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Abstract

Agent-based	models	(ABM)	are	ideal	tools	to	deal	with	the	complexity	of	pest	invasion	throughout	agricultural	socio-ecological	systems,	yet	very	few	studies	have	applied	them	in	such
context.	In	this	work	we	developed	an	ABM	that	simulates	interactions	between	farmers	and	an	invasive	insect	pest	in	an	agricultural	landscape	of	the	tropical	Andes.	Our	specific	aims	were	to
use	the	model	1)	to	assess	the	importance	of	farmers'	mobility	and	pest	control	knowledge	on	pest	expansion	and	2)	to	use	it	as	an	educational	tool	to	train	farmer	communities	facing	pest
risks.	Our	model	combined	an	ecological	sub-model,	simulating	pest	population	dynamics	driven	by	a	cellular	automaton	including	environmental	factors	of	the	landscape,	with	a	social	model
in	which	we	incorporated	agents	(farmers)	potentially	transporting	and	spreading	the	pest	through	displacements	among	villages.	Results	of	model	simulation	revealed	that	both	agents'
movements	and	knowledge	had	a	significant,	non-linear,	impact	on	invasion	spread,	confirming	previous	works	on	disease	expansion	by	epidemiologists.	However,	heterogeneity	in
knowledge	among	agents	had	a	low	effect	on	invasion	dynamics	except	at	high	levels	of	knowledge.	Evaluations	of	the	training	sessions	using	ABM	suggest	that	farmers	would	be	able	to
better	manage	their	crop	after	our	implementation.	Moreover,	by	providing	farmers	with	evidence	that	pests	propagated	through	their	community	not	as	the	result	of	isolated	decisions	but
rather	as	the	result	of	repeated	interactions	between	multiple	individuals	over	time,	our	ABM	allowed	introducing	them	with	social	and	psychological	issues	which	are	usually	neglected	in
integrated	pest	management	programs.
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	Introduction

1.1 Agricultural	systems	are	composed	by	two	interlinked	and	interdependent	subsystems,	the	social	and	the	ecological	subsystems,	which	co-evolve	and	interact	at	various	levels	and	scales	(Liu
2007).	As	a	consequence,	these	systems	are	characterized	by	complex	spatio-temporal	dynamics	and	cultural	variation	(Papajorgji	2009).	The	management	of	agricultural	invasive	pests	lies	at
the	heart	of	such	a	complexity	as	pest	propagation	depends	on	both	environmental	features	(e.g.	climate,	landscape	structure)	and	farmers'	behaviors	(e.g.	man-induced	pest	dispersion)
(Epanchin-Niell	2010).	The	problems	with	dealing	with	multiple	actors,	non	linearity,	unpredictability,	and	time	lags	in	invaded	agricultural	systems	suggest	that	agent-based	models	(ABM)	may
have	an	important	role	to	play	in	the	sustainable	development	of	farmers'	practices	to	face	those	emergent	threats	(Berger	2001).	Although	ABM	have	increasingly	been	applied	to	physical,
biological,	medical,	social,	and	economic	problems	(Bagni	2002;	Bonabeau	2002;	Grimm	2005a)	it	has	been,	to	our	knowledge,	disregarded	by	invasive	pest	management	theory	and	practice.

1.2 Intrinsic	dispersal	capacities	of	agricultural	invasive	pest	(in	particular	insects)	are	rarely	sufficient	to	make	them	major	threats	at	a	large	spatial	scale.	In	most	cases,	invasive	pest	expansion	is
dependent	on	long-distance	dispersal	(LDD)	events,	a	key	process	by	which	organisms	can	be	transferred	over	large	distances	through	passive	transportation	mechanisms	(Liebold	2008).	The
study	of	the	dynamics	of	pest	dispersion	in	agricultural	landscape	is	therefore	comparable	to	that	of	disease	contagion:	as	diseases,	pests	are	transmitted	from	an	infected	person	(farmer)	to
another	who	was	previously	"healthy",	through	different	biological,	social	and	environmental	processes	(Teweldemedhin	2004;	Dangles	2010).	Several	studies	have	shown	that	the	dynamics	of
infection	spread	involves	positive	and	negative	feedbacks,	time	delays,	nonlinearities,	stochastic	events,	and	individual	heterogeneity	(Eubank	2004;	Bauer	2009;	Itakura	2010).	Two	factors
have	revealed	particularly	important	to	predict	disease	dynamics:	(1)	the	number	of	encounter	events	between	infected	and	healthy	individuals,	which	mainly	depends	on	individuals'	mobility
(Altizer	2006),	and	(2)	the	contamination	rate	between	infected	and	healthy	individuals,	which	depends	on	heterogeneous	susceptibilities	of	individuals	to	be	infected	(Moreno	2002;	Xuan	2009).
Similarly,	the	spread	of	invasive	pests	throughout	the	agricultural	landscape	would	depend	on	(1)	movements	of	farmers	carrying	infested	plants	or	seeds	into	new	areas	and	(2)	farmer's
knowledge	to	detect	the	pest	(pest	control	knowledge),	therefore	avoiding	being	infested	and	impeding	the	contamination	of	new	areas	(Dangles	2010).

