References

1. Team Gwawr Web Site (2012),
http://solarcarwales.co.uk/gwawrhomeeng.htm, (Accessed 2 February 2012)

2. Friis H.T.,(1946) Proc. IRE, vol. 34, p.254. 1946

3. Okamura, Y., et al., (1968), “Field Strength and its Variability in VHF and
UHF Land-Mobile Radio Service”, Rev. Elec. Comm. Lab. No.9-10pp. 825 -
873, 1968.

4. Hata, M. (1980), “Empirical Formula for Propagation Loss in Land Mobile
Radio Services”, IEEE Trans. Vehicular Technology, VT-29, pp. 317 - 325,
1980.

5. Mathwork Web Site(2012),
http://www.mathworks.com/matlabcentral/fileexchange/2594 1 -okumura-hata-
mode, (Accessed 21 February 2012)

UDC 004.94
SIMULATING PERFORMANCE OF MULTITHREADED PROGRAMS
A. Tarvo
Brown University, Providence, RI, USA
Introduction

Performance is an important characteristic of any software system. It de-
pends on various factors, such as parameters of underlying hardware, system’s
workload, and configuration options of the program. Proper understanding of
how these factors affect performance of the system is essential for many tasks,
including configuration management, building autonomous data centers, and
answering “what-if” questions. Usually this requires building a model of the
program that will predict performance of the program in different configura-
tions.

Building performance models of computer programs is hard, but building
models of multithreaded programs is even more challenging. Such models re-
quire simulating the complex locking behavior of the application and concur-
rent usage of various computational resources such as the CPU and the disk I/O
subsystem. As a result, existing performance models either impose restrictions
on the types of programs that can be modeled [1] or require collecting vast
amounts of data about the performance of the system in different configurations
[2]. Such limitations often make these models impractical.

Our work attempts to overcome these limitations. We have developed a
PERSIK (PERformance SImulation Kit) - a simulation framework for modeling
performance of multithreaded programs running in various configurations un-
der the established workload [3].

Model definition

For the purpose of simulation we represent computations performed by the
program as request processing. We denote a request as some external entity; the

222

program responds to the request by performing certain operations. The overall
time required to process the request (response time R) and the number of re-
quests served in the unit of time (throughput T) are the most important perfor-
mance metrics of such request-processing system. This representation allows
simulating a variety of programs, such as server applications, reactive systems,
and scientific applications.

We employ a two-tier approach towards building the model. At the high
level we simulate the program using a variation of a queuing network model.
At the low level we simulate threads as probabilistic automata. Both types of
model are built according to a discrete-event principle.

The high-level model explicitly simulates the flow of the request as it is be-
ing processed by the program, from its arrival to completion. It is a queuing
network where queues correspond to program’s buffers, and server nodes
represent program’s threads. However, it is more flexible than classical queuing
networks as it does not restrict structure of the model, the number of service
nodes n, or parameters of the arrival process A.

Lower-level thread models simulate delays that occur in threads when they
process requests. Thread models are implemented as probabilistic call graphs
<8S, 6>, whose vertices S correspond to the pieces of the program’s code — code
fragments. In particular, we distinguish computation, I/O, and synchronization
code fragments (CF) in the program. The edges of the graph represent a possi-
ble transition of control flow between the code fragments; probabilities of these
transitions are defined with a mapping 6:S—P(S).

Execution of each code fragment results in the delay 1. However, whereas
the structure of the call graph <S, 8> remains invariant, the amount of delay t
depends on the degree of the parallelism in the program. For example, consider
multiple threads that perform equal amount of CPU-intensive computations. If
the number of threads is bigger than the number of CPUs, the amount of time
required for each thread to finish computations will be higher than if that thread
was running alone. This phenomenon is known as a “resource contention”. Re-
source contention can happen during parallel I/O operations as well.

To correctly simulate time delays that occur due to resource contention, we
describe each code fragment with parameters I1 and then use IT to compute t. In
particular, parameters IT;, of an I/O CF are the number and properties of low-
level I/0 operations, while parameters Il,, of a computation CF is the amount
of CPU time 1., for it (the time necessary to execute the CF if it was running
on the CPU uninterrupted).

