse formal models that are assessed in this
chapter: computer simulation and mathematical analysis. The following two sections
sketch possible ways in which each of these two techniques can be used to obtain useful
insights about the dynamics of a model. Section 8 is then focused on the joint use of
computer simulation and mathematical analysis. It is shown here that the two techniques
can be used together to provide a picture of the dynamics of the model that could not be
drawn by using one of the two techniques only. Finally, our conclusions are summarised
in section 9.

2 Computer models as input-output functions
At the most elementary level, a computer model can be seen as an implementation –i.e.
an explicit representation– of a certain deterministic input-output function in a particular
programming language. The word ‘function’ is useful because it correctly conveys the
point that any particular input given to the computer model will lead to one and only
one output1. (Obviously, different inputs may lead to the same output.) Admittedly,
however, the word ‘function’ may also mislead the reader into thinking that a computer
model is necessarily simple. The computer model may be as complex and sophisticated
as the programmer wants it to be but, ultimately, it is just an entity that associates a
specific output to any given input, i.e. a function. In any case, to avoid confusion, we
will use the term ‘formal model’ to denote the function that a certain computer model
implements2. To be sure, the ‘formal model’ that a particular computer model
implements is the abstract entity which is defined by the input-output relation that the
computer model executes3

Thus, running a computer model is just finding out the logical implications of applying
a set of unambiguously defined formal rules (which are coded in the program and define
the input-output function or formal model) to a set of inputs (Balzer et al. 2001). As an
example, one could write the computer program “y = 4·x” and apply it to the input “x =
2” to obtain the output “y = 8”. The output (y = 8), which is fully and unequivocally
determined by the input (x = 2) and the set of rules coded in the program (y = 4·x), can
be seen as a theorem obtained by pure deduction ({x = 2; y = 4·x}  y = 8). Naturally,
there is no reason why the inputs or the outputs should be numbers

.

4

1 Note that simulations of stochastic models are actually using pseudorandom number generators, which
are deterministic algorithms that require a seed as an input.
2 A formal model is a model expressed in a formal system (Cutland 1980). A formal system consists of a
formal language and a deductive apparatus (a set of axioms and inference rules). Formal systems are used
to derive new expressions by applying the inference rules to the axioms and/or previously derived
expressions in the same system.
3 The mere fact that the model has been implemented and can be run in a computer is a proof that the
model is formal (Suber 2007).
4 As a matter of fact, strictly speaking, inputs and outputs in a computer model are never numbers. We
may interpret strings of bits as numbers, but we could equally well interpret the same strings of bits as
e.g. letters. More importantly, a bit itself is already an abstraction, an interpretation we make of an
electrical pulse that can be above or below a critical voltage threshold.

; they could equally
well be e.g. strings of characters. In the general case, a computer run is a logical
theorem that reads: the output obtained from running the computer simulation follows
(with logical necessity) from applying to the input the algorithmic rules that define the
model. Thus, regardless of its inherent complexity, a computer run constitutes a
perfectly valid sufficiency theorem (see e.g. Axtell 2000).

It is useful to realise that we could always apply the same inference rules ourselves to
obtain –by logical deduction– the same output from the given input. While useful as a
thought, when it comes to actually doing the job, it is much more convenient, efficient
and less prone to errors to let computers derive the output for us. Computers are
inference engines that are able to conduct many algorithmic processes at a speed that the
human brain cannot achieve.

3 Different ways of representing the same formal model
A somewhat controversial issue in the Social Simulation literature refers to the
allegedly unique features of some modelling platforms. It is important to realise that any
formal model implemented in a computer model can be re-implemented in many
different programming languages, leading to exactly the same input-output relation.
Different implementations are just different ways of representing one same formal
model, much in the same way that one can say ‘Spain’ or ‘España’ to express the same
concept in different languages: same thing, different representation, that’s all.

Thus, when analysing the dynamics of a computer model, it is useful to abstract from
the details of the modelling platform that has been used to implement the computer
model, and focus strictly on the formal model it represents, which could be re-
implemented in any sophisticated enough5

In the same way that using one or another formalism to represent a particular formal
model will lead to more or less natural implementations, different formalisms also make
more or less apparent certain properties of the formal model they implement. For

 modelling platform. To be clear, let us
emphasise that any computer model implemented in Objective-C (e.g. using Swarm)
can be re-implemented in Java (e.g. using RePast or Mason), NetLogo, SDML,
Mathematica© or Matlab©. Similarly, any computer model can be expressed as a well-
defined mathematical function (Epstein 2006; Leombruni and Richiardi 2005; Richiardi
et al. 2006).

Naturally, the implementation of a particular formal model may be more straightforward
in some programming languages than in others. Programming languages differ in where
they position themselves in the well-known trade-offs between ease of programming,
functionality and performance; thus, different programming languages lead to more or
less natural and more or less efficient implementations of any given formal model.
Nonetheless, the important point is this: whilst we may have different implementations
of the same formal model, and whilst each of these implementations may have different
characteristics (in terms of e.g. code readability), ultimately they are all just different
representations of the same formal model, and they will therefore return the same output
when given the same input.

5 A sufficient condition for a programming language to be “sophisticated enough” is to allow for the
implementation of the following three control structures:

• Sequence (i.e. executing one subprogram, and then another subprogram),
• Selection (i.e. executing one of two subprograms according to the value of a boolean variable,

e.g. IF[boolean == true]-THEN[subprogram1]-ELSE[subprogram2]), and
• Iteration (i.e. executing a subprogram until a boolean variable becomes false, e.g.

WHILE[boolean == true]-DO[subprogram]).
Any programming language that can combine subprograms in these three ways can implement any
computable function; this statement is known as the “structured program theorem”(Böhm and Jacopini
1966; Harel 1980; Wikipedia 2007).

example, we will see in this chapter that representing a computer model as a Markov
chain, i.e. looking at the formal model implemented in a computer model through
Markov’s glasses, can make apparent various features of the computer model that may
not be so evident without such glasses. In particular, as we will show later, Markov
theory can be used to find out whether the initial conditions of a model determine its
asymptotic dynamics or whether they are actually irrelevant in the long term. Also, the
theory can reveal whether the model will sooner or later be trapped in an absorbing
state.

4 ‘Stochastic’ computer models as stochastic processes
Most computer models in the Social Simulation literature contain stochastic
components. This section argues that, for these cases and given our purposes, it is
convenient to revise our interpretation of computer models as deterministic input-output
relations, abstract from the (deterministic) details of how pseudorandom numbers are
generated, and reinterpret the term ‘computer model’ as an implementation of a
stochastic process. This interpretation will prove useful in most cases and, importantly,
does not imply any loss of generality: even if the computer model to be analysed does
not contain any stochastic components, our interpretation will still be valid.

In the general case, the computer model to be analysed will make use of (what are
meant to be) random numbers, i.e. the model will be stochastic. The word ‘stochastic’
requires some clarification. Strictly speaking, there does not exist a truly stochastic
computer model, but one can approximate randomness to a very satisfactory extent by
using pseudorandom number generators. The pseudorandom number generator is a
deterministic algorithm that takes as input a value called the random seed, and generates
a sequence of numbers that approximates the properties of random numbers. The
sequence is not truly random in that it is completely determined by the value used to
initialise the algorithm, i.e. the random seed. Therefore, if given the same random seed,
the pseudorandom number generator will produce exactly the same sequence of
(pseudorandom) numbers. (This fact is what made us define a computer model as an
implementation of a certain deterministic input-output function in section 2.)

Fortunately, the sequences of numbers provided by current off-the-shelf pseudorandom
number generators approximate randomness remarkably well. This basically means that,
for most intents and purposes in this discipline, it seems safe to assume that the
pseudorandom numbers generated in one simulation run will follow the intended
probability distributions to a satisfactory degree. The only problem we might encounter
appears when running several simulations which we would like to be statistically
independent. As mentioned above, if we used the same random seed for every run, we
would obtain the same sequence of pseudorandom numbers, i.e. we would obtain
exactly the same results. How can we truly randomly select a random seed? Fortunately,
for most applications in this discipline, the state of the computer system at the time of
starting a new run can be considered a truly random variable; and, conveniently, if no
seed is explicitly provided to the pseudorandom number generator, most platforms
generate a seed from the state of the computer system (e.g. using the time). When this is
done, the sequences of numbers obtained with readily available pseudorandom number
generators approximate statistical randomness and independence remarkably well.

Given that –for most intents and purposes in this discipline– we can safely assume that
pseudorandom numbers are random and independent enough, we dispense with the

qualifier ‘pseudo’ from now on for convenience. Since every random variable in the
model follows a specific probability distribution, the computer model will indeed
generate a particular probability distribution over the range of possible outputs. Thus, to
summarise, a computer model can be usefully seen as the implementation of a
stochastic process, i.e. a function that transforms any given input into a certain
probability distribution over the set of possible outputs (Figure 1).

Figure 1. A computer model can be usefully seen as the implementation of a function that
transforms any given input into a certain probability distribution over the set of possible outputs.

Having seen that we can satisfactorily simulate random variables, note that studying the
behaviour of a model that has been parameterised stochastically does not introduce any
conceptual difficulties. In other words, we can study the behaviour of a model that has
been parameterised with probability distributions rather than certain values. An example
would be a model where agents start at a random initial location.

To conclude this section, let us emphasise an important corollary of the previous
paragraphs: any statistic that we extract from a parameterised computer model follows
a specific probability distribution (even if the values of the input parameters have been
expressed as probability distributions)6

6 Note that statistics extracted from the model can be of any nature, as long as they are unambiguously
defined. For example, they can refer to various time-steps, and only to certain agents (e.g. “average
wealth of female agents in odd time-steps from 1 to 99”).

. Thus, a computer model can be seen as the
implementation of a function that transforms probability distributions over the set of
possible inputs into probability distributions over the set of possible outputs (Figure 2).
The rest of the chapter is devoted to characterising this function.

Figure 2. A computer model can be seen as the implementation of a function that transforms
probability distributions over the set of possible inputs into probability distributions over the set of
possible outputs.