1.3 Borrowing	from	disease	contagion	literature	(e.g.Gong	2007;	Yu	2010),	we	developed,	using	NetLogo	(Wilensky	1999),	an	ABM	to	simulate	the	spread	of	an	invasive	potato	insect	pest	in	an
agricultural	landscape	of	the	tropical	Andes.	Our	model	combined	an	ecological	sub-model,	simulating	pest	population	dynamics	driven	by	a	cellular	automaton	including	environmental	factors
of	the	landscape,	with	a	social	model	in	which	we	incorporated	agents	(farmers)	potentially	transporting	and	spreading	the	pest	through	displacements	among	villages.	We	then	used	our	model
for	two	purposes.	First,	we	ran	the	ABM	under	10	levels	of	agents'	(farmers)	movements	among	villages	and	7	levels	of	heterogeneity	in	farmer's	pest	control	knowledge.	We	compared	the
resulting	diffusion	dynamics	on	the	speed	of	pest	spread,	which	represents	a	relevant	metrics	for	invasive	pest	management	by	local	stakeholders	(e.g.	the	time	available	for	agriculture	officials
to	respond	to	the	threat).	Second,	we	used	our	ABM	as	an	education	tool	to	increase	farmer	awareness	on	the	importance	of	human-related	LDD	events	of	the	pests	which	fostered	the
invasions	of	their	valley	(see	Dangles	2010).	While	we	specifically	focused	on	an	invasive	insect	pest	in	the	tropical	Andes	in	this	paper,	our	approach	to	understand	the	influence	of	farmers'
movements	and	pest	control	knowledge	on	pest	dynamics	and	to	transfer	it	through	educational	programs	would	be	applicable	to	a	much	wider	geographic	and	species	range.

	Study	system

2.1 Our	study	deals	with	the	potato	tuber	moth	(Tecia	solanivora),	an	invasive	pest	that	has	spread	from	Guatemala	into	Central	America,	northern	South	America	and	the	Canary	Islands	during	the
past	30	years	(Puillandre	2008).	This	pest	attacks	potato	(Solanum	tuberosum)	tubers	in	the	field	and	in	storage	and	has	become	one	of	the	most	damaging	crop	pests	in	the	North	Andean
region	(Dangles	2008).	Commercial	exchanges	of	potato	tubers	at	regional	and	local	scales	for	both	seeding	and	consumption	are	the	main	causes	for	the	rapid	expansion	of	the	pest	in	all
parts	of	the	Ecuadorian	highlands	(2400-3500	m.a.s.l).	These	landscapes	are	characterized	by	highly	variable	environmental	and	social	conditions	due	to	steep	altitudinal	gradients	and
dispersed	human	settlement,	respectively.

	Model

Overall	structure	of	the	model

3.1 The	socio-agronomical	framework	of	the	model	consists	in	three	key	elements	(Figure	1):	1)	the	agricultural	landscape	characteristics	provided	by	a	GIS	environmental	data	base	(Biodiversity
Indicators	for	National	Use,	Ministerio	del	Ambiente	Ecuador	and	EcoCiencia	2005),	2)	the	insect	pest	population,	and	3)	the	groups	of	farmers.	Pest	dynamics	in	interaction	with	landscape
features	(e.g.	land	use,	climate)	is	simulated	through	a	cellular	automaton	(see	the	following	sub-section).	To	transfer	the	cellular	automaton	into	an	agent-based	simulation	model	we	included
farmers	as	agents	acting	individually	upon	pest	dynamics	in	the	agricultural	landscape.	Pests	are	therefore	represented	as	a	layer	in	the	cellular	automaton	and	farmers	as	agents	in	the	ABM.
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Figure	1.	Schematic	representation	of	the	model	structure

Modeling	pest	dynamics	through	cellular	automata

3.2 The	spatio-temporal	dynamics	of	potato	tuber	moth	is	modeled	through	a	simplified	version	of	the	cellular	automaton	developed	by	Crespo-Pérez	(submitted).	This	model	was	developed	with
the	CORMAS	modeling	platform	and	is	detailed	in	Appendix	1.	Briefly	it	is	based	on	biological	and	ecological	rules	derived	from	field	and	laboratory	experimental	data	for	T.	solanivora	's
physiological	responses	to	climate.	Main	processes	include	moth	survival	(climate	dependent),	dispersal	through	diffusion	processes	(density	dependent),	and	reproduction	(climate
dependent).	This	model	has	been	validated	in	a	study	area	of	20	×	20	km	within	the	remote	valley	of	Simiatug	in	the	Central	Ecuadorian	Andes	(see	section	5)	represented	by	a	grid	of	1,600

cells	with	a	cell	size	of	0.25	km2.

Modeling	human-related	pest	dispersion	through	the	agent-based	model

3.3 The	ABM	aims	at	simulating	the	influence	of	farmers	on	the	spatio-temporal	dynamics	of	the	potato	moth.	In	this	particular	model,	farmers	are	considered	as	potential	agents	for	pest	LDD,	for
example	when	they	carry	infested	potato	sacks	from	local	markets	to	their	home	(other	interactions	with	the	pest,	such	as	control	by	pesticide,	are	not	included	in	this	model).	Their	efficiency	as
LDD	agents	depends	on	their	pest	control	knowledge:	the	higher	their	knowledge,	the	lower	the	probability	they	get	their	field	infested	after	potato	sacks	transport	(see	below).

