
Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds.

A STOCHASTIC DISCRETE EVENT SIMULATOR FOR EFFECTS-BASED PLANNING

Hirad Asadi
Johan Schubert

Department of Decision Support Systems
Swedish Defence Research Agency

SE-16490 Stockholm, SWEDEN

ABSTRACT

In this system oriented paper we describe the architectural framework and information flow model of a
stochastic discrete event simulator for evaluating military operational plans. The simulator is tailored for
Effect-based Planning where the outcome of a plan is compared with a desired end state. The simulator
evaluates several alternative plans and identifies those that are closest to the desired end state. As a
test case we use a scenario which has been developed by the Swedish Armed Forces in their Combined
Joint Staff Exercises. The scenario is carried out in a fictitious country called Bogaland. The simulator
focuses on separation of military scenario data (implemented as an XML-model) and military action logic
(implemented as a rule based engine). By separating scenario data from actors’ behavior rules the modeling
task becomes easier for subject matter experts. The results show that alternative plans can be identified
based on efficiency and effectiveness.

1 INTRODUCTION

Effect-based military operational planning is a well-known concept explained among others in (Hunerwadel
2006). In Schubert et al. (2010) we examine how high-level military plans can be modeled in order to
identify the best plan alternatives. However, in this paper we focus mainly on the architectural features
and information flow model of the stochastic discrete event simulator developed at the Swedish Defence
Research Agency, FOI. The simulator enables a military analyst to identify the best military plans (chain
of actions) among a large amount of possible action alternatives. The output data that are produced by the
simulator indicates the most efficient and effective plans, and can also be used for deeper analysis tasks
within data farming (Horne and Meyer 2010).

Effects-based Planning (EBP) is a part of a thought process called an Effects-based Approach to
Operations (EBAO). The idea is to have an “effects-based thinking” when designing military operations
in order to reach certain effects or desired end states (Hunerwadel 2006). EBAO in general is composed
by four parts: EBP for creating military plans, Effects-based Execution (EBE) which focuses on executing
those plans, Effects-based Assessment (EBA) which deals with following up on the executed plans and
knowledge support which provides background knowledge to the previous parts (Schubert et al. 2010).

The simulator focuses on analyzing the EBP process. The general idea behind this research is that if
there are many possible combinations of actions for a military plan (alternatives consisting of actions), then
a simulator can evaluate many of these combinations in order to show the decision maker which possible
combinations are most successful.

The general outline of the system architecture developed in this research is shown in Figure 1. The
main system components are:

• Plan XML-Model,
• Plan Instantiator,

2842978-1-4799-2076-1/13/$31.00 ©2013 IEEE

Asadi and Schubert

• Simulation Engine,
• Behavior Engine,
• Military Domain Rules,
• Analysis Classes.

Plan
XML-Model

Simulator

Military Domain
Rules

Simulation Engine Behavior Engine Plan Instantiator

Analysis
Classes

Uses

Simulation Data

Uses Uses

Uses Uses

Output

Figure 1: System architecture.

Each component has a specific role which is explained in the upcoming sections. The system utilizes
scenario specific military data which are stored as an XML model (Ligeza 2001), called the Plan XML-
Model. The data are initialized as runtime objects by the Plan Instantiator. What this means is that each
action along with its involved actors reside in memory. The data structure which holds the actions is a
tree structure, where all alternatives to an action exist on the same level in the tree. When the data have
been instantiated the model can be accessed by the Simulation Engine. The problem of achieving the end
state of EBP corresponds to finding the best sequence of action alternatives. This can be represented as a
search tree with actions as nodes and alternatives as branches. As this representation corresponds to the
representation used in the A* algorithm we will use A* to solve the problem. Thus, the Simulation Engine
uses the A* algorithm (Hart, Nilsson, and Raphael 1968) to find the best action combinations by executing
actions and comparing the distance costs calculated using a distance function as shown in Equation 1. We
use the A* algorithm because it achieves better time performance compared to normal Dijkstra’s shortest
path algorithm (Dijkstra 1959). In general, the purpose of the A* algorithm is to find the path with the
shortest distance from a starting point to a specific goal. This can be achieved by having knowledge about
the distance traveled and an estimate about the remaining distance that lies ahead. When an action has been
executed, actor responses are carried out by the Behavior Engine, a rule-based component which utilizes
specific military scenario logic (Military Domain Rules) that are separately stored in text files.