5 Tools to understand the behaviour of formal models
Once it is settled that a computer model can be seen as a particular implementation of a
(potentially stochastic) function in a certain programming language, let us refer to such
a function as the ‘formal model’ that the computer model implements. As mentioned
before, this formal model can be expressed in many different formalisms –in particular,
it can always be expressed as a set of well defined mathematical equations (Leombruni
and Richiardi 2005)– and our objective consists in understanding its behaviour. To do
that, we count with two very useful tools: mathematical analysis7

7 We use the term “mathematical analysis” in its broadest sense, i.e. we do not refer to any particular
branch of mathematics, but to the general use of (any type of) mathematical technique to analyse a
system.

 and computer
simulation.

The advantages and limitations of these two tools to formally study social systems have
been discussed at length in the literature (see e.g. Axtell 2000; Axtell and Epstein 1994;
Edmonds 2005; Gilbert 1999; Gilbert and Troitzsch 1999; Gotts et al. 2003a; Holland
and Miller 1991; Ostrom 1988). Here we only highlight the most prominent differences
between these two techniques (see Figure 3).

Figure 3. In general terms, mathematical analysis tends to examine the rules that define the formal
model directly. In contrast, computer simulation tries to infer general properties of such rules by
looking at the outputs they produce when applied to particular instances of the input space.

In broad terms, when using mathematical analysis, one examines the rules that define
the formal model directly, and tries to draw general conclusions about these rules. These
conclusions are obtained by using logical deduction; hence they follow with logical
necessity from the premises of the formal model (and the axioms of the mathematics
employed). The aim when using mathematical analysis is usually to “solve” the formal
system (or, most often, certain aspects of it) by producing general closed-form solutions
that can be applied to any instance of the whole input set (or, at least, to large portions
of the input set). Since the inferences obtained with mathematical analysis pertain to the
rules themselves, such inferences can be safely particularised to any specific
parameterisation of the model, even if such a parameterisation was never explicitly
contemplated when analysing the model mathematically. This greatly facilitates
conducting sensitivity analyses and assessing the robustness of the model.

Computer simulation is a rather different approach to the characterisation of the formal
model (Epstein 2006; Axelrod 1997a). When using computer simulation, one often
treats the formal model as a black box, i.e. a somewhat obscure abstract entity that
returns certain outputs when provided with inputs. Thus, the path to understand the
behaviour of the model consists in obtaining many input-output pairs and –using
generalisation by induction– inferring general patterns about how the rules transform
the inputs into the outputs (i.e. how the formal model works).

Importantly, the execution of a simulation run, i.e. the logical process that transforms
any (potentially stochastic) given input into its corresponding (potentially stochastic)
output is pure deduction (i.e. strict application of the formal rules that define the model).
Thus, running the model in a computer provides a formal proof that a particular input
(together with the set of rules that define the model) is sufficient to generate the output
that is observed during the simulation. This first part of the computer simulation
approach is therefore, in a way, very “mathematical”: outputs obtained follow with
logical necessity from applying to the inputs the algorithmic rules that define the model.

In contrast, the second part of the computer simulation approach, i.e. inferring general
patterns from particular instances of input-output pairs, can only lead to probable –
rather than necessarily true– conclusions8

8 Unless, of course, all possible particular instances are explored.

. The following section explains how to
rigorously assess the confidence we can place on the conclusions obtained using
computer simulation, but the simple truth is irrefutable: inferences obtained using
generalisation by induction can potentially fail when applied to instances that were not
used to infer the general pattern. This is the domain of statistical extrapolation.

So why bother with computer simulation at all? The answer is clear: computer
simulation enables us to study formal systems in ways that go beyond mathematical
tractability. This role should not be underestimated: most models in the Social
Simulation literature are mathematically intractable, and in such cases computer
simulation is our only chance to move things forward. As a matter of fact, the formal
models that many computer programs implement are often so complicated and
cumbersome that the computer code itself is not that far from being one of the best
descriptions of the formal model that can be provided.

Computer simulation can be very useful even when dealing with formal models that are
mathematically tractable. Valuable uses of computer simulation in these cases include
conducting insightful initial explorations of the model and presenting dynamic
illustrations of its results.

And there is yet another important use of computer simulation. Note that understanding
a formal model in depth requires identifying the parts of the model (i.e. the subset of
rules) that are responsible for generating particular (sub)sets of results or properties of
results. Investigating this in detail often involves changing certain subsets of rules in the
model, so one can pinpoint which subsets of rules are necessary or sufficient to produce
certain results. Importantly, changing subsets of rules can make the original model
mathematically intractable and in such (common) cases, computer simulation is, again,
our only hope. In this context, computer simulation can be very useful to produce
counter-examples. This approach is very common in the literature of e.g. evolutionary
game theory, where several authors (see e.g. Hauert and Doebeli 2004; Imhof et al.
2005; Izquierdo and Izquierdo 2006; Lieberman et al. 2009; Nowak and May 1992;
Nowak and Sigmund 1992; Nowak and Sigmund 1993; Santos et al. 2006; Traulsen et
al. 2006) resort to computer simulations to assess the implications of assumptions made
in mathematically tractable models (e.g. the assumptions of “infinite populations” and
“random encounters”).

It is important to note that the fundamental distinction between mathematical analysis
and computer simulation as presented here is not about whether one uses pen and paper
or computers to analyse formal models. We can follow either approach with or without
computers, and it is increasingly popular to do mathematical analysis with computers.
Recent advancements in symbolic computation have opened up a new world of
possibilities to conduct mathematical analyses (using e.g. Mathematica©). In other
words, nowadays it is perfectly possible to use computers to directly examine the rules
that define a formal model (see Figure 3).

Finally, as so often in life, things are not black or white, but involve some shade of grey.
Similarly, most models are not tractable or intractable in mathematical terms; most
often they are partially tractable. It is in these cases where an adequate combination of
mathematical analysis and computer simulation is particularly useful. We illustrate this
fact in section 8, but first let us look at each technique separately. The following two
sections provide some guidelines on how computer simulation (section 6) and
mathematical analysis (section 7) can be usefully employed to analyse formal models.

6 Computer simulation: Approximating the exact probability
distribution by running the model

The previous sections have argued that any statistic obtained from a (stochastically or
deterministically) parameterised model follows a specific probability distribution. The
statistic could be anything as long as it is unambiguously defined; in particular, it could
refer to one or several time-steps, and to one or various subcomponents of the model.
Ideally, one would like to calculate the exact probability distribution for the statistic
using mathematical analysis, but this will not always be possible. In contrast, using
computer simulation we will always be able to approximate this probability distribution
to any arbitrary level of accuracy; this section provides basic guidelines on how to do
that.

The output probability distribution –which is fully and unequivocally determined by the
input distribution– can be approximated to any degree of accuracy by running enough
simulation runs. Note that any specific simulation run will be conducted with a
particular certain value for every parameter (e.g. a particular initial location for every
agent), and will produce one and only one particular certain output (see Figure 3). Thus,
in order to infer the probability distribution over the set of outputs that a particular
probability distribution over the set of inputs leads to, there will be a need to run the
model many times (with different random seeds); this is the so-called Monte Carlo
method.

The method is straightforward: obtain as many random samples as possible (i.e. run as
many independent simulations as possible), since this will get us closer and closer to the
exact distribution (by the law of large numbers). Having conducted a large number of
simulation runs, the question that naturally comes to mind is: How close to the exact
distribution is the one obtained by simulation?

To illustrate how to assess the quality of the approximation obtained by simulation, we
use CoolWorld, a purpose-built agent-based model (Gilbert 2007) implemented in
NetLogo 4.0 (Wilensky 1999). A full description of the model, an applet and the source
code can be found at http://luis.izquierdo.name/models/coolworld. For our purposes, it
suffices to say that in CoolWorld there is a population of agents called walkers, who

http://luis.izquierdo.name/models/coolworld�

wander around a 2-dimensional grid made of square patches; some of the patches are
empty whilst others contain a house (see Figure 4). Patches are at a certain predefined
temperature, and walkers tend to walk towards warmer patches, staying for a while at
the houses they encounter in their journey.

Let us assume that we are interested in studying the number of CoolWorld walkers
staying in a house in time-step 50. Initial conditions (which involve 100 walkers placed
at a random location) are unambiguously defined at
http://luis.izquierdo.name/models/coolworld and can be set in the implementation of
CoolWorld provided by clicking on the button “Special conditions”. Figure 4 shows a
snapshot of CoolWorld after having clicked on that button.

Figure 4. Snapshot of CoolWorld. Patches are coloured according to their temperature: the higher
the temperature, the darker the shade of red. Houses are coloured in orange, and form a circle
around the central patch. Walkers are coloured in green, and represented as a person if standing
on a patch without a house, and as a smiling face if standing on a patch with a house. In the latter
case, the white label indicates the number of walkers in the same house.

As argued before, given that the (stochastic) initial conditions are unambiguously
defined, the number of CoolWorld walkers in a house after 50 time-steps will follow a
specific probability distribution that we are aiming to approximate. For that, let us
assume that we run 200 runs, and plot the relative frequency of the number of walkers
in a patch with a house after 50 time-steps (see Figure 5).

http://luis.izquierdo.name/models/coolworld�

Figure 5. Relative frequency distribution of the number of walkers in a house after 50 time-steps,
obtained by running CoolWorld 200 times, with initial conditions set by clicking on “Special
conditions”.

Figure 5 does not provide all the information that can be extracted from the data
gathered. In particular, we can plot error bars showing the standard error for each
calculated frequency without hardly any effort9

9 The frequency of the event “there are i walkers in a patch with a house” calculated over n simulation
runs can be seen as the mean of a sample of n i.i.d. Bernouilli random variables where success denotes
that the event occurred and failure denotes that it did not. Thus, the frequency f is the maximum
likelihood (unbiased) estimator of the exact probability with which the event occurs. The standard error of
the calculated frequency f is the standard deviation of the sample divided by the square root of the sample
size. In this particular case, the formula reads:

Std. error (f, n) = (f (1 – f) / (n – 1))1/2
Where f is the frequency of the event, n is the number of samples, and the standard deviation of the
sample has been calculated dividing by (n – 1).