Agent	process	overview	and	scheduling

3.4 Agent	process	overview	and	scheduling	are	presented	in	figure	2.	Agents	move	around	on	a	grid	of	cells	whose	level	of	pest	infestation	is	modeled	by	the	cellular	automaton	(see	Appendix	1).
During	each	movement	within	a	single	timeframe	agents	turn	"infested"	(i.e.	their	potato	crops	are	infested	by	the	moth)	or	remain	"non-infested"	depending	on	their	pest	control	knowledge	and
the	pest	infestation	in	a	given	cell.	Each	timeframe	is	equal	to	one	moth	generation	(i.e.	about	2	months)	during	which	agents	can	move	several	times	depending	on	their	travel	decisions.
Agents	with	higher	pest	control	knowledge	(e.g.	knowing	how	to	recognize	moth	damage	when	they	buy	potato	sacks	at	the	market)	have	a	lower	probability	of	becoming	infested.	Then,	agents
move	from	one	village	to	another	to	buy	and/or	sell	potatoes.	Agents'	movements	follow	a	gravity	model	(Rodrigue	2009),	where	the	attractiveness	of	a	village	i	compared	to	a	village	j	is	a
function	of	both	population	size	and	cost-distance	between	them.	Village	infestation	occurs	when	an	infested	agent	moves	to	a	non-infested	village	(carrying	infested	potato	sacks	which	will	be
used	as	potato	seeds	and	thereby	infest	neighboring	fields).	Agent	infestation	occurs	when	a	non-infested	agent	moves	to	an	infested	village	(buying	infested	potato	seed	sacks),	depending	on
his	pest	control	knowledge	(higher	pest	control	knowledge	leads	to	lower	probability	of	buying	infested	sacks).
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Figure	2.	Agents'	processes	loop	showing	how	farmers	influence	pest	infestation	spread.	This	loop	is	executed	various	times	depending	on	farmers'	traveling	decisions	during	each	timeframe.

Design	concepts

3.5 Agents	can	sense	the	pest	infestation	of	the	cells	but	they	do	not	use	this	information	for	their	traveling	decision.	Instead,	agents	sense	village	population	size	and	distance	between	villages	so
that	they	are	able	to	perceive	the	relative	cost/benefit	of	going	to	each	village	to	sell/buy	their	crop:	(1)	it	is	less	expensive	to	travel	to	closer	villages	and	(2)	more	populated	villages	provide
higher	commercial	opportunities.	As	a	result,	time	needed	to	reach	a	complete	pest	infestation	in	the	area	emerges	from	a	combination	of	purely	biological	pest	dispersion,	agents'	movements
from	village	to	village	and	agent's	pest	control	knowledge.	A	model	example	is	available	online	at	http://www.openabm.org.

	Testing	the	effect	of	agents'	movement	and	pest	control	knowledge	on	pest	spread	dynamics

Effect	of	agents'	movements

4.1 We	examined	with	our	ABM	how	the	number	of	agents'	movements	per	generation	would	impact	pest	invasion	dynamics.	As	we	were	interested	in	the	early	phases	of	invasions,	which
represent	a	relevant	metrics	for	invasive	pest	management	by	local	stakeholders,	we	used	the	time	needed	to	reach	5%	of	infested	cells	as	an	outcome	variable.

4.2 We	found	that	increasing	from	1	to	10	the	number	of	agents'	movements	in	the	landscape	had	a	negative	exponential	effect	on	the	spread	of	the	invasive	pest	(Figure	3	and	animation	in
Appendix	2).	Invasion	speed	was	particularly	increased	up	to	4	movements	and	then	tended	to	stabilize.	As	expected,	the	effect	of	agents'	movement	on	invasion	speed	was	intensified	by	the
number	of	agents	located	on	the	landscape,	but	once	again	this	effect	was	not	linear:	insect	pest	dynamics	was	speeded	up	when	adding	up	to	10	agents	but	remained	roughly	unchanged	for
the	10	following	ones.	For	an	intermediate	scenario	(4	movements,	10	agents),	the	speed	of	invasion	was	twice	faster	that	of	a	purely	biological	spread	(i.e.	through	insect's	dispersion
capabilities	alone).	We	are	aware	that	the	spatial	configuration	of	our	social	landscape	(see	the	frequency	of	infested	farmer	movements	in	Figure	4)	likely	influenced	our	results.	Further	studies
including	randomly	generated	social	landscapes	could	help	to	quantify	this	effect	on	agents'	movements	and	subsequent	pest	infestation	dynamics.

Figure	3.	Influence	of	agents'	movements	(per	pest	generation)	on	pest	infestation	dynamics	for	different	agent	densities	(n=2	to	20).	The	dashed	line	represents	time	needed	to	reach	5%	of
infested	cells	without	agents	(purely	"biological"	spread).