To compute t from IT we use dedicate models that simulate underlying OS
and hardware. These models track the state of the simulation Q(t) at each mo-
ment of time t. They use Q(t) along with parameters IT of the code fragment to
compute the actual delay t for that CF. In our work we have developed two
such models: one is the model of CPU/thread scheduler, while another is the
model of the disk subsystem.

223

Model building

Building the model of the multithreaded program involves three stages: data
collection, model building, and model verification.

During the data collection we first manually inspect the program’s source,
and identify threads and code fragments in it. Then we instrument the program
by inserting probes at the borders of individual CFs. Rest of the data is col-
lected automatically.

We run a program in a one representative configuration. When the probe is
hit during the program’s execution, instrumentation records 1., and delay time
T for each CF in the log file. Once the run is finished, we analyze that log and
extract parameters I, of a computation CFs, transition probabilities 6 for each
thread, and performance metrics R and T of the program.

To extract performance metrics for disk I/O CFs, we instrument the OS ker-
nel. In particular, we instrument system call routines that can initiate I/O re-
quests (sys_read(), sys_stat() and others), the generic_make request() function
that insert I/O requests into the I/O scheduler queue, the blk start request()
function that passes the request to a hard drive, and I/O completion routines. As
a result of this kernel instrumentation we retrieve parameters IT;, of /O CFs.

Once the data is collected, we build a performance model of the program
using the PERSIK modeling toolset. PERSIK is an extension to the OMNET-a
discrete event simulation framework [4]. PERSIK model consists of intercon-
nected blocks communicating using messages. Internally, blocks and messages
are implemented as C++ classes.

PERSIK models are built according to a formal definition stated earlier. A
high-level PERSIK model contains blocks that represent program’s queues,
request sources, and threads. Message flow between those blocks simulates
request flow through the program. Thread blocks are the models on their own:
they consist of computation blocks, I/O blocks, blocks that simulate calls to
locks, and blocks that read/write data from the high-level model. Messages in
the thread model simulate computation flow in the thread.

The high-level model also contains OS/hardware models: the model of the
CPU/thread scheduler and the model of the I/O subsystem. The CPU/thread
scheduler model is a simple queuing model that simulates a round-robin thread
scheduler and CPU with a given number of cores. The model of a disk I/O sub-
system is more complex: it includes a queuing model of a disk I/O scheduler
and a statistical model of a hard drive. The hard drive model simulates the
processing time of the 1/O request by the hard drive 4 as a distribution P
(TaiskXdio), Where Xgj, 1s the type of the I/0 request (synchronous read, metadata
read, read-ahead), which implicitly represents the locality of the I/O operation.

To verify our approach we have built a model of the MolDyn program.
MolDyn is a multithreaded scientific application that iteratively computes inte-
raction of 8192 argon atoms in a cubic volume. It is a part of the Grande mul-
tithreaded benchmark [5].

224

The length of iteration is the most important performance metric of the
MolDyn. In terms of our formal model it corresponds to the response time R.
The length of iteration highly depends on the number of MolDyn working
threads. Too few working threads will result in inferior performance; too many
threads will result in resource contention. To predict how the performance of
the MolDyn depends on the number of threads we have built the model of that
program using PERSIK framework.

The figure 1 compares the predicted performance of the Moldyn program
versus the observed one, measured on a quad-core machine. As one can see, the
PERSIK predicts the iteration length with the adequate accuracy. The relative
error ranges within (0.003; 0.220) across different configurations; the average
error across all the configurations is 0.105. The spikes in the actual perfor-
mance of the MolDyn are caused by the “false sharing” — a conflict that occurs
when multiple CPU cores attempt to simultaneously update adjacent records in
the cache [6]. More accurate simulation of CPU cache remains a subject of the
future work.

: — actual
O5F 4 ———predicted H

mean iteration length, sec

Mumber of workina threads

Figure 1: Experimental results for the MolDyn multithreaded program

Conclusion

In this paper we presented a brief outline of our methodology and the tool-
set for modeling performance of the multithreaded computer programs. Please
see [7] for a more complete description of our work.

We have verified our approach by building the model of the multithreaded
scientific computing program. The relative error of our model is 0.105, which is
comparable to the accuracy of statistical models. However, our models require
less data and allow for modeling a wider range of computer programs.

The stable version of our framework along with examples of models is
available for download [3]. We plan to further develop our approach by im-
proving the accuracy and automating building performance models.