. Standard errors give us information
about the error we may be incurring when estimating the exact probabilities with the
empirical frequencies. Another simple task that can be conducted consists in
partitioning the set of runs into two batteries of approximately equal size and comparing
the two distributions. If the two distributions are not similar, then there is no point in
proceeding: we are not close to the exact distribution, so there is a need to run more
simulations.

Figure 6 and Figure 7 show the data displayed in Figure 5 partitioned in two batteries of
100 simulation runs, including the standard errors. Figure 6 and Figure 7 also show the
exact probability distribution we are trying to approximate, which has been calculated
using mathematical methods that are explained later in this chapter.

Figure 6. In blue: Relative frequency distribution of the number of walkers in a house after 50
time-steps, obtained by running CoolWorld 100 times (Battery A), with initial conditions set by
clicking on “Special conditions”. In grey: Exact probability distribution (calculated using Markov
chain analysis).

Figure 7. In blue: Relative frequency distribution of the number of walkers in a house after 50
time-steps, obtained by running CoolWorld 100 times (Battery B), with initial conditions set by
clicking on “Special conditions”. In grey: Exact probability distribution (calculated using Markov
chain analysis).

Figure 6 and Figure 7 indicate that 100 simulation runs may not be enough to obtain a
satisfactory approximation to the exact probability distribution. On the other hand,
Figure 8 and Figure 9 show that running the model 50 000 times does seem to get us
close to the exact probability distribution. The standard error, which is inversely
proportional to the square root of the sample size (i.e. the number of runs), is naturally
much lower in these latter cases.

Figure 8. In blue: Relative frequency distribution of the number of walkers in a house after 50
time-steps, obtained by running CoolWorld 50 000 times (Battery A), with initial conditions set by
clicking on “Special conditions”. In grey: Exact probability distribution (calculated using Markov
chain analysis).

Figure 9. In blue: Relative frequency distribution of the number of walkers in a house after 50
time-steps, obtained by running CoolWorld 50 000 times (Battery B), with initial conditions set by
clicking on “Special conditions”. In grey: Exact probability distribution (calculated using Markov
chain analysis).

When, like in this example, the space of all possible outcomes in the distribution under
analysis is finite (the number of walkers in a house must be an integer between 0 and
100), one can go further and calculate confidence intervals for the obtained frequencies.
This is easily conducted when one realises that the exact probability distribution is a
multinomial. Genz and Kwong (2000) show how to calculate these confidence intervals.

To conclude this section, let us emphasise that all that has been written here applies to
any statistic obtained from any computer model. In particular, the statistic may refer to
predefined regimes (e.g. “number of time-steps between 0 and 100 where there are more
than 20 walkers in a house”) or to various time-steps (e.g. “total number of walkers in a
house in odd time-steps in between time-steps 50 and 200”). These statistics, like any
other one, follow a specific probability distribution that can be approximated to any
degree of accuracy by running the computer model.

7 Mathematical analysis: Time-homogenous Markov chains.
The whole range of mathematical techniques that can be used to analyse formal systems
is too broad to be reviewed here. Instead, we focus on one specific technique that seems
to us particularly useful to analyse Social Simulation models: Markov chain analysis.
Besides, there are multiple synergies to be exploited by using Markov chain analysis
and computer simulation together, as we will see in the next section.

Our first objective is to learn how to represent a particular computer model as a time-
homogeneous Markov chain. This alternative representation of the model will allow us
to use several simple mathematical results that will prove useful to understand the
dynamics of the model. We therefore start by describing time-homogeneous Markov
chains.

7.1 What is a time-homogeneous Markov chain?
Consider a system that in time-step n={1,2,3,...} may be in one of a finite number of
possible states S = {s1, s2,…, sM}. The set S is called the state space; in this chapter we
only consider finite state spaces10

10 The term ‘Markov chain’ allows for countably infinite state spaces too (Karr 1990).

. Let the sequence of random variables Xn  S
represent the state of the system in time-step n. As an example, X3 = s9 means that at
time n = 3 the system is in state s9. The system starts at a certain initial state X0 and
moves from one state to another. The system is stochastic in that, given the present
state, the system may move to one or another state with a certain probability (see Figure
10). The probability that the system moves from state i to state j in one time-step, P(Xn+1
= j | Xn = i), is denoted by pi,j. As an example, in the Markov chain represented in Figure
10, p4,6 equals 0 since the system cannot go from state 4 to state 6 in one single time-
step. The system may also stay in the same state i, and this occurs with probability pi,i.
The probabilities pi,j are called transition probabilities and they are often arranged in a
matrix, namely the transition matrix P.

Figure 10. Schematic transition diagram of a Markov chain. Circles denote states and directed
arrows indicate possible transitions between states. In this figure, circles and arrows coloured in
red represent one possible path where the initial state X0 is s8 and the final state is s2.

Implicitly, our definition of transition probabilities assumes two important properties
about the system:

a. The system has the Markov property. This means that the present state contains all
the information about the future evolution of the system that can be obtained from its
past, i.e. given the present state of the system, knowing the past history about how the
system reached the present state does not provide any additional information about the
future evolution of the system. Formally,

P(Xn+1 = xn+1 | Xn = xn, Xn–1 = xn–1,…, X0 = x0) = P(Xn+1 = xn+1 | Xn = xn)

b. In this chapter we focus on time-homogeneous Markov chains, i.e. Markov chains
with time-homogeneous transition probabilities. This basically means that transition
probabilities pi,j are independent of time, i.e. the one-step transition probability pi,j
depends on i and j but is the same at all times n. Formally,

P(Xn+1 = j | Xn = i) = P(Xn = j | Xn–1 = i) = pi,j

The crucial step in the process of representing a computer model as a time-
homogeneous Markov chain (THMC) consists in identifying an appropriate set of state
variables. A particular combination of specific values for these state variables will
define one particular state of the system. Thus, the challenge consists in choosing the set
of state variables in such a way that the computer model can be represented as a THMC.
In other words, the set of state variables must be such that one can see the computer
model as a transition matrix that unambiguously determines the probability of going
from any state to any other state.

Example: A simple random walk
Let us consider a model of a simple 1-dimensional random walk and try to see it as a
THMC. In this model –which can be run and downloaded at
http://luis.izquierdo.name/models/randomwalk– there are 17 patches in line, labelled
with the integers between 1 and 17. A random walker is initially placed on one of the
patches. From then onwards, the random walker will move randomly to one of the
spatially contiguous patches in every time-step (staying still is not an option). Space
does not wrap around, i.e. patch 1’s only neighbour is patch 2.

Figure 11. Snapshot of the 1-dimensional random walk applet. Patches are arranged in a horizontal
line on the top right corner of the figure; they are labelled with red integers, and coloured in shades
of blue according to the number of times that the random walker has visited them: the higher the
number of visits, the darker the shade of blue. The plot beneath the patches shows the time series of
the random walker’s position.

This model can be easily represented as a THMC by choosing the agent’s position (e.g.
the number of the patch she is standing on) as the only state variable. To be sure, note
that defining the state of the system in this way, it is true that there is a fixed probability
of going from any state to any other state, independent of time. The transition matrix P
= [pi,j] corresponding to the model is:

 [1]

Where, as explained above, pi,j is the probability P(Xn+1 = j | Xn = i) that the system will
be in state j in the following time-step, knowing that it is currently in state i.































==

0100
500500

0500500

0500500
0500500

050050
0010











..
..

..
..

..

pP ji][,

http://luis.izquierdo.name/models/randomwalk�

7.2 Transient distributions of finite THMCs
The analysis of the dynamics of THMCs is usually divided into two parts: transient
dynamics (finite time) and asymptotic dynamics (infinite time). The transient behaviour
is characterised by the distribution of the state of the system Xn for a fixed time-step n ≥
0. The asymptotic behaviour (see sections 7.3 and 7.4) is characterised by the limit of
the distribution of Xn as n goes to infinity, when this limit exists.

This section explains how to calculate the transient distribution of a certain THMC, i.e.
the distribution of Xn for a fixed n ≥ 0. In simple words, we are after a vector a(n)
containing the probability of finding the process in each possible state in time-step n.
Formally, a(n) = [a1

(n), … , aM
(n)] , where ai

(n) = P(Xn = i), denotes the distribution of Xn
for a THMC with M possible states. In particular, a(0) denotes the initial distribution
over the state space, i.e. ai

(0) = P(X0 = i). Note that there is no problem in having
uncertain initial conditions, i.e. probability functions over the space of possible inputs to
the model.

It can be shown that one can easily calculate the transient distribution in time-step n,
simply by multiplying the initial conditions by the n-th power of the transition matrix P.

Proposition 1

. a(n) = a(0) · Pn.

Thus, the elements p(n)
i,j of Pn represent the probability that the system is in state j after

n time-steps having started in state i, i.e. p(n)
i,j = P(Xn = j | X0 = i). A straightforward

corollary of Proposition 1 is that a(n+m) = a(n) · Pm.

As an example, let us consider the 1-dimensional random walk again. Imagine that the
random walker starts at an initial random location, i.e. a(0) = [1/17, …, 1/17]. The exact
distribution of the walker’s position in time-step 100 would then be a(100) = a(0) · P100.
This distribution is represented in Figure 10, together with an empirical distribution
obtained by running the model 50 000 times.

Figure 12. Probability function of the position of the 1-dimensional random walker in time-step
100, starting at an initial random location.

Having obtained the probability function over the states of the system for any fixed n,
namely the probability mass function of Xn, it is then straightforward to calculate the
distribution of any statistic that can be extracted from the model. As argued in the
previous sections, the state of the system fully characterises it, so any statistic that we
obtain about the computer model in time-step n must be, ultimately, a function of {X0,
X1, …, Xn}.