4.3 Our	results	highlight	the	importance	of	insect	pest	passive	transportation	by	humans	which	allows	invasive	pests	to	make	long-distance	dispersal	jumps.	Even	though	several	authors	have
acknowledged	the	significance	of	this	type	of	dispersal	for	species	spread,	(e.g.,	Bossenbroek	2001;	Suarez	2001)	its	inclusion	in	models	still	poses	difficulties	for	modelers	(Pitt	2009).	Most
dispersal	models	are	based	on	empirically	measured	rates	of	pest	dispersal,	while	in	the	case	of	LDD	events	it	would	be	more	useful	to	model	human	behaviors	to	better	understand	pest
invasion	dynamics.	In	this	context,	ABM	offer	an	interesting	yet	poorly	used	method,	to	be	applied	to	the	vast	field	of	biological	invasions	(see	Luo	2010	and	Vinatier	2009	for	one	of	the	rare
study	on	exotic	species	using	ABM,	although	in	their	case,	agents	are	the	invasive	species).	Results	of	our	ABM	simulations	further	revealed	non	linear	processes	between	farmers'	behavior
(e.g.	movement)	and	densities	and	pest	spread,	as	already	shown	for	disease	expansion	by	epidemiologic	models	(e.g.	Gong	2007).	This	suggests	that	a	good	understanding	of	social	network
structures	would	be	a	key	step	to	better	predict	pest	invasion	speed	in	human	dominated	landscapes.	In	this	context,	ecologists	would	gain	in	following	the	path	traced	by	epidemiologists	with
ABM	to	better	understand	the	dynamics	of	invasive	pests.
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Figure	4.	Frequency	of	visits	of	infested	agents	for	each	village	and	map	of	the	Simiatug	valley	with	agents'	movements	and	villages
location.

Effect	of	agent's	heterogeneity	in	pest	control	knowledge

4.4 We	then	explored	with	our	ABM	how	agents'	pest	control	knowledge	(ranked	from	0	to	100)	would	impact	pest	propagation	dynamics.	As	pest	control	knowledge	was	usually	variable	among
farmers	(Dangles	2010),	we	were	interested	in	examining	the	influence	of	heterogeneous	levels	among	agents	on	pest	spread	dynamics.	To	achieve	this	goal,	we	tested	7	levels	of
heterogeneity	(standard	deviation	=	0,	5,	10,	15,	20,	25,	30)	around	10	mean	values	of	pest	control	knowledge	(mean	=	0	to	100).	For	each	simulation,	agents'	pest	control	knowledge	levels
were	randomly	chosen	from	a	Normal	distribution,	N(mean,	standard	deviation).

4.5 Our	simulations	revealed	that	agents'	pest	control	knowledge	had	a	significant	effect	on	pest	invasion	dynamics	(Figure	5	and	animation	in	Appendix	2).	In	all	simulations,	lower	agents'	pest
control	knowledge	led	to	higher	invasion	speed,	almost	twice	faster	than	intrinsic	pest	dispersion	spread	for	highest	infectivity	values.	Agents'	movement	had	a	worsening	effect,	with	faster
invasion	occurring	for	higher	agent's	mobility.	Agents'	heterogeneity	in	pest	control	knowledge	had	a	weak	effect	on	pest	dynamics,	especially	for	high	agents'	mobility	(6	and	4).	However,
heterogeneity	in	knowledge	did	introduce	some	sochasticity	in	invasion	dynamics	when	agents	seldom	moved.
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Figure	5.	Influence	of	agents'	pest	control	knowledge	(means)	and	heterogeneity	(standard	deviation	=	0	to	30%)	on	pest	infestation	dynamics	for	three	frequencies	of	movements	(2,	4,	and	6).
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The	dashed	line	represents	time	needed	to	reach	5%	of	infested	cells	without	agents	(purely	"biological"	spread).

4.6 As	reported	by	epidemiologists	for	disease	spread	(e.g.,	Newman	2002),	our	results	showed	that	agents'	pest	control	knowledge	had	an	important	impact	on	the	dynamics	of	pest	invasion
spread.	This	suggests	that	farmers'	pest	control	knowledge	would	be	a	key,	yet	poorly	studied,	variable	to	take	into	account	for	modeling	pest	invasions	in	agricultural	landscapes.	Less
expectedly,	we	found	that	heterogeneity	of	knowledge	among	agents	had	a	relatively	weak	effect	on	pest	dynamics,	especially	for	high	mobility	levels	of	agents.	This	contrast	with
epidemiological	models	which	have	generally	shown	that	heterogeneous	populations	enhance	the	spread	of	infections	as	well	as	make	them	harder	to	eradicate	(for	a	review	see	Anderson
1992).	One	potential	explanation	is	that	the	limited	number	of	villages	used	in	our	study	and	the	absence	of	spatial	clusters	favor	infestation	mixture	among	agents	and	rapidly	smooth	up	its
impact	on	invasion	spread	dynamics.	However,	our	results	showed	that	when	all	agents	are	"healthy"	(pest	control	knowledge	=	100),	any	addition	of	agents	with	lower	levels	of	knowledge	will
considerably	speed	up	pest	dynamics	(especially	at	high	levels	of	movements),	thereby	confirming	predictions	of	disease	spread	theory.