As a test case we use a scenario which has been developed by the Swedish Armed Forces in their
Combined Joint Staff Exercises. The scenario is carried out in a fictitious country called Bogaland. This
country consists of different territories which are inhabited by a variety of actors (40 actors in total). The
actors are classified as hostile, friendly, neutral or uncertain towards the “blue forces”, which represent
the military planner. These classifications are predefined by the subject matter expert but can be changed

2843

Asadi and Schubert

dynamically during simulation execution. The classifications are calculated using actor parameters and
actor relations towards other actors. When the parameters and relations change, the classification of an
actor is updated based on subject matter expert rules (Military Domain Rules).

Bogaland holds many conflicts that have their roots in old wars and historical clashes between different
groups in different regions. These conflicts involve the control and exploitation of natural resources,
religious divergences and many other issues. The idea of this scenario is to create a place which includes
many real world conflicts. In this paper we use this scenario and create a data model that aims to represent
a military plan for minimizing the impact of hostile actors in specific regions in Bogaland. What this means
is that certain hostile actors are in focus and for those actors it is necessary that different parameters must
be changed according to a goal. For example, it is important to minimize “weapon power” for all hostile
actors.

Simulating alternative plans can be done in different ways depending on which level of abstraction
(operational, tactical, etc.) you are interested in. Different government agencies have chosen different
strategies when creating decision support tools for planning of military operations. For example, one
approach to simulate alternative plans is to use qualitative reasoning which is done in SimPath (Hinrichs
et al. 2011). SimPath is a hybrid simulator under development by DARPA’s Deep Green program (Surdu
and Kittka 2008). The idea behind SimPath is to combine qualitative reasoning, a geographic information
system and targeted probabilistic calculations in order to simulate alternative plans. Among other things,
SimPath shows the plans that are acceptable, partially acceptable and unacceptable.

A third approach to simulation-based decision support is demonstrated by the Peace Support Operations
Model (PSOM). This is a framework developed by the UK Ministry of Defence for peace supporting
operations (Body and Marston 2010). The model uses a human-in-the-loop approach to deal with situation
stabilization during irregular warfare. PSOM has a three-stage review process where the first stage deals
with subject analysis (e.g., data search and evaluation). The second stage deals with specification (e.g.,
creation of conceptual models) and the third stage is application (code development, verification, testing
and review); “The PSOM is an attempt to examine the conduct of a campaign by placing each component
of the operation in context, describing the constructive or destructive relationships between them” (Body
and Marston 2010).

The outline of this paper is as follows. In Section 2 we explain the data model (military plan), which is
fed into the simulator. After this, more detailed information about the simulator components are explained
in Sections 3-4. In Section 5 we describe how the simulator can be used by analysis classes. Finally, we
show the results in Section 6 and end with conclusions in Section 7.

2 PLAN XML-MODEL

In order to store scenario data we use the XML storage format since it is flexible, simple and widely
used. The goal is to capture all scenario concepts that might be of interest without introducing any extra
complexity in the model. Since EBAO is a high-level thought-process we only model concepts that are
absolutely necessary for understanding the scenario. The main concepts that we model using XML-elements
are:

• actor,
• action,
• relation.

An actor can represent a physical individual or an aggregated unit. For example, it can be a single tank
or a whole battalion. The actor element contains information about the actor, such as name, description
and actor parameters which are different abilities rated on a scale from 0 to 3 (Schubert et al. 2010) as
shown in Figure 2. These 15 parameters are associated with a target value (goal attribute) which indicates
what the desired end state should be for each parameter for every actor. These goal values are used by

2844

Asadi and Schubert

the Simulation Engine to calculate how far we are from the sought after end state using a specific distance
function (Schubert et al. 2010). In order to acquire the distance between two subsequent actions ax and
ay we calculate the sum of the difference between each actor parameter px

i j after action ax and the same
(updated) actor parameter py

i j after action ay as shown in Equation 1. To find the distance from ax to the
end state we replace ay with the sought after end state.