225

References

1. A. Ganapathi et. al., Predicting Multiple Metrics for Queries: Better Deci-
sions Enabled by Machine Learning//ICDE’09, P. 592—603

2. G. R. Nudd et. al., Pace — a Toolset for the Performance Prediction of Paral-
lel and Distributed Systems//Int. Journal of High Performance Computations
Applications, vol. 14, 2000. — P. 228-251.

3. http://cs.brown.edu/~alexta/PERSIK .html

4. http://www.omnetpp.org/

5. J.M. Bull et al., A Benchmark Suite for High Performance Java//Java Grande
Conference’99. — P. 81-88

6. W. Bolosky, M. Scott, False Sharing and its Effect on Shared Memory Per-
formance//SEDMS’93. — P. 57-71

7. A. Tarvo, S.P. Reiss, Using Computer Simulation to Predict the Performance
of Multithreaded Programs//ICPE’12. — P. 217-228

YK 004.942
METOJAUKA OIIEHKU ®YHKIIMOHUPOBAHUSI
BECITPOBOJIHBIX OJTHOPAHI'OBBIX CETEN C SYEUCTOM
TONOJIOTUEN
N.A. Anynxesuu
bBenopyccxuii eocydapcmeennwiil ynusepcumem, benrapyce

BecripoBoHbIE OHOPAHTOBBIE CETH C SYEUCTON TOMOJNIOTHEN HCIONIB3YIOT-
Csl B CUTYalllH, KOTJa HEOOXOJMMO OpPraHW30BaTh CETh MEXIY BBIYMCIUTEIb-
HBIMHU YCTPOHCTBAMHM B YCIIOBHUSIX OTCYTCTBUSI JIMOO HEXKENATETLHOCTH HCIIOb-
30BaHUs HWHQPPACTPYKTYpPHI, OOCCICUMBAIOIICH CETeBOe B3amMojclicTBue. B
9TOM Cilydae MOOWJIBHBIE YCTPOWCTBA MOTYT CO3/aTh BPEMEHHYIO CETh IS
obecrieueHns CBSI3U B JIAHHBI MOMEHT BPEMEHH, APYTMMH CIIOBAMH — OpTraHH-
30BaTh CeTh «Ha JIeTy». Kakaplii y3enm Takol ceTH CriocoOeH I'eHepHUpOBaTh
JIaHHBIE aJPECOBaHHBIE JIIOOOMY JpPYromMy y3iy B ceTH. Bce y3mbl cetu mpu
HEOOXOANMOCTH O0ECIIeYrBAIOT BO3MOXKHOCTh PETPAHCISIIIMN JaHHBIX JI0 KO-
HEYHOro moiyyvaresns. B obmem ciydae 3Ta ceTh MOXKET OBITh MOJKITIOYEHA K
JPYTHEM CETSIM TepeNadu JaHHBIX Yepe3 OAWH MM HECKOJBbKO Y3JIOB, BBION-
HSIOIMX (YHKIMIO 1UTio3a. [loiepskka MHOrOCKaYKOBOH TIepeiauyl JaHHBIX B
MOOMJIBHBIX OECIPOBOAHBIX OAHOPAHTOBBIX CETAX SIBJISIETCS KIFOUEBBIM OTIIH-
YHMEeM JIAHHOT'O TUIIA CeTel OT APYruX OECIpPOBOAHBIX TEIEKOMMYHHKAITHOHHBIX
CHCTEM.

BHe 3aBHCHMMOCTH OT CIIOCOOOB pajMoNepenadd U MOJETN TepEaBHKEHUS
Y3JIOB TOTOJIOTHsSI OECIPOBOIHOM OIHOPAHTOBOW CeTH B JIFOOOW (pUKCHpOBaH-
HBII MOMEHT BpEMEHH MOXKET OBITh TpecTaBieHa B Bue rpada [1]. dns onu-
caHusi OECIIPOBOAHBIX OJHOPAHTOBBIX CETEH C MOMOIIBIO TpadoB Y3IbI ceTH
COTIOCTABJISIFOTCS C BEpIIMHAMU rpada, a COSANHEHUSI MEX/y y31aMH COOTBET-
CTBYIOT pebpam rpada. B xauectBe ympormieHus: Monenu OyaeM mojiarath, 9To

226