	Teaching	with	the	model

5.1 In	a	second	step,	we	used	our	ABM	as	an	educational	tool	to	teach	farmers	about	potential	invasion	risks	resulting	from	individual	behaviors.	Teaching	activities	were	realized	in	February	2009
at	the	Agriculture	and	Technology	College	of	the	Simiatug	valley	in	the	central	Ecuadorian	Andes.	This	parish	is	comprised	of	roughly	45	kichwa	communities	living	between	2800	m	and	4250
m	of	altitude,	that	share	similar	characteristics	in	terms	of	social	organization,	date	of	establishment,	and	agricultural	practices.	Currently,	about	25,000	people,	mainly	subsistence	and	market-
oriented	farmers,	live	in	the	Simiatug	parish.	The	main	agricultural	products	are	pasture,	cereals	(barley),	legumes	(fava	bean)	and	potatoes	as	well	as	cattle	and	sheep	(see	more	details	in
Dangles	2010).	Although	the	remoteness	of	the	valley	protects	it	against	moth	invasion,	increasing	commercial	exchanges	from	and	to	Simiatug	are	currently	increasing	the	risk	of	moth
introduction.	Local	farmers	were	therefore	interested	in	learning	about	potential	risks	associated	with	the	pest	and	how	to	control	their	spread	in	the	valley.

Model	introduction	to	the	farmers

5.2 Introduction	of	the	models	and	variable	representation	to	the	farmers	has	been	a	long	process	that	began	with	the	educational	program	set	up	in	2007	(Dangles	2010,	see	the	timeline	of	the
ground	work	in	Figure	6).

Figure	6.	Timeline	of	the	groundwork	prior	to	the	teaching	session

5.3 For	this	program,	we	held	a	negotiation	session	to	insure	that	teaching	was	driven	by	farmers'	interests	followed	by	a	training	session	on	integrated	pest	management	and	on	participatory
monitoring	of	potato	moth	in	the	valley.	After	the	data	analysis	session,	farmers	had	acquired	a	rather	clear	connection	between	pest	abundance	and	air	temperature,	village	size	and
remoteness	(see	Dangles	2010,	for	a	detailed	description	of	the	sessions	with	farmers).	This	initial	process	allowed	us	to	introduce	our	model	in	a	second	step	and	to	use	it	as	a	teaching	tool.
Farmers	were	young	(17	to	25	years	old)	and	showed	innate	interest	in	"playing"	with	the	computers	and	seeing	simulations	(an	Internet	café	just	opened	in	Simiatug	the	year	before	starting	the
ABM	teaching	session).	The	model	was	presented	as	a	way	to	better	understand	a	result	that	farmers	themselves	had	found:	the	importance	of	LDD	in	moth	dispersion	(see	Dangles	2010).

Model	parameterization

5.4 For	teaching	purposes,	farmers	were	separated	into	two,	"blue"	and	"red"	teams;	having	two	teams	that	compete	for	minimization	of	pest	presence	in	the	valley	stimulated	enthusiasm	among
farmers.	Each	member	of	the	team	was	asked	to	fill	a	questionnaire	including	20	items,	10	on	basic	issues	(biology	and	ecology	of	the	pest)	and	10	on	applied	issues	(pest	management).	A
facilitator	helped	the	players	to	fill	in	these	questionnaires.	Based	on	filled	questionnaires,	we	built	a	"pest	control	knowledge	index"	for	each	farmer,	which	corresponded	to	the	percent	of
questions	answered	correctly.	Farmers	were	also	asked	to	answer	questions	about	their	travel	behavior	in	the	valley	(destination	and	frequencies).	Villages'	locations	and	population	sizes	were
defined	by	farmers	using	maps	(see	figure	7).	Environmental	data	such	as	temperature	or	precipitation	were	updated	using	real	values	in	the	considered	area	(Dangles	and	Carpio,	unpublished
data	provided	with	the	model	in	the	openabm.org	website).

Figure	7.	Teaching	with	an	agent-based	model	in	an	agricultural	valley	of	Ecuador

Playing	and	learning	with	the	agent-based	model

5.5 Once	input	data	were	collected	and	set	up	(Table	1),	we	ran	the	model	and	registered	the	spread	of	the	pest	throughout	the	valley.	In	all	simulations,	agents	are	randomly	located	at	the
beginning	of	the	run.

Table	1:	Parameters	and	simulation	results	of	the	gaming	session	with	farmers

Parameters Parameters	values	used	for	the	gaming Parameters	values	at	the	end	of	the	gaming
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session session
Parameterization
Number	of	farmers	(agents) 10 10
Number	of	agents'	movements	per	timeframe	(pest
generations)

6 3

Pest	control	knowledge	(following	a	Normal	distribution
~N(mean,	sd))

<	n(0.4;0.1) <	n(0.8;0.1)

Results
Time	needed	for	complete	infestation	(pest	generation) 39 45

5.6 Our	model	output	could	distinguish	between	1)	cells	infested	due	to	LDD	events	made	by	the	blue	team,	2)	cells	infested	by	red	team	LDD	and	3)	cells	infested	by	insect's	own	dispersal
capabilities	(see	http://www.openabm.org;	see	"pest	dispersion"	by	innomip).	Each	team	was	therefore	able	to	visualize	its	relative	impact	on	moth	dispersion	throughout	the	Simiatug	valley
through	the	main	color	of	a	spatial	interface	representing	the	landscape.	They	were	further	invited	to	"play"	with	the	simulation	interface	by	changing	LDD	and	the	pest	control	knowledge	values
and	to	see	the	consequences	in	terms	of	moth	spread	throughout	their	valley.	A	synthesis	of	the	processes	involved	in	the	teaching	session	(including	required	time)	is	given	in	Table	2.