Figure 2: Example of an actor XML-element.

d(ax,ay) =
40

∑
i=1

15

∑
j=1
|px

i j− py
i j|, (1)

where i is an index over all 40 actors and j is an index over all 15 parameters for each actor.
The action element contains name, description and a group attribute that describes which level in

the action tree the action occurs at as shown in Figure 3. In addition, the action element contains data
about which actors are involved in the action. In Figure 3 we can see that this particular action has a
description which says “neutralize”. This means that specific targets must be neutralized, in this case an
actor called “DSD”, “KSP” and other irregular units. Both the actor and action elements have a special
attribute called class, which indicates what implementation class needs to be used for that particular element
during instantiation. There are other attributes associated with the elements as well, such as geographical
coordinates. These elements are not used by the simulator, but may be of interest for visualization purposes.

Figure 3: Example of an action XML-element.

The relation element is used to initiate actors with relational data about other actors, e.g., if actor
A is friendly towards actor B, then this is indicated in the relation element. Note that the data change
dynamically during runtime. Figure 4 shows each relation that actor with id “39” has.

Each color represents a type of relation in the XML model, red means hostile, yellow stands for
uncertain, blue is friendly and green is neutral. It is the Behavior Engine’s responsibility to update the
relation data. This is achieved by taking into account the current executing actor responses and the current
actor states along with different sets of rules defined by a subject matter expert.

2845

Asadi and Schubert

Figure 4: Example of a relation XML-element.

3 SIMULATOR

The simulator uses discrete events (Allen 2011) for simulating military operative plans. The discrete events,
namely the actions and actor responses, occur as a sequence in time. Each simulation equals one completed
action (i.e., one node) in the action tree. Since an action is complex, involving many actors with parameters
which are updated during execution, we need to store all this information if we want to restart from the
simulation end-point in the future. This storage of all parameters, or snapshot of the “system state”, is
important because the A* algorithm can come to a certain node when it is no longer feasible to continue
execution on that same branch. Hence, it must backtrack to a previously discovered action and choose
new alternatives from there. By storing system states we can directly jump from one sequence of action
alternatives to another using the exact same parameter settings which were valid for a previously evaluated
sequence of action alternatives. If we do not store the system state for each action we can not backtrack
because the parameter data will be overwritten for each new action execution.

Before explaining the components involved we need to describe the data flow of the simulator. Figure 5
shows how data are loaded into the simulator which then executes and outputs processed data.

Plan
XML-Model

Plan
Instantiator

Simulation
Engine

1) Data is loaded into simulator

2) Creates action tree

3) Tree is loaded into
Simulation Engine

Simulator

4) Executes an action
and searches tree with
the A* algorithm

Behavior
Engine

5) Calls Behavior Engine to
play out the actor interactions
associated with an action

Military
Domain Rules

6) Returns interaction
data to be used for
next search iteration

Simulation
Data

7) Data output after search is
complete or conditionally
terminated

Figure 5: Simulator flow chart.

The XML model is loaded into the Plan Instantiator (Step 1) which creates an action tree (Step 2). The
action tree is loaded into the Simulation Engine (Step 3) which uses this tree to perform searches (Step 4).
When an action is executed the main execution task falls upon the Behavior Engine to perform scenario
interactions (Step 5) which utilizes rules from the military domain. An alternative sequence of activities

2846

Asadi and Schubert

is created since when a tree level consists of n activities and the next level consists of m activities, there
are n×m combinations just for those two levels.

When the Behavior Engine has finished performing the interactions the data are sent back to the
Simulation Engine (Step 6) which uses it in order to calculate where to continue its search along the tree.
Finally, when the search is complete or a certain condition is met, the simulator terminates and outputs
the results (Step 7).