Admittedly, the transition matrix of most computer models cannot be easily derived, or
it is unfeasible to operate with it. Nonetheless, this apparent drawback is not as
important as one might expect. As we shall see below, it is often possible to infer many
properties of a THMC even without knowing the exact values of its transition matrix,
and these properties can yield useful insights about the dynamics of the associated
process. Knowing the exact values of the transition matrix allows us to calculate the
exact transient distributions using Proposition 1; this is desirable but not critical, since
we can always approximate these distributions by conducting many simulation runs, as
explained in section 6.

7.3 Important concepts
This section presents some basic concepts that will prove useful to analyse the dynamics
of computer models. The notation used here follows the excellent book on stochastic
processes written by Kulkarni (1995).

Definition 1
A state j is said to be accessible from state i if starting at state i there is a chance that the
system may visit state j at some point in the future. By convention, every state is
accessible from itself. Formally, a state j is said to be accessible from state i if for some
n ≥ 0, p(n)

i,j > 0.

: Accessibility

Note that j is accessible from i ≠ j if and only if there is a directed path from i to j in the
transition diagram. In that case, we write i→j. If i→j we also say that i leads to j. As an
example, in the THMC represented in Figure 10, s2 is accessible from s12 but not from
s5. Note that the definition of accessibility does not depend on the actual magnitude of
p(n)

i,j , only on whether it is exactly zero or strictly positive.

Definition 2
A state i is said to communicate with state j if i→j and j→i.

: Communication

If i communicates with j we also say that i and j communicate and write i↔j. As an
example, note that in the simple random walk presented in section 7.1, every state
communicates with every other state. It is worth noting that the relation
“communication” is transitive, i.e.

i↔j , j↔k  i↔k.

Definition 3
A set of states C  S is said to be a communicating class if:

: Communicating class

• Any two states in the communicating class communicate with each other.
Formally,

i  C, j  C  i↔j

• The set C is maximal, i.e. no strict superset of a communicating class can be a
communicating class. Formally,

i  C, i↔j  j  C

As an example, note that in the simple random walk presented in section 7.1 there is one
single communicating class that contains all the states. In the THMC represented in
Figure 10 there are 4 communicating classes: {s2}, {s5}, {s10}, {s1, s3, s4, s6, s7, s8, s9,
s11, s12}.

Definition 4
A communicating class C is said to be closed if no state within C leads to any state
outside C. Formally, a communicating class C is said to be closed if i  C and j  C
implies that j is not accessible from i.

: Closed communicating class (i.e. absorbing class). Absorbing state.

Note that once a Markov chain visits a closed communicating class, it cannot leave it.
Hence we will sometimes refer to closed communicating classes as “absorbing classes”.
This latter term is not standard in the literature, but we find it useful here for
explanatory purposes. Note that if a Markov chain has one single communicating class,
it must be closed.

As an example, note that the communicating classes {s10} and {s1, s3, s4, s6, s7, s8, s9,
s11, s12} in the THMC represented in Figure 10 are not closed, as they can be
abandoned. On the other hand, the communicating classes {s2} and {s5} are indeed
closed, since they cannot be abandoned. When a closed communicating class consists of
one single state, this state is called absorbing. Thus, s2 and s5 are absorbing states.
Formally, state i is absorbing if and only if pi,i = 1 and pi,j = 0 for i  j.

Proposition 2
The state space S of any Markov chain can be uniquely partitioned as follows:

. Decomposition Theorem (Chung, 1960)

S = C1  C2  …  Ck  T

where C1, C2, …, Ck are closed communicating classes, and T is the union of all other
communicating classes.

Note that we do not distinguish between non-closed communicating classes: we lump
them all together into T. Thus, the unique partition of the THMC represented in Figure
10 is S = {s2}  {s5}  {s1, s3, s4, s6, s7, s8, s9, s10, s11, s12}. The simple random walk
model presented in section 7.1 has one single (closed) communicating class C1
containing all the possible states, i.e. S ≡ C1.

Definition 5
A Markov chain is said to be irreducible if all its states belong to a single closed
communicating class; otherwise it is called reducible. Thus, the simple random walk
presented in section 7.1 is irreducible, but the THMC represented in Figure 10 is
reducible.

: Irreducibility

Definition 6
A state i is said to be transient if, given that we start in state i, there is a non-zero
probability that we will never return back to i. Otherwise, the state is called recurrent. A

: Transient and recurrent states

Markov chain starting from a recurrent state will revisit it with probability 1, and hence
revisit it infinitely often. On the other hand, a Markov chain starting from a transient
state has a strictly positive probability of never coming back to it. Thus, a Markov chain
will visit any transient state only finitely many times; eventually, transient states will
not be revisited anymore.

Definition 7

A state i has period d if any return to state i must occur in multiples of d time-steps. If d
= 1, then the state is said to be aperiodic; otherwise (d > 1), the state is said to be
periodic with period d. Formally, state i’s period d is the greatest common divisor of the
set of integers n > 0 such that p(n)

i,i > 0. For our purposes, the concept of periodicity is
only relevant for recurrent states. As an example, note that every state in the simple
random walk presented in section 7.1 is periodic with period 2.

: Periodic and aperiodic states. Periodic and aperiodic communicating
classes

An interesting and useful fact is that if i↔j, then i and j must have the same period (see
theorem 5.2. in Kulkarni (1995)). In particular, note that if pi,i > 0 for any i, then the
communicating class to which i belongs must be aperiodic. Thus, it makes sense to
qualify communicating classes as periodic with period d, or aperiodic. A closed
communicating class with period d can return to its starting state only at times d, 2d, 3d,
…

The concepts presented in this section will allow us to analyse the dynamics of any
finite Markov chain. In particular, we will show that, given enough time, any finite
Markov chain will necessarily end up in one of its closed communicating classes (i.e.
absorbing classes).

7.4 Limiting behaviour of finite THMCs
This section is devoted to characterising the limiting behaviour of a THMC, i.e.
studying the convergence (in distribution) of Xn as n tends to infinity. Specifically, we
aim to study the behaviour of ai

(n) = P(Xn = i) as n tends to infinity. From Proposition 1
it is clear that analysing the limiting behaviour of Pn would enable us to characterise
ai

(n). There are many introductory books in stochastic processes that offer clear and
simple methods to analyse the limiting behaviour of THMCs when the transition matrix
P is tractable (see e.g. chapter 5 in (Kulkarni 1999), chapters 2-4 in (Kulkarni 1995),
chapter 3 in (Janssen and Manca 2006) or the book chapter written by (Karr 1990)).
Nonetheless, we focus here on the general case, where operating with the transition
matrix P may be computationally unfeasible.

7.4.1 General dynamics
The first step in the analysis of any THMC consists in identifying all the closed
communicating classes, so we can partition the state space S as indicated by the
decomposition theorem (see proposition 2). The following proposition (Theorems 3.7
and 3.8 in Kulkarni (1995)) reveals the significance of this partition:

Proposition 3
Consider a finite THMC that has been partitioned as indicated in proposition 2. Then:

. General dynamics of finite THMCs.

(i) All states in T (i.e. not belonging to a closed communicating class) are transient.
(ii) All states in Cv (i.e. in any closed communicating class) are recurrent;

v  {1, 2, …, k}.

Proposition 3 states that sooner or later the THMC will enter one of the absorbing
classes and stay in it forever. Formally, for all i  S and all j  T: , i.e. the

probability of finding the process in a state belonging to a non-closed communicating
class goes to zero as n goes to infinity. Naturally, if the initial state already belongs to
an absorbing class Cv, then the chain will never abandon such a class. Formally, for all i
 Cv and all j  Cv: p(n)

i,j = 0 for all n ≥ 0.

As an example of the usefulness of Proposition 3, consider the THMC represented in
Figure 10. This THMC has only two absorbing classes: {s2} and {s5}. Thus, the
partition of the state space is: S = {s2}  {s5}  {s1, s3, s4, s6, s7, s8, s9, s10, s11, s12}.
Hence, applying Proposition 3 we can state that the process will eventually end up in
one of the two absorbing states, s2 or s5. The probability of ending up in one or the other
absorbing state depends on the initial conditions a(0) (and on the actual numbers pi,j in
the transition matrix, of course). Slightly more formally, the limiting distribution of Xn
exists, but it is not unique, i.e. it depends on the initial conditions.

7.4.2 Dynamics within absorbing classes
The previous section has explained that any simulation run will necessarily end up in a
certain absorbing class; this section characterises the dynamics of a THMC that is
already “trapped” in an absorbing class. This is precisely the analysis of irreducible
Markov chains, since irreducible Markov chains are, by definition, Markov chains with
one single closed communicating class (see definition 5). In other words, one can see
any THMC as a set of transient states T plus a finite number of irreducible Markov sub-
chains.

Irreducible THMCs behave significantly different depending on whether they are
periodic or not. The following sections characterise these two cases.

Irreducible and aperiodic THMCs
Irreducible and aperiodic THMCs are often called ergodic. In these processes the
probability function of Xn approaches a limit as n tends to infinity. This limit is called
the limiting distribution, and is denoted here by . Formally, the following limit exists
and is unique (i.e. independent of the initial conditions ai

(0)):

Thus, in ergodic THMCs the probability of finding the system in each of its states in the
long run is strictly positive and independent of the initial conditions (Theorems 3.7 and
3.15 in Kulkarni (1995)). As previously mentioned, calculating such probabilities may
be unfeasible, but we can estimate them sampling many simulation runs at a sufficiently
large time-step.

Importantly, in ergodic THMCs the limiting distribution  coincides with the
occupancy distribution *, which is the long-run fraction of the time that the THMC
spends in each state11

11 Formally, the occupancy of state i is defined as:

. Naturally, the occupancy distribution * is also independent of

0lim)(
, =

∞→

n
jin

p

Sia i
n

in
∈>=

∞→
0π)(lim

the initial conditions. Thus, in ergodic THMCs, running just one simulation for long
enough (which enables us to estimate *) will serve to estimate  just as well.