Table	2:	Processes	and	time	required	for	teaching	and	learning

Gaming	session	process Main	activities Time	spent
Introduction Overall	presentation	of	all	actors 1	hour
Computer	presentation Presentation	of	computer	simulation	utility 30	minutes
Model	adoption:	building	community	map	(villages	and
populations)

Presentation	of	the	spatial	representation	of	the	model 30	minutes

Model	input	variables	(interviews) Model	parameterization 1	hour
Model	output	variables Running	the	model	with	the	two	teams,	result	presentation	and	discussion 1	hour
Playing	session	1:	farmer	movements	and	pest
infestation	spread

Farmer	teams	modify	agents'	movements	and	visualize	consequences	on	pest
spreading

30	minutes

Playing	session	2:	farmer	knowledge	and	pest
infestation	spread

Farmer	teams	modify	agents'	pest	control	knowledge	and	visualize	consequences
on	pest	spreading

30	minutes

Conclusion	and	evaluation General	discussion	with	farmers	and	interviews 1	hour

Model	adoption

5.7 Because	participants	were	young	farmers	we	had	no	problem	related	to	potential	technical,	cultural,	knowledge	or	attitude	barriers.	One	of	the	main	difficulties	related	to	model	adoption	turned
out	to	be	the	spatial	representation	of	farmer's	villages,	which	was	partially	solved	by	building	with	them	a	digital	map	of	their	valley.	Another	difficulty	was	that	farmers	had	a	hard	time	in
associating	grid	cell	colors	with	the	presence	of	moths.	Unfortunately,	we	could	not	fix	this	problem	during	the	teaching	session	and	this	was	probably	one	of	the	main	drawbacks	of	our
approach.	However,	since	this	date,	we	improved	the	simulation	to	integrate	the	drawing	of	moths	spreading	on	the	cellular	automata	grid	in	a	simple	model	aimed	at	improving	its	adoption	(see
http://www.openabm.org	see	"pest	dispersion	version	1"	by	innomip).

Benefits	of	model-based	teaching	to	farmers

5.8 At	the	end	of	the	session	we	re-evaluated	participant	pest	control	knowledge	on	basic	and	practical	moth	control	issues	with	the	same	20-item	indicators	questionnaire	(see	above).	The	mean
pest	control	knowledge	(percent	of	questions	answered	correctly)	increased	from	40	±	10	(basic)	and	40	±	20	(practical)	at	the	beginning	of	the	session	to	80	±	10	(basic),	and	80	±	10	(practical)
at	the	end	of	the	session,	suggesting	that	farmers	would	be	able	to	better	manage	pest	risks	after	the	teaching	sessions.	As	a	whole,	our	educational	program	(2007-2009)	indeed	enhanced
local	awareness	about	the	need	to	control	the	pests	before	they	became	too	numerous	and	covered	the	whole	landscape.	The	main	specific	management	decision	taken	by	farmers	was	a
promise	to	systematically	check	for	moth	infestation	when	buying	potato	tubers	in	the	Simiatug	market	before	transportation	to	their	community	(see	also	Dangles	2010).	Although	farmers
vouched	for	model's	attractiveness	and	usefulness	to	learn	about	pest	problems,	it	remained	hard	to	quantify	knowledge	enhancement	specifically	due	to	the	ABM	as	opposed	to	that	due	to	the
rest	of	the	educational	participatory	program.	However,	we	believe	that	the	use	of	ABM	and	computers	significantly	complemented	our	educational	program	on	pest	management	in	the	valley	as
it	had	a	clear	consequence	in	enhancing	young	farmers'	interest	in	agricultural	issues.	The	College	of	Simiatug	indeed	suffered	from	an	increasing	lack	of	interest	from	students	of	agriculture
disciplines	in	favor	of	technical/computational	ones.	Our	program	showed	young	farmers	that	both	disciplines	could	be	merged	and	that	they	could	find	through	the	Internet
(http://www.innomip.ird.fr)	computational	tools	to	increase	their	knowledge	on	pest	management.	Our	study	is	a	preliminary	approach	in	the	use	of	ABM	for	pest	management	issues.	Further
efforts	should	be	done	to	optimize	model	adoption	process	such	as	the	early	identification	of	gaps	in	farmers'	knowledge	(Wilson	2009),	the	consideration	of	peak-labor	periods	(White	2005)	or
the	social	network	of	learners	(Boahene	1999).

5.9 Another	achievement	of	ABM	was	that,	by	providing	farmers	with	evidence	that	pests	propagated	through	their	community	not	as	the	result	of	isolated	decisions	by	individuals	but	rather	as	the
result	of	repeated	interactions	between	multiple	individuals	over	time,	our	ABM	pointed	at	key	psychological	and	social	issues,	highly	relevant	for	efficient	management	of	invasive	pests	(Peshin
2008).	ABM	may	therefore	be	a	powerful	tool	to	advance	the	application	of	social	psychology	theory	by	stakeholders	in	rural	communities	( Smith	2007)	and	to	change	individual	attitudes
(Jacobson	2006).	This	suggests	that	new	approaches	in	pest	management	extension	practices	should	include	topics	such	as	group	decision	making,	intergroup	relation,	commitment,	and
persuasion	which	deal	directly	with	how	other	farmers	influence	one's	thoughts	and	actions	(Mason	2007;	Urbig	2008).	By	examining	group-	and	population-level	consequences	on	invasion
process,	agent-based	modeling	may	therefore	reveals	as	a	powerful	pedagogical	approach	to	change	behaviors	across	large	populations,	a	long	lasting	issue	in	pest	management	outreach
programs	worldwide	(Feder	2004).