3.1 Plan Instantiator

The role of the Plan Instantiator is simply to parse the XML model and create object instances. It achieves
this by reading the XML elements and instantiating objects based on the class attribute. When reading the
action elements the Plan Instantiator takes into account the group attribute of an action and creates a tree
based on it. The tree data along with actor information and relations are stored for further usage by the
Simulation Engine.

3.2 Simulation Engine

The Simulation Engine is the core component of the simulator and is focused on the actions of the plan.
It uses the tree data from the Plan Instantiator to perform A* search as shown in Figure 6. Normally the
A* algorithm searches and stores single nodes in a queue, but since we are interested in storing paths,
for traceability, we have to extend the algorithm to support this feature. Each path has its own calculated
distance costs which are used for comparison between paths. The A* algorithm searches those paths that
have the best (least distance) costs from a queue.

Simulation Engine

Initialize action path
queue

Update system state
Execute

neighbor action

From queue, find
current best path
and get current
action from it

Update actors’
relation states

for current
action

Simulate actors’
responses for current
neighbor action with
the Behavior Engine

Calculate new
distance costs

Enqueue a new path
extended with the

neighbor action

Get tree neighbor
actions for current

action

No more neighbors

More neighbors

Figure 6: Simulation Engine flow chart.

Because our scenario contains 2.1×1023 possible combinations we also need to tell the A* algorithm
to terminate based on a condition in order to avoid memory overflow. The number of alternative plans is
calculated as the product of alternatives for each action. We do this by limiting the size of the sorted queue
which is used by the A* algorithm to 10 000 elements. What this does is it allows the queue to only be
expanded by paths that are better than preexisting ones. The problem is that we might lose special cases

2847

Asadi and Schubert

where the initial cost of selecting an action is high, but the cost after that action has been selected is less
compared to the best path found so far.

The first thing we do is to initialize the queue with a new path consisting of the root action and calculate
distance costs. We then enter the main A* algorithm loop and start dequeuing the best path, which has the
least distance cost.

When finding the current best path from the queue we look at the latest action in it and start updating
all actor relations associated with that particular action. When this is done we get all neighbors for that
current action (according to the A* algorithm). For each neighbor action we execute it and call the Behavior
Engine. The Behavior Engine returns the actor responses based on the current executed neighbor action
and associated actors. Based on the received response we calculate new distance costs and enqueue a new
path which has been extended with the current neighbor. Finally, the system state is updated and if there are
any more neighbors we continue executing them according to Figure 6, otherwise we continue dequeuing
the next best path until the queue is empty or a maximum number of complete plans have been evaluated.

3.2.1 System State Renewal

The system state indicates the state of all actors, namely, their quantitative parameters and relations. When
a state renewal takes place all 600 state variables (40 actors with 15 parameters each) are updated based
on distribution data that have been calculated by the Behavior Engine (using the Monte Carlo method)
as shown in Section 3.3. The distribution is over actor parameter values. For each actor and all actor
parameters a frequency table is created of how many times a certain value occurred. The distribution data
are used by the update routine to calculate and set new values for the actor parameters and relations. When
the system state has been updated the new actor values are used by the Simulation Engine for the next
iteration (Schubert et al. 2010).

3.2.2 Simulation Output Data

During the simulation different data are gathered. The most important data are the sequences of actions
that have been discovered by the simulator. These sequences indicate which combinations of actions that
are most efficient and effective among the 2.1×1023 alternatives. Each combination contains a sequence of
actions together with the cost for selecting that particular sequence. The costs consist of three different values
(distances) according to the A* algorithm: the f -value (total distance), the g-value (distance traversed) and
the h-value (estimated distance to goal). The f value is simply g+h and all distances are calculated from
a specific action’s perspective. This means that each action has its own set of distance values. Note that
even though the traversed or total distance increases, this does not mean we are closer to the goal since the
h-value solely is an indication of how close we are to the goal. Minimizing h corresponds to approaching
the end state of EBP.