The question that comes to mind then is: How long is long enough? i.e. when will I
know that the empirical distribution obtained by simulation resembles the limiting
distribution ? Unfortunately there is no answer for that. The silver lining is that
knowing that the limiting and the occupancy distribution coincide, that they must be
stable in time, and that they are independent of the initial conditions, enables us to
conduct a wide range of tests that may tell us when it is certainly not long enough. For
example, we can run a battery of simulations and study the empirical distribution over
the states of the system across samples as time goes by. If the distribution is not stable,
then we have not run the model for long enough. Similarly, since the occupancy
distribution is independent of the initial conditions, one can run several simulations with
widely different initial conditions, and compare the obtained occupancy distributions. If
the empirical occupancy distributions are not similar, then we have not run the model
for long enough. Many more checks can be conducted.

Admittedly, when analysing a computer model one is often interested not so much in
the distribution over the possible states of the system, but rather in the distribution of a
certain statistic. The crucial point is to realise that if the statistic is a function of the state
of the system (and all statistics that can be extracted from the model are), then the
limiting and the occupancy distributions of the statistic exist, coincide and are
independent of the initial conditions.

Irreducible and periodic THMCs
In contrast with aperiodic THMCs, the probability distribution of Xn in periodic THMCs
does not approach a limit as n tends to infinity. Instead, in an irreducible THMC with
period d, as n tends to infinity, Xn will in general cycle through d probability functions
depending on the initial distribution.

As an example, consider the simple random walk again (which is irreducible and
periodic, with period 2), and assume that the random walker starts at patch number 1
(i.e. X0 = 1). Given these settings, it can be shown that

In particular, the limits above show that the random walker cannot be at a patch with an
even number in any even time-step, and he cannot be at a patch with an odd number in
any odd time-step. In contrast, if the random walker started at patch number 2 (i.e. X0 =
2), then the limits above would be interchanged.

1+
=

∞→ n
nNE i

ni
))((

lim*π

where Ni(n) denotes the number of times that the THMC visits state i over the time span {0, 1,…, n}.

],,,,,,,,,,,,,,,,[lim)(

16
10

8
10

8
10

8
10

8
10

8
10

8
10

8
10

16
12 =

∞→

n
in

a

],,,,,,,,,,,,,,,,[lim)(0
8
10

8
10

8
10

8
10

8
10

8
10

8
10

8
1012 =+

∞→

n
in

a

Fortunately, every irreducible (periodic or aperiodic) THMC does have a unique
occupancy distribution *, independent of the initial conditions (see Theorem 5.19 in
Kulkarni (1999)). In our particular example, this is:

Thus, the long-run fraction of time that the system spends in each state in any
irreducible THMC is unique (i.e. independent of the initial conditions). This is a very
useful result, since any statistic which is a function of the state of the system will also
have a unique occupancy distribution independent of the initial conditions. As explained
before, this occupancy distribution can be approximated with one single simulation run,
assuming it runs for long enough.

8 Synergies between Mathematical analysis and Computer
simulation.

In this section we present various ways in which mathematical analysis and computer
simulation can be combined to produce a better understanding of the dynamics of a
model. Note that a full understanding of the dynamics of a model involves not only
characterising (i.e. describing) them, but also finding out why such dynamics are being
observed, i.e. identifying the subsets of rules that are necessary or sufficient to generate
certain aspects of the observed dynamics. To do this, one often has to make changes in
the model, i.e. build supporting models that differ only slightly from the original one
and may yield useful insights about its dynamics. These supporting models will
sometimes be more tractable (e.g. if heterogeneity or stochasticity are averaged out) and
sometimes more complex (e.g. if interactions that were assumed to be global in the
original model may only take place locally in the supporting model). Thus, for clarity,
we distinguish three different cases and deal with them in turn (see Figure 13):

1. Characterisation of the dynamics of a model.
2. Moves towards greater mathematical tractability. This involves creating and

studying supporting models that are simpler than the original one.
3. Moves towards greater mathematical complexity. This involves creating and

studying supporting models that are less tractable than the original one.

Figure 13. To fully understand the dynamics of a model, one often has to study supporting models
that differ only slightly from the original one. Some of these supporting models may be more
tractable whilst others may be more complex.

],,,,,,,,,,,,,,,,[*
32
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

16
1

32
1

=π

8.1 Characterising the dynamics of the model
There are many types of mathematical techniques that can be usefully combined with
computer simulation to characterise the dynamics of a model (e.g. Stochastic
Approximation Theory (Benveniste et al. 1990; Kushner and Yin 1997)), but for
limitations of space we focus here on Markov chain analysis only.

When using Markov chain analysis to characterise the dynamics of a model it may
happen that the transition matrix can be easily computed and we can operate with it, or
it may not. In the former case –which is quite rare in Social Simulation models–, one
can provide a full characterisation of the dynamics of the model just by operating with
the transition matrix (see Proposition 1 and the beginning of section 7.4 for references).
In general, however, deriving and operating with the transition matrix may be
unfeasible, and it is in this common case where there is a lot to gain in using Markov
chain analysis and computer simulation together. The overall method goes as follows:
• Use Markov chain analysis to assess the relevance of initial conditions and to

identify the different regimes in which the dynamics of the model may end up
trapped.

• Use the knowledge acquired in the previous point to design suitable computational
experiments aimed at estimating the exact probability distributions for the relevant
statistics (which potentially depend on the initial conditions).

The following describes this overall process in greater detail. Naturally, the first step
consists in finding an appropriate definition of the state of the system, as explained in
section 7.1. The next step is to identify all the closed communicating (i.e. absorbing)
classes in the model Cv (v  {1, 2, …, k}). This allows us to partition the state space of
the Markov chain as the union of all the closed communicating classes C1, C2, …, Ck in
the model plus another class T containing all the states that belong to non-closed
communicating classes. Izquierdo et al. (2009) illustrate how to do this in 10 well-
known models in the Social Simulation literature.

In most cases, conducting the partition of the state space is not as difficult as it may
seem at first. In particular, the following proposition provides some simple sufficient
conditions that guarantee that the computer model contains one single aperiodic
absorbing class, i.e. the finite THMC that the computer model implements is irreducible
and aperiodic (i.e. ergodic).

Proposition 4

. Sufficient conditions for irreducibility and aperiodicity.

(i) If it is possible to go from any state to any other state in one single time-step
(pi,j > 0 for all i  j) and there are more than 2 states, then the THMC is
irreducible and aperiodic.

(ii) If it is possible to go from any state to any other state in a finite number of
time-steps (i↔j for all i  j), and there is at least one state in which the
system may stay for two consecutive time-steps (pi,i > 0 for some i), then the
THMC is irreducible and aperiodic.

(iii) If there exists a positive integer n such that p(n)
i,j > 0 for all i and j, then the

THMC is irreducible and aperiodic (Janssen and Manca 2006, p. 107).

If one sees the transition diagram of the Markov chain as a (directed) network, the
conditions above can be rewritten as:

(i) The network contains more than 2 nodes and there is a directed link from
every node to every other node.

(ii) The network is strongly connected and there is at least one loop.
(iii) There exists a positive integer n such that there is at least one walk of length

n from any node to every node (including itself).

Izquierdo et al. (2009) show that many models in the Social Simulation literature satisfy
one of these sufficient conditions (e.g. Epstein and Axtell’s (1996) Sugarscape,
Axelrod’s (1986) metanorms models, Takahashi’s (2000) model of generalized
exchange, and Miller and Page’s (2004) standing ovation model with noise). This is
important since, as explained in section 7.4.2, in ergodic THMCs the limiting and the
occupancy distributions of any statistic exist, coincide and are independent of the initial
conditions (so running just one simulation for long enough, which enables us to
estimate the occupancy distribution, will serve to estimate the limiting distribution just
as well).

Let us return to the general case. Having partitioned the state space, the analysis of the
dynamics of the model is straightforward: all states in T (i.e. in any finite
communicating class that is not closed) are transient, whereas all states in Cv (i.e. in any
finite closed communicating class) are recurrent. In other words, sooner or later any
simulation run will enter one of the absorbing classes Cv and stay in it forever.

Here computer simulation can play a crucial role again, since it allows us to estimate the
probability of ending up in each of the absorbing classes for any (stochastic or
deterministic) initial condition we may be interested in. A case-in-point would be a
model that has only a few absorbing states, or where various absorbing states are put
together into only a few groups. Izquierdo et al. (2009) analyse models that follow that
pattern: Axelrod’s (1997b) model of dissemination of culture, Arthur’s (1989) model of
competing technologies, and Axelrod and Bennett’s (1993) model of competing
bimodal coalitions. CharityWorld (Polhill et al. 2006; Izquierdo and Polhill 2006) is an
example of a model with a unique absorbing state.

The following step consists in characterising the dynamics of the system within each of
the absorbing classes. Once the system has entered a certain absorbing class Cv, it will
remain in it forever exhibiting a unique conditional12

Finally, recall that some absorbing classes are periodic and some are aperiodic.
Aperiodic absorbing classes have a unique conditional limiting distribution v denoting

 occupancy distribution v* over
the set of states that compose Cv. Naturally, the same applies to any statistic we may
want to study, since all statistics that can be extracted from the model are a function of
the state of the system.

The conditional occupancy distribution v* denotes the (strictly positive) long-run
fraction of the time that the system spends in each state of Cv given that the system has
entered Cv. Importantly, the conditional occupancy distribution v* is the same
regardless of the specific state through which the system entered Cv. The role of
simulation here is to estimate these conditional occupancy distributions for the relevant
statistics by running the model for long enough.

12 Given that the system has entered the absorbing class Cv.

the long-run (strictly positive) probability of finding the system in each of the states that
compose Cv given that the system has entered Cv. This conditional limiting distribution
v coincides with the conditional occupancy distribution v* and, naturally, is also
independent of the specific state through which the system entered Cv. (Again, note that
this also applies to the distribution of any statistic, as they are all functions of the state
of the system, necessarily.)