Conclusion
5.10 We	showed	in	this	study	that	agent-based	modeling	may	be	a	powerful	tool	to	simulate	invasive	pest	spread	in	human	dominated	landscapes.	Our	simulations	further	revealed	that	both

farmers'	movements	and	pest	control	knowledge	could	significantly	impact	invasion	speed	and	should	be	considered	as	key	variables	to	better	predict	pest	invasion	dynamics	in	agricultural
landscapes.	Regarding	the	use	of	ABM	as	educational	tools,	we	found	that	new	technologies	(computers)	increased	the	interest	of	young	farmers	in	learning	about	how	to	better	face	pest
problems.	Although	we	would	need	to	design	proper	studies	to	better	understand	the	specific	ways	ABM	fosters	learning	processes,	the	introduction	of	ABM	into	learning	environments	located
in	remote	places	may	promise	to	improve	education	of	farmers,	especially	young	ones.	For	example,	ABM	can	be	integrated	into	interactive	websites	or	burned	on	a	CD	and	be	available	to
farmer	communities	in	which	technology	access	increases	rapidly	thanks	to	governmental	initiatives.	In	view	of	the	growing	threat	made	by	emergent	insect	pests	worldwide,	especially	in
remote	and	poor	localities,	further	efforts	to	include	cost-efficient	ABM	into	integrated	pest	management	programs	may	represent	a	promising	line	of	research	and	applications.

	Appendix	1:	Description	of	the	cellular	automaton	used	to	simulate	the	pest	using	the	ODD	protocol

A1.1 The	model	description	follows	the	ODD	protocol	for	describing	individual-	and	agent-based	models	(Polhill	et	al.	2008;	Grimm	et	al.	2006;	Grimm	&	Railsback	2005b)	and	cellular	automaton
(Grimm	et	al.	2006,	appendix	A	p136-147).	Note	that	in	the	case	of	cellular	automaton,	some	of	the	design	concepts	of	the	ODD	protocol	do	not	apply.	The	model	was	developed	using
CORMAS	(CIRAD,	France,	http://cormas.cirad.fr)	based	on	the	VisualWorks	programming	environment	(CincomSmalltalk,	http://www.cincomsmalltalk.com).

	OVERVIEW

Purpose

A2.1 The	SimPolilla	model	was	developed	to	describe	the	invasion	and	diffusion	of	the	potato	tuber	moths	(PTM)	(Tecia	solanivora,	Phthorimaea	operculella	and	Symmetrischema	tangolias,
Gelechiidae,	Lepidoptera),	tiny	moths	that	invaded	the	agricultural	landscape	of	the	North	Andean	region	in	the	last	decades.	The	larvae	of	these	moths	are	serious	pests	of	potatoes,	one	of	the
main	food	crops	of	the	region.	A	second	objective	of	the	model	was	to	make	prediction	and	generate	maps	of	invasion	risk	for	local	farmer	communities.	The	model	was	developed	and
validated	in	a	pilot	region	of	central	Ecuador	but	was	built	to	be	applicable	to	a	much	wider	geographic	range	in	North	Andes.
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State	variables	and	scales

A2.2 The	model	is	based	on	biological	and	ecological	rules	derived	from	field	and	laboratory	experimental	data	for	the	three	PTM	species	(Dangles	&	Carpio	2008;	Dangles	et	al.	2008;	Roux	&
Baumgärtner	1997).	The	Simiatug	valley,	used	as	a	pilot	region	to	build	the	model,	is	located	in	the	province	of	Bolívar,	in	the	central	highlands	of	Ecuador.	We	focused	on	a	study	area	of	40	×

40	km	represented	by	a	grid	of	6,400	cells	with	a	cell	size	of	0.25	km2.	Each	cell	i	is	characterized	by	its	quality	of	habitat	ni	i.e.	the	quantity	of	food	resources	available	for	the	moth	larvae.	We
consider	that	ni	was	fixed	to	0	or	1	depending	on	the	land	use	(i.e.	crops	or	other	uses	such	as	woods	or	highlands).	Each	cell	is	also	characterized	by	a	range	of	temperature	values	(mean
Tmoy	i,	maximum	Tmax	i	and	minimum	Tmin	i	in	°C),	a	monthly	amount	of	precipitation	Pi;j	(in	mm),	and	a	mean	elevation	αi	(m.a.s.l.).

Table	1:	Full	set	of	state	variables	in	SimPolilla

Name	of	variable Units

Habitat Quality	of	habitat	of	cell	i ni

Temperature Average	mean	temperature	over	30	years	per	cell	i Tmoy	i ºC

Average	minimum	temperature	over	30	years	per	cell	i Tmin	i ºC

Average	maximum	temperature	over	30	years	per	cell	i Tmax	i ºC

Precipitation Average	precipitation	amount	over	30	years	per	cell	i	and	per	month	j Pi;j mm

Elevation Elevation	on	the	study	zone	per	cell	i α	i m

PTM	species Level	of	infestation	of	juveniles	density	of	specie	k	per	cell	i	(k	=	1,	2	,	3;	T.	solanivora,	P.
operculella,	S.	tangolias,	respectively)