The minimum h-value is 0, but in a real world scenario you can never achieve this simply because
we cannot satisfy every requirement of the end state. The maximum distance to goal is when all actor
parameters have values which are as far away as possible from their goal values. For example, with a total
of 600 parameters and 3 as the most divergent value for each parameter, the maximum distance is 1800
(600∗3) according to the distance function in Equation 1. The smaller the h-value is, the closer we are to
the goal. From an EBP perspective we can use the h-value for defining effects, e.g., since we know the
maximum h-value possible we can calculate to what percentage the goal is achieved for each actor. We
also want to achieve traceability, therefore all parameter values are sampled every time we execute a new
action.

2848

Asadi and Schubert

3.3 Behavior Engine

The purpose of the Behavior Engine is to generate actor responses based on the current executed action.
The responses are gathered in the form of a parameter distribution which is sent back to the Simulation
Engine for further processing as shown in Figure 7.

Behavior Engine

Initialize simulation actor
data container with inital

actor states

Initialize monte carlo data
container and randomly
select target actors and

bystander actors based on
simulation actor data

container

Select actors’
responses based on

actors’ behaviors given
the current state and

bystander actors

Execute responses and
store new states to
monte carlo data

container

K times

Create distribution
based on monte carlo

data container

Update simulation actor data
container with the newly

created monte carlo
distribution

T times

Figure 7: Behavior Engine flow chart.

The Behavior Engine uses a rule-based system inside the Monte Carlo method for calculating actor
responses. At first, the actor states are initialized into a global actor data container which will be used by
the Behavior Engine. In the Monte Carlo method, a new Monte Carlo data container is created for each
Monte Carlo iteration. First, the algorithm selects target actors and bystanders randomly. After this the
algorithm selects the actors’ responses based on their behavior given the circumstances, such as current
executed action and relations. Secondly, the actor responses are executed and the resulting data are stored
in the Monte Carlo container, previously created.

This process of executing actor responses is repeated for a specific maximum number of times (K
times). The higher the value, the more times an actor is allowed to react before the initiation of the next
action of the plan. Since this is a trade-off criteria between computation time and model accuracy (and
error propagation), an analyst has to decide what values should be used. When the response execution
has been finished a distribution is created based on the Monte Carlo data container. The Monte Carlo
method does T replications before terminating. In our experiment we use T = 20 and K = 2. When all is
finished the actor data container is returned to the Simulation Engine which uses it in order to calculate
new distance costs and finally update the system state.

The actor model is based on the actor state variables which have integer values from 0 to 3. This
information is used to create the behavior model for each actor, which in turn controls how an actor reacts.
The behavior model is based on a Bayesian network (Pourret, Naim, and Marcot 2008) which uses subject
matter expert knowledge and machine learning algorithms (Luotsinen and Sjöberg 2012).

With this type of model an actor’s response affects its state variables and relations. The state variables
may also be dependent on each other or on the actor’s relations. If one state variable is changed, this affects
how other state variables are evaluated whenever they are dependent.

2849

Asadi and Schubert

4 MILITARY DOMAIN RULES

When a behavior is triggered, an actor response is executed and the actor’s state variables are changed.
The changes that occur on the actor’s state variables are defined using a rule-based engine (Ray 2003).
The rule-based engine uses military domain rules that are defined with the help of a subject matter expert
and are stored in text files. These rules are set up as i f -then rules which means that the engine checks if
certain parameters have reached a specific condition. It then executes the necessary changes on the target
parameters as shown in Table 1. In this particular example the engine checks if parameter A is greater
than 0, etc. If this is the case it sets the value of parameter B to 2 and G to 1. This example basically
states that if an actor’s overall capability is high, then we can improve that actor’s living condition and
geographical dominance in the region.

Table 1: Example of a logical rule associated with an actor response.

If Then Description
A >0 ∧ C >2 ∧ D >1 ∧ G >1
∧ I >0 ∧ J >1 ∧ K >1 ∧ L >1
∧ N >0 ∧ O >1

Set(B,2) ∧ Set(G,1) Update living conditions and geographical
dominance of target.