In contrast with aperiodic absorbing classes, periodic absorbing classes do not generally
have a unique limiting distribution; instead, they cycle through d probability functions
depending on the specific state through which the system entered Cv (where d denotes
the period of the periodic absorbing class). This is knowledge that one must take into
account at the time of estimating the relevant probability distributions using computer
simulation.

Thus, it is clear that Markov chain analysis and computer simulation greatly
complement each other. Markov chain analysis provides the overall picture of the
dynamics of the model by categorising its different dynamic regimes and identifying
when and how initial conditions are relevant. Computer simulation uses this information
to design appropriate computational experiments that allow us to quantify the
probability distributions of the statistics we are interested in. As explained above, these
probability distributions can always be approximated with any degree of accuracy by
running the computer model several times.

There are several examples of this type of synergetic combination of Markov chain
analysis and computer simulation in the literature. Galan and Izquierdo (2005) analysed
Axelrod’s (1986) agent-based model as a Markov chain, and concluded that the long-
run behaviour of that model was independent of the initial conditions, in contrast to the
initial conclusions of the original analysis. Galan and Izquierdo (2005) also used
computer simulation to estimate various probability distributions. Ehrentreich (2002;
2006) used Markov chain analysis on the Artificial Stock Market (Arthur et al. 1997;
LeBaron et al. 1999) to demonstrate that the mutation operator implemented in the
model is not neutral to the learning rate, but introduces an upward bias13

8.2 Moves towards greater mathematical tractability:
Simplifications

. A more
positive example is provided by Izquierdo et al. (2007; 2008b), who used Markov chain
analysis and computer simulation to confirm and advance various insights on
reinforcement learning put forward by Macy and Flache (2002) and Flache and Macy
(2002).

There are at least two types of simplifications that can help us to better understand the
dynamics of a model. One consists in studying specific parameterisations of the original
model that are thought to lead to particularly simple dynamics, or to more tractable
situations (Gilbert and Terna 2000; Gilbert 2007). Examples of this type of activity
would be to run simulations without agents or with very few agents, explore the
behaviour of the model using extreme parameter values, model very simple
environments, etc. This activity is common practice in the field (see e.g. Gotts et al.
2003c, 2003d).

13 This finding does not refute some of the most important conclusions obtained by the authors of the
original model.

A second type of simplification consists in creating an abstraction of the original model
(i.e. a model of the model) which is mathematically tractable. An example of one
possible abstraction would be to study the expected motion of the dynamic system (see
the studies conducted by Galan and Izquierdo (2005), Edwards et al. (2003), Castellano
et al. (2000), Huet et al. (2007), Mabrouk et al. (2007), Vilà (2008) and Izquierdo et al.
(2007; 2008b) for illustrations of mean-field approximations). Since these mathematical
abstractions do not correspond in a one-to-one way with the specifications of the formal
model, any results obtained with them will not be conclusive in general, but they may
give us insights suggesting areas of stability and basins of attraction, clarifying
assumptions, assessing sensitivity to parameters, or simply giving the option to illustrate
graphically the expected dynamics of the original model. This approach can also be
used as a verification technique to detect potential errors and artefacts (Galán et al.
2009).

8.3 Moves towards greater mathematical complexity: Extensions
As argued before, understanding the dynamics of a model implies identifying the set of
assumptions that are responsible for particular aspects of the obtained results. Naturally,
to assess the relevance of any assumption in a model, it is useful to replace it with other
alternatives, and this often leads to greater mathematical complexity14

In the literature there are many examples of the type of activity explained in this section.
For example, Klemm et al. studied the relevance of various assumptions in Axelrod’s
model of dissemination of culture (1997b) by changing the network topology (Klemm
et al. 2003a), investigating the role of dimensionality (Klemm et al. 2003b, 2005), and
introducing noise (Klemm et al. 2003c). Another example is given by Izquierdo and

.

Ideally, the evaluation of the significance of an assumption is conducted by
generalisation, i.e. by building a more general model that allows for a wide range of
alternative competing assumptions, and contains the original assumption as a particular
case. An example would be the introduction of arbitrary social networks of interaction
in a model where every agent necessarily interacts with every other agent. In this case,
the general model with arbitrary networks of interaction would correspond with the
original model if the network is assumed to be complete, but any other network could
also be studied within the same common framework. Another example is the
introduction of noise in deterministic models.

Building models by generalisation is useful because it allows for a transparent,
structured and systematic way of exploring the impact of various alternative
assumptions that perform the same role in the model, but it often implies a loss in
mathematical tractability (see e.g. Izquierdo and Izquierdo 2006). Thus, it is often the
case that a rigorous study of the impact of alternative assumptions in a model requires
being prepared to slide up and down the tractability continuum depicted in Figure 13
(Gotts et al. 2003b). In fact, all the cases that are mentioned in the rest of this section
involved greater complexity than the original models they considered, and computer
simulation had to be employed to understand their dynamics.

14 This is so because many assumptions we make in our models are, to some extent, for the sake of
simplicity. As a matter of fact, in most cases the whole purpose of modelling is to build an abstraction of
the world which is simpler than the world itself, so we can make inferences about the model that we
cannot make directly from the real world (Edmonds 2001; Galán et al. 2009; Izquierdo et al. 2008a).

Izquierdo (2007), who analysed the impact of using different structures of social
networks in the efficiency of a market with quality variability.

In the context of decision-making and learning, Flache and Hegselmann (1999) and
Hegselmann and Flache (2000) compared two different decision-making algorithms that
a set of players can use when confronting various types of social dilemmas. Similarly,
Takadama et al. (2003) analysed the effect of three different learning algorithms within
the same model.

Several authors, particularly in the literature of Game Theory, have investigated the
effect of introducing noise in the decision-making of agents. This is useful not only to
investigate the general effect of potential mistakes or experimentation, but also to
identify the stochastic stability of different outcomes (see section 10 in Izquierdo et al.
(2009)). An illustrative example is given by Izquierdo et al. (2008b), who investigate
the reinforcement learning algorithm proposed by Bush and Mosteller (1955) using both
mathematical analysis and simulation, and find that the inclusion of small quantities of
randomness in players’ decisions can change the dynamics of the model dramatically.

Another assumption investigated in the literature is the effect of different spatial
topologies (see e.g. Flache and Hegselmann (2001), who generalised two of their
cellular automata models by changing their –originally regular– grid structure). Finally,
as mentioned in section 5, it is increasingly common in the field of evolutionary game
theory to assess the impact of various assumptions using computer simulation (see e.g.
Galan and Izquierdo 2005; Santos et al. 2006; Traulsen et al. 2006; Izquierdo and
Izquierdo 2006).

9 Summary
In this chapter we have provided a set of guidelines to understand the dynamics of
computer models using both simulation and mathematical analysis. In doing so, it has
become clear that mathematical analysis and computer simulation should not be
regarded as alternative –or even opposed– approaches to the formal study of social
systems, but as complementary (Gotts et al. 2003a, 2003b). Not only can they provide
fundamentally different insights on the same model, but they can also produce hints for
solutions for each other. In short, there are plenty of synergies to be exploited by using
the two techniques together, so the full potential of each technique cannot be reached
unless they are used in conjunction.

To understand the dynamics of any particular computer model, we have seen that it is
useful to see the computer model as the implementation of a function that transforms
probability distributions over the set of possible inputs into probability distributions
over the set of possible outputs. We refer to this function as the formal model that the
computer model implements.

The mathematical approach to analyse formal models consists in examining the rules
that define the model directly; the aim is to deduce the logical implications of these
rules for any particular instance to which they can be applied. Our analysis of
mathematical techniques to study formal models has been focused on the theory of
Markov Chains. This theory is particularly useful for our purposes since many computer
models can be meaningfully represented as time-homogenous Markov chains.

In contrast with mathematical analysis, the computer simulation approach does not look
at the rules that define the formal model directly, but instead tries to infer general
properties of these rules by examining the outputs they produce when applied to
particular instances of the input space. Thus, in the simulation approach, the data is
produced by the computer using strict logical deduction, but the general patterns about
how the rules transform the inputs into the outputs are inferred using generalisation by
induction. Thus, in the general case –and in contrast with mathematical analysis–, the
inferences obtained using computer simulation will not be necessarily correct in a strict
logical sense; but, on the other hand, computer simulation enables us to explore formal
models beyond mathematical tractability, and the confidence we can place on the
conclusions obtained with this approach can be rigorously assessed in statistical terms.
Furthermore, as shown in this chapter, we can achieve any arbitrary level of accuracy in
our computational approximations by running the model sufficiently many times.

Bearing in mind the relative strengths and limitations of both approaches, we have
identified at least three different ways in which mathematical analysis and computer
simulation can be usefully combined to produce a better understanding of the dynamics
of computer models.

The first synergy appears at the time of characterising the dynamics of the formal model
under study. To do that, we have shown how Markov chain analysis can be used to
provide an overall picture of the dynamics of the model by categorising its different
dynamic regimes and identifying when and how initial conditions are relevant. Having
conducted such an analysis, one can then use computer simulation to design appropriate
computational experiments with the aim of quantifying the probability distributions of
the variables we are interested in. These probability distributions can always be
approximated with any degree of accuracy by running the computer model several
times.

The two other ways in which mathematical analysis and computer simulation can be
combined derive from the fact that understanding the dynamics of a model involves not
only characterising (i.e. describing) them, but also finding out why such dynamics are
being observed (i.e. discover causality). This often implies building supporting models
that can be simpler or more complex than the original one. The rationale to move
towards simplicity is to achieve greater mathematical tractability, and this often
involves studying particularly simple parameterisations of the original model, and
creating abstractions which are amenable to mathematical analysis. The rationale to
move towards complexity is to assess the relevance of specific assumptions, and it often
involves building generalisations of the original model to explore the impact of
competing assumptions that can perform the same role in the model but may lead to
different results.

Let us conclude by encouraging the reader to put both mathematical analysis and
computer simulation in their backpack, and be happy to glide up and down the
tractability spectrum where both simple and complex models lie. The benefits are out
there.

Acknowledgements
The authors have benefited from the financial support of the Spanish Ministry of
Education and Science (projects DPI2005-05676 and TIN2008-06464-C03-02) and of
the JCyL (projects VA006B09 and BU034A08). We are also very grateful to Nick
Gotts, Bruce Edmonds and Gary Polhill for many extremely useful discussions.

Reading List
• EPSTEIN J M (2006) Remarks on the Foundations of Agent-Based Generative Social

Science. In Judd K L and Tesfatsion L (Eds.) Handbook of Computational Economics, Vol.
2: Agent-Based Computational Economics, Chapter 34. Amsterdam, The Netherlands:
North-Holland.
- This chapter treats a variety of foundational and epistemological issues

surrounding generative explanation in the social sciences, and discusses the role of
agent-based computational models in generative social science.

• GRINSTEAD, C M and Snell, J L (1997) Introduction to Probability: Second Revised
Edition. Chapter 11: Markov chains. American Mathematical Society. Available for
download under the terms of the GNU Free Documentation License (FDL) at
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/
book.html.
- This chapter provides an excellent introduction to the theory of finite Markov

Chains, with many examples and exercises.

• HÄGGSTRÖM, O (2002) Finite Markov Chains and Algorithmic Applications. Cambridge
University Press.
- This book provides a clear and concise introduction to Probability theory and

Markov Chain theory, and then illustrates the usefulness of these theories by
studying a range of stochastic algorithms with important applications in
optimisation and other problems in computing. One of the algorithms covered is
the Markov chain Monte Carlo method.

• IZQUIERDO L R, Izquierdo, S S, Galán, J M and Santos, J I (2009) Techniques to
Understand Computer Simulations: Markov Chain Analysis. Journal of Artificial
Societies and Social Simulation, 12(1) 6 http://jasss.soc.surrey.ac.uk/12/1/6.html.
- This paper analyses the dynamics of 10 well-known models in the Social Simulation

literature using the theory of Markov Chains.

• KULKARNI, V G (1995). Modeling and Analysis of Stochastic Systems. Chapman &
Hall/CRC.
- This excellent book provides a rigorous analysis of many types of useful stochastic

processes, e.g. discrete and continuous time Markov Chains, renewal processes,
regenerative processes, and Markov regenerative processes.

• LEOMBRUNI, R and Richiardi, M (2005) Why are economists sceptical about agent-
based simulations? Physica A: Statistical Mechanics and its Applications 355(1), pp.
103-109.
- This paper discusses several issues surrounding the interpretation of simulation

dynamics and the generalisation of the simulation results.

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html�
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html�
http://jasss.soc.surrey.ac.uk/12/1/6.html�

References

ARTHUR W B (1989) Competing technologies, increasing returns, and lock-in by historical events.
Economic Journal, 99(394), pp. 116-131

ARTHUR W B, Holland J H, LeBaron B, Palmer R, and Tayler P (1997) Asset Pricing under
Endogenous Expectations in an Artificial Stock Market. In Arthur W B, Durlauf S, and Lane D (Eds.) The
Economy as an Evolving Complex System II: 15-44. Reading, MA: Addison-Wesley Longman

AXELROD R M (1986) An Evolutionary Approach to Norms. American Political Science Review, 80(4),
pp. 1095-1111

AXELROD R M (1997a) Advancing the Art of Simulation in the Social Sciences. In Conte R,
Hegselmann R, and Terna P (Eds.) Simulating Social Phenomena, Lecture Notes in Economics and
Mathematical Systems 456: 21-40. Berlin: Springer-Verlag

AXELROD R M (1997b) The Dissemination of Culture: A Model with Local Convergence and Global
Polarization. Journal of Conflict Resolution, 41(2), pp. 203-226

AXELROD R M and Bennett D S (1993) A Landscape Theory of Aggregation. British Journal of
Political Science, 23(2), pp. 211-233

AXTELL R L (2000) Why Agents? On the Varied Motivations for Agent Computing in the Social
Sciences. In Macal C M and Sallach D (Eds.) Proceedings of the Workshop on Agent Simulation:
Applications, Models, and Tools: 3-24. Argonne, IL: Argonne National Laboratory

AXTELL R L and Epstein J M (1994) Agent Based Modeling: Understanding Our Creations. The
Bulletin of the Santa Fe Institute, Winter 1994, pp. 28-32

BALZER W, Brendel K R, and Hofmann S (2001) Bad Arguments in the Comparison of Game Theory
and Simulation in Social Studies. Journal of Artificial Societies and Social Simulation, 4(2)1.
http://jasss.soc.surrey.ac.uk/4/2/1.html.

BENVENISTE A, Métivier M, and Priouret P (1990) Adaptive Algorithms and Stochastic
Approximations. Berlin: Springer-Verlag.

BÖHM C and Jacopini G (1966) Flow diagrams, turing machines and languages with only two formation
rules. Communications of the ACM, 9(5), pp. 366-371

BUSH R R and Mosteller F (1955). Stochastic Models for Learning. New York: John Wiliey & Son.

CASTELLANO C, Marsili M, and Vespignani A (2000) Nonequilibrium phase transition in a model for
social influence. Physical Review Letters, 85(16), pp. 3536-3539

CUTLAND N (1980) Computability: An Introduction to Recursive Function Theory. Cambridge:
Cambridge University Press.

EDMONDS B (2001) The Use of Models - making MABS actually work. In Moss S and Davidsson P
(Eds.) Multi-Agent-Based Simulation, Lecture Notes in Artificial Intelligence 1979: 15-32. Berlin:
Springer-Verlag

EDMONDS B (2005) Simulation and Complexity - how they can relate. In Feldmann V and Mühlfeld K
(Eds.) Virtual Worlds of Precision - computer-based simulations in the sciences and social sciences: 5-
32. Münster, Germany: Lit-Verlag

EDWARDS M, Huet S, Goreaud F, and Deffuant G (2003) Comparing an individual-based model of
behaviour diffusion with its mean field aggregate approximation. Journal of Artificial Societies and
Social Simulation, 6(4)9. http://jasss.soc.surrey.ac.uk/6/4/9.html.

http://jasss.soc.surrey.ac.uk/4/2/1.html�
http://jasss.soc.surrey.ac.uk/6/4/9.html�

EHRENTREICH N (2002) The Santa Fe Artificial Stock Market Re-Examined - Suggested Corrections.
Economics Working Paper Archive at WUSTL.
http://econwpa.wustl.edu:80/eps/comp/papers/0209/0209001.pdf.

EHRENTREICH N (2006) Technical trading in the Santa Fe Institute Artificial Stock Market revisited.
Journal of Economic Behavior & Organization, 61(4), pp. 599-616

EPSTEIN J M (2006) Remarks on the Foundations of Agent-Based Generative Social Science. In Judd K
L and Tesfatsion L (Eds.) Handbook of Computational Economics, Vol. 2: Agent-Based Computational
Economics: Amsterdam, The Netherlands: North-Holland

EPSTEIN J M and Axtell R L (1996) Growing Artificial Societies. Social Science From the Bottom Up.
Cambridge, MA: Brookings Institution Press-MIT Press.

FLACHE A and Hegselmann R (1999). Rationality vs. Learning in the Evolution of Solidarity Networks:
A Theoretical Comparison. Computational & Mathematical Organization Theory 5(2), pp. 97-127.

FLACHE A and Hegselmann R (2001) Do Irregular Grids make a Difference? Relaxing the Spatial
Regularity Assumption in Cellular Models of Social Dynamics. Journal of Artificial Societies and Social
Simulation, 4(4)6. http://jasss.soc.surrey.ac.uk/4/4/6.html.

FLACHE A and Macy M W (2002) Stochastic Collusion and the Power Law of Learning. Journal of
Conflict Resolution, 46(5), pp. 629-653

GALAN J M and Izquierdo L R (2005) Appearances Can Be Deceiving: Lessons Learned Re-
Implementing Axelrod's 'Evolutionary Approach to Norms'. Journal of Artificial Societies and Social
Simulation, 8(3)2. http://jasss.soc.surrey.ac.uk/8/3/2.html.

GALÁN J M, Izquierdo L R, Izquierdo S S, Santos J I, del Olmo R, López-Paredes A, and Edmonds B
(2009) Errors and artefacts in agent-based modelling. Journal of Artificial Societies and Social
Simulation, Journal of Artificial Societies and Social Simulation, 12(1)1
http://jasss.soc.surrey.ac.uk/12/1/1.html.

GENZ A and Kwong K S (2000) Numerical evaluation of singular multivariate normal distributions.
Journal of Statistical Computation and Simulation, 68(1), pp. 1-21

GILBERT N (1999) Simulation: A new way of doing social science. The American Behavioral Scientist,
42(10), pp. 1485-1487

GILBERT, N (2007) Agent-Based Models. Series: Quantitative Applications in the Social Sciences. Sage
Publications: London.

GILBERT N and Terna P (2000) How to build and use agent-based models in social science. Mind and
Society, 1(1), pp. 57-72

GILBERT N and Troitzsch K G (1999) Simulation for the social scientist. Buckingham, UK: Open
University Press.

GOTTS N M, Polhill J G and Law A N R (2003a) Agent-based simulation in the study of social
dilemmas. Artificial Intelligence Review, 19 (1), pp. 3-92

GOTTS N M, Polhill J G, and Adam W J (2003b) Simulation and Analysis in Agent-Based Modelling of
Land Use Change. Online proceedings of the First Conference of the European Social Simulation
Association, Groningen, The Netherlands, 18-21 September 2003.
http://www.uni-koblenz.de/~essa/ESSA2003/proceedings.htm.

GOTTS N M, Polhill J G, and Law A N R (2003c) Aspiration levels in a land-use simulation. Cybernetics
and Systems 34 (8), pp. 663-683.

http://econwpa.wustl.edu/eps/comp/papers/0209/0209001.pdf�
http://jasss.soc.surrey.ac.uk/4/4/6.html�
http://jasss.soc.surrey.ac.uk/8/3/2.html�
http://jasss.soc.surrey.ac.uk/12/1/1.html�
http://www.uni-koblenz.de/~essa/ESSA2003/proceedings.htm�

GOTTS N M, Polhill J G, Law A N R, and Izquierdo, L.R. (2003d). Dynamics of imitation in a land use
simulation. In: Proceedings of the Second International Symposium on Imitation in Animals and
Artefacts, University of Wales, Aberystwyth, 7th-11th April 2003, pp 39-46.