5 ANALYSIS CLASSES

The main result from the simulator is the most efficient and effective plan based on thousands of simulation
runs. Although this result might be enough for specific purposes, in addition an analyst might also like
to check if there are other closely related plans. For this and other purposes we have developed analysis
classes.

The analysis classes use the simulator as a source of input in order to perform different calculations.
For example, one analysis class performs so called “complementing simulations”. What this means is that
the best plan is selected and for each tree level in the plan, one action is switched with another alternative.
This process creates a new plan which is simulated and stored for later comparison. When the action
on the last tree level is switched and the newly created plan is simulated, the process is finished and the
accumulated data can be used for sensitivity analysis.

6 RESULTS

The simulator produced the first 10 000 most efficient and effective alternative plans based on a test case
involving a complex military operation (total 2.1×1023 plan alternatives). The plans contained on average
around 39 actions as shown in Figure 8(a).

The 10 000 plans were sorted based on their f -value in ascending order as shown in Figure 8(b). The
best plans were obtained after only a few hundred plan simulations. Figure 8(c) shows the f -values based
on the plan sizes. Here the trend showed that on average, the more actions were in a plan, the higher the
f -value became, on contrary, the h-value decreased as the plan size increased as shown in Figure 8(d).
This should not be accepted in general because we could have a shorter plan with much more efficient
activities that would allow us to reach the end state faster. The h-values never reached near 0, which meant
that we did not reach the end state in a satisfying way, but we managed to push the scenario towards the
goal. The emphasize was on the h-value, hence we decided to weight it with a factor of 80 based on trial
and error tests. The goal of the tests was to find the lowest distance values based on a specific weight as
shown in Table 2.

In Table 2, the first column indicates the tested weight, the second column indicates the minimum
h-value found among all plans (total 10 000). The third column indicates the h-value for the minimum
f -value found among all plans. The fourth column shows the time it took to go through all 10 000 plans
based on the current weight. The fifth column shows the minimum g-value found among all plans and the

2850

Asadi and Schubert

(a) The distribution of plan sizes for the first 10 000 plans.

(b) f -values for 10 000 plans.

(c) The f -value for average plan sizes. (d) The h-value for average plan sizes.

Figure 8: Four figures showing different views of the simulation output data.

Table 2: Trial and error tests, weights and corresponding distance values.

Weight Min. h h for min. f Time (minutes) Min. g g for min. f
60 794 794 8315 2267 2305
80 792.3 793.1 3994 2196.5 2422
90 795.3 795.3 1296 2199.8 2445.7
100 793.5 794 1131 2212.5 2406.5

sixth column shows the g-value for the minimum f -value found among all plans. Based on this information
we chose 80 as weight due to the fact that the minimum h-value was low enough, as well as some of the
other values for this specific military operation. On average, the time it took to generate, simulate and
evaluate one plan alternative was 24 seconds.

7 CONCLUSIONS

In this paper we have shown the design and implementation of a simulator for simulation of military
operative plans. There are different lessons that can be learned from this work. From our experience the
best solution for designing such a system is to clearly separate scenario data from actors’ behavior rules as
much as possible. This is why we created an XML-model to contain the military plan and at the same time
created a separate behavior engine for processing military domain rules, created by subject matter experts.

Implementing the simulator gives rise to certain challenges which need to be addressed. The main
challenge from a technical point of view is the performance issue. In order to gain a much greater

2851

Asadi and Schubert

performance boost we need to introduce parallelization throughout the code. The Monte Carlo method is
an example where each iteration could be parallelized for better execution efficiency.

ACKNOWLEDGMENTS

This work was supported by the FOI research project “Real-Time Simulation Supporting Effects-Based
Planning”, which is funded by the R&D programme of the Swedish Armed Forces.

REFERENCES

Allen, T. T. 2011. Introduction to Discrete Event Simulation and Agent-based Modeling: Voting Systems,
Health Care, Military, and Manufacturing. Berlin: Springer.

Body, H., and C. Marston. 2010. “The Peace Support Operations Model: Origins, Development, Philosophy
and Use”. Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 8 (2):
69–77.

Dijkstra, E. 1959. “A Note on Two Problems in Connexion with Graphs”. Numerische Mathematik 1 (1):
269–271.

Hart, P., N. J. Nilsson, and B. Raphael. 1968. “A Formal Basis for the Heuristic Determination of Minimum
Cost Paths”. IEEE Transactions on Systems Science and Cybernetics 4 (2): 100–107.

Hinrichs, T. R., K. D. Forbus, J. Kleer, S. Yoon, E. Jones, R. Hyland, and J. Wilson. 2011. “Hybrid
Qualitative Simulation of Military Operations”. In Proceedings of the Twenty-Third Conference on
Innovative Applications of Artificial Intelligence, 1655–1661.

Horne, G., and T. Meyer. 2010. “Data Farming and Defense Applications”. In Proceedings of the 2010
MODSIM World Conference and Expo, 74–82. Hampton, Virginia.

Hunerwadel, J. P. 2006. “The Effects-based Approach to Operations: Questions and answers”. Air & Space
Power Journal 20:53–62.

Ligeza, A. 2001. Logical Foundations for Rule-Based Systems. Berlin: Springer.
Luotsinen, L. J., and E. Sjöberg. 2012. “The Modeling and Analysis of Computer Generated Forces

Representing Groups and Organizations in Military Conflict Zones”. In Proceedings of the NATO
Symposium on Transforming Defense through Modeling and Simulation Opportunities and Challenges.

Pourret, O., P. Naim, and B. Marcot. 2008. Bayesian Networks: A Practical Guide to Applications.
Chichester: John Wiley & Sons.

Ray, E. T. 2003. Learning XML. Second ed. Sebastopol, California: O’Reilly Media.
Schubert, J., F. Moradi, H. Asadi, P. Hörling, and E. Sjöberg. 2010. “Simulation-based Decision Support

for Effects-based Planning”. In Proceedings of the IEEE International Conference on Systems Man
and Cybernetics, 636–645. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Surdu, J. R., and K. Kittka. 2008. “The Deep Green Concept”. In Proceedings of the Spring Simulation
Multiconference, Military Modeling and Simulation Symposium, 623–631.

AUTHOR BIOGRAPHIES

HIRAD ASADI received the M.Sc. degree in computer science from the Royal Institute of Technology,
Stockholm, in 2009. He has worked as a software consultant for SAAB Combitech after graduation, before
joining the Swedish Defence Research Agency, FOI. His research interests are modeling and simulation within
the military domain. His email address is hirad.asadi@foi.se and his web page is http://www.foi.se/fusion.

JOHAN SCHUBERT is a Deputy Research Director with the Division of Information and Aeronautical
Systems at the Swedish Defence Research Agency, FOI. He received an M.Sc. in Engineering Physics in
1986 and his Ph.D. in Computer Science in 1994, both from the Royal Institute of Technology, Stockholm.
He has conducted research in Information Fusion and Decision Support for 26 years and published 16

2852

Asadi and Schubert

journal articles, four book chapters and 40 conference papers. He was the technical program chair of
the Seventh International Conference on Information Fusion (FUSION 2004), co-editor of the conference
proceedings and guest co-editor of a double special issue of the journal Information Fusion on FUSION
2004. He is a board member of the Belief functions and Applications Society and member of the editorial
board of the Information Fusion Journal. His current research interests include theoretical and applied
aspects of Soft Computing, Neural Networks, Evolutionary Algorithms, Modeling and Simulation, Data
Farming, Management of Uncertainty and Dempster-Shafer Theory, military applications of high-level
Information Fusion and Artificial Intelligence for Situation and Threat Assessment and its use in Decision
Support Systems. His email address is johan.schubert@foi.se and his web page is http://www.foi.se/fusion.

2853