HAREL D (1980) On folk theorems. Communications of the ACM, 23(7), pp. 379-389

HAUERT C and Doebeli M (2004) Spatial structure often inhibits the evolution of cooperation in the
snowdrift game. Nature, 428(6983), pp. 643-646

HEGSELMANN R and Flache A (2000). Rational and Adaptive Playing. Analyse & Kritik 22(1), pp. 75-
97.

HOLLAND J H and Miller J H (1991) Artificial adaptive agents in economic theory. American Economic
Review, 81(2), pp. 365-370

HUET S, Edwards M, and Deffuant G (2007) Taking into Account the Variations of Neighbourhood
Sizes in the Mean-Field Approximation of the Threshold Model on a Random Network. Journal of
Artificial Societies and Social Simulation, 10(1)10. http://jasss.soc.surrey.ac.uk/10/1/10.html.

IMHOF L A, Fudenberg D, and Nowak M A (2005) Evolutionary cycles of cooperation and defection.
Proceedings of the National Academy of Sciences of the United States of America, 102(31), pp. 10797-
10800

IZQUIERDO L R, Izquierdo S S, Galán J M, and Santos J I (2009) Techniques to understand computer
simulations: Markov chain analysis . Journal of Artificial Societies and Social Simulation, 12(1)6
http://jasss.soc.surrey.ac.uk/12/1/6.html.

IZQUIERDO L R, Galán J M, Santos, J I and Olmo R. (2008a). Modelado de sistemas complejos
mediante simulación basada en agentes y mediante dinámica de sistemas. Empiria 16, pp. 85-112

IZQUIERDO L R, Izquierdo S S, Gotts N M, and Polhill J G (2007) Transient and Asymptotic Dynamics
of Reinforcement Learning in Games. Games and Economic Behavior, 61(2), pp. 259-276

IZQUIERDO L R and Polhill J G (2006) Is your model susceptible to floating point errors? Journal of
Artificial Societies and Social Simulation, 9(4)4. http://jasss.soc.surrey.ac.uk/9/4/4.html.

IZQUIERDO S S, Izquierdo L R, and Gotts N M (2008b) Reinforcement learning dynamics in social
dilemmas. Journal of Artificial Societies and Social Simulation, 11(2)1.
http://jasss.soc.surrey.ac.uk/11/2/1.html.

IZQUIERDO S S and Izquierdo L R (2007) The Impact on Market Efficiency of Quality Uncertainty
without Asymmetric Information. Journal of Business Research, 60(8), pp. 858-867

IZQUIERDO S S and Izquierdo L R (2006) On the Structural Robustness of Evolutionary Models of
Cooperation. In Corchado E, Yin H, Botti V J, and Fyfe C (Eds.) Intelligent Data Engineering and
Automated Learning - IDEAL 2006. Lecture Notes in Computer Science 4224: 172-182. Berlin
Heidelberg: Springer

JANSSEN J and Manca R (2006) Applied Semi-Markov Processes. New York, NY: Springer.

KARR A F (1990) Markov Processes. In Heyman D P and Sobel M J (Eds.) Stochastic Models.
Handbooks in Operations Research and Management Science 2: 95-123. Elsevier Science Publishers
B.V. (North-Holland)

KLEMM, K, Eguíluz, V M, Toral, R and San Miguel, M (2003a) Nonequilibrium Transitions in Complex
Networks: A Model of Social Interaction. Physical Review E 67(2), Article 026120.

KLEMM, K, Eguíluz, V M, Toral, R and San Miguel, M (2003b) Role of Dimensionality in Axelrod's
Model for the Dissemination of Culture. Physica A 327, pp. 1-5.

http://jasss.soc.surrey.ac.uk/10/1/10.html�
http://jasss.soc.surrey.ac.uk/12/1/6.html�
http://jasss.soc.surrey.ac.uk/9/4/4.html�
http://jasss.soc.surrey.ac.uk/11/2/1.html�

KLEMM, K, Eguíluz, V M, Toral, R and San Miguel, M (2003c) Global Culture: A Noise-Induced
Transition in Finite Systems. Physical Review E 67(4), Article 045101.

KLEMM, K, Eguíluz, V M, Toral, R and San Miguel, M (2005) Globalization, Polarization and Cultural
Drift. Journal of Economic Dynamics and Control 29(1-2), pp. 321-334.

KULKARNI V G (1995) Modelling and Analysis of Stochastic Systems. Boca Raton, Florida: Chapman
& Hall/CRC.

KULKARNI V G (1999) Modeling, Analysis, Design, and Control of Stochastic Systems. New York:
Springer-Verlag.

KUSHNER H J and Yin G G (1997) Stochastic Approximation Algorithms and Applications. New York,
NY: Springer-Verlag.

LEBARON B, Arthur W B, and Palmer R (1999) Time series properties of an artificial stock market.
Journal of Economic Dynamics & Control, 23(9-10), pp. 1487-1516

LEOMBRUNI R and Richiardi M (2005) Why are economists sceptical about agent-based simulations?
Physica A, 355, pp. 103-109

LIEBERMAN E, Havlin S, and Nowak M A (2009) Evolutionary dynamics on graphs. Nature,
433(7023), pp. 312-316

MABROUK N, Deffuant G, and Lobry C (2007) Confronting macro, meso and micro scale modelling of
bacteria dynamics. M2M 2007: Third International Model-to-Model Workshop, Marseille, France, 15-16
March 2007. http://m2m2007.macaulay.ac.uk/M2M2007-Mabrouk.pdf.

MACY M W and Flache A (2002) Learning Dynamics in Social Dilemmas. Proceedings of the National
Academy of Sciences of the United States of America, 99(3), pp. 7229-7236

MILLER J H and Page S E (2004) The standing ovation problem. Complexity, 9(5), pp. 8-16

NOWAK M A and May R M (1992) Evolutionary Games and Spatial Chaos. Nature, 359(6398), pp. 826-
829

NOWAK M A and Sigmund K (1992) Tit for tat in heterogeneous populations. Nature, 355(6357), pp.
250-253

NOWAK M A and Sigmund K (1993) A strategy of win-stay, lose-shift that outperforms tit for tat in the
Prisoner's Dilemma game. Nature, 364(6432), pp. 56-58

OSTROM T (1988) Computer simulation: the third symbol system. Journal of Experimental Social
Psychology, 24(5), pp. 381-392

POLHILL J G, Izquierdo L R, and Gotts N M (2006) What every agent based modeller should know
about floating point arithmetic. Environmental Modelling & Software, 21(3), pp. 283-309

RICHIARDI M, Leombruni R, Saam N J, and Sonnessa M (2006) A Common Protocol for Agent-Based
Social Simulation. Journal of Artificial Societies and Social Simulation, 9(1)15.
http://jasss.soc.surrey.ac.uk/9/1/15.html.

SANTOS F C, Pacheco J M, and Lenaerts T (2006) Evolutionary dynamics of social dilemmas in
structured heterogeneous populations. Proceedings of the National Academy of Sciences of the United
States of America, 103(9), pp. 3490-3494

SUBER P (2007) Formal Systems and Machines: An Isomorphism. Hand-out for "Logical Systems":
Earlham College

http://m2m2007.macaulay.ac.uk/M2M2007-Mabrouk.pdf�
http://jasss.soc.surrey.ac.uk/9/1/15.html�

TAKADAMA K, Suematsu Y L, Sugimoto N, Nawa N E, and Shimohara K (2003) Cross-element
validation in multiagent-based simulation: Switching learning mechanisms in agents. Journal of Artificial
Societies and Social Simulation, 6(4)6. http://jasss.soc.surrey.ac.uk/6/4/6.html

TAKAHASHI N (2000) The emergence of generalized exchange. American Journal of Sociology, 10(4),
pp. 1105-1134

.

TRAULSEN A, Nowak M A, and Pacheco J M (2006) Stochastic dynamics of invasion and fixation.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(1), pp. 011909

VILÀ X (2008) A Model-To-Model Analysis of Bertrand Competition. Journal of Artificial Societies and
Social Simulation, 11(2)11. http://jasss.soc.surrey.ac.uk/11/2/11.html.

WIKIPEDIA (2007). Structured program theorem.
http://en.wikipedia.org/w/index.php?title=Structured_program_theorem&oldid=112885072.

WILENSKY U (1999) NetLogo. Evanston, IL: Center for Connected Learning and Computer-Based
Modeling, Northwestern University.

http://jasss.soc.surrey.ac.uk/6/4/6.html�
http://jasss.soc.surrey.ac.uk/11/2/11.html�
http://en.wikipedia.org/w/index.php?title=Structured_program_theorem&oldid=112885072�

	Combining Mathematical and Simulation Approaches to Understand the Dynamics of Computer Models
	Authors’ information
	Why would you want to read this chapter?
	Abstract
	Introduction
	Computer models as input-output functions
	Different ways of representing the same formal model
	‘Stochastic’ computer models as stochastic processes
	Tools to understand the behaviour of formal models
	Computer simulation: Approximating the exact probability distribution by running the model
	Mathematical analysis: Time-homogenous Markov chains.
	What is a time-homogeneous Markov chain?
	Example: A simple random walk

	Transient distributions of finite THMCs
	Important concepts
	Limiting behaviour of finite THMCs
	General dynamics
	Dynamics within absorbing classes
	Irreducible and aperiodic THMCs
	Irreducible and periodic THMCs

	Synergies between Mathematical analysis and Computer simulation.
	Characterising the dynamics of the model
	Moves towards greater mathematical tractability: Simplifications
	Moves towards greater mathematical complexity: Extensions

	Summary
	Acknowledgements
	Reading List
	References