Jk;i Number

Level	of	infestation	of	adults	density	of	specie	k	per	cell	i	(k	=	1,	2	,	3;	T.	solanivora,	P.
operculella,	S.	tangolias,	respectively)

Ak;i Number

Level	of	infestation	of	gravid	females	density	of	specie	k	per	cell	i	(k	=	1,	2	,	3;	T.
solanivora,	P.	operculella,	S.	tangolias,	respectively)

Gk;i Number

Distance	covered	by	a	moth Distance	covered	by	a	moth d Meters

A2.3 The	higher-level	entities	are	based	on	the	number	of	gravid	females	of	the	three	PTM	species.	Each	time	step	represents	one	PTM	generation	based	on	T.	solanivora	life	cycle	duration	(i.e.
about	3	months	at	15°C).	An	adjustment	is	made	on	the	two	other	species	so	that	each	step	corresponds	to	one	PTM	generation.	The	500	×	500	m	scale	for	cells	was	chosen	for	fitting	the	level
of	precision	we	have	concerning	PTM	dispersion,	based	on	available	knowledge	on	moth	dispersion	(Cameron	et	al.	2002b	).	Temperatures,	precipitations	and	elevations	have	a	1	per	1	km
resolution.	Inside	a	square	of	four	cells,	these	parameters	have	the	same	value.

Process	overview	and	scheduling

A2.4 In	this	section,	we	briefly	describe	the	processes	and	scheduling	of	our	model.	Details	are	given	in	the	submodels	section.	Each	process	is	presented	according	to	its	sequence	proceeding	and
in	the	order	at	which	state	variables	are	updated.	Each	time	step	is	one	T.	solanivora	generation.

Table	2:	Processes	of	SimPolilla	model

Process Submodels
State	variables	update State	variables	update
Stochastic	temperature Stochastic	temperature
Stochastic	rainfall Stochastic	rainfall
PTM	mortality Crude	mortality

Temperature	dependent	mortality
Precipitation	dependent	mortality

PTM	dispersal Neighbourhood	dispersal
PTM	reproduction Mating	rate

Sex	ratio
Temperature	dependent	fecundity

Process:	state	variables	update

A2.5 Each	state	variable	corresponding	to	real	data	(Almanaque	Electrónico	de	Ecuador	by	Alianza	Jatun	Sacha	-	CDC,	digitised	by	DINAREN,	2003	;Hijmans	et	al.	2005),	is	imported	from
individual	files	(one	per	layer),	so	that	SimPolilla	may	be	easily	adapted	to	other	regions.

Process:	stochastic	temperature

A2.6 Mean	temperature	is	transformed	according	to	a	stochastic	factor	(Box	&	Muller	1958).

Process:	stochastic	rainfall

A2.7 Two	consecutive	monthly	precipitations	are	randomly	chosen	during	a	given	step.

Process:	PTM	mortality

A2.8 PTM	population	is	updated	according	to	crude,	temperature	and	precipitation	mortality.

Process:	PTM	dispersal
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A2.9 PTM	disperse	through	the	territory	from	one	cell	to	another	by	diffusion.

Process:	PTM	reproduction

A2.10 PTM	populations	are	updated	according	to	biological	rules	(mating	rate,	sex	ratio,	fecundity).	A	correction	is	made	over	fitness	on	the	two	other	PTM	species	to	adjust	time	step	based	on	T.
solanivora	life	cycle.

	DESIGN	CONCEPTS

A3.1 In	Simpolilla	model,	moths'	implicit	objective	is	to	infest	the	considered	landscape	by	maximizing	dispersal	speed.	Emergent	key	results	are	level	of	infestation	in	each	cell	and	infestation	speed.
Interspecific	interactions	are	not	taken	into	account	in	this	model	and	a	stochastic	factor	over	temperature	and	rainfalls	are	included	mimic	actual	climatic	variation.

	DETAILS

Initialization	and	input

A4.1 The	environment	is	based	on	the	Simiatug	agricultural	region	(Bolivar,	central	part	of	Ecuadorian	Andes),	with	temperature,	precipitation	and	elevation	from	available	data	with	a	1	km2

resolution	(Hijmans	et	al.	2005).	Quality	of	habitat	is	based	on	GIS	information	about	land	use	with	a	0.25	km2	resolution	(Almanaque	Electrónico	de	Ecuador	by	Alianza	Jatun	Sacha	-	CDC,
digitised	by	DINAREN,	2003).	The	cellular	automaton	is	a	4-connex	square	shaped	grid,	with	closed	boundaries	as	we	are	considering	an	existing	geographical	location.	At	the	beginning	of
each	simulation,	PTM	inoculums	are	placed	in	the	Simiatug	village	and	spread	is	observed	and	recorded	for	each	species.

Submodels

A4.2 In	this	section	we	describe	the	submodels	given	in	table	2.

Climatic	driver	of	PTM	dynamic

Temperature

A4.3 In	order	to	feed	the	model	with	real	climate	variables,	we	chose	to	introduce	a	stochastic	factor	Tstochastic	in	the	model	(see	alsoSikder	et	al.	2006)	that	allowed	us	to	obtain	by	multiplication	a
stochastic	temperature	in	cell	i	TSto	i .

A4.4 We	use	the	polar	form	of	the	Box-Muller	transformation	(Box	&	Muller	1958),	to	generate	a	Gaussian	random	number,	based	on	climatic	data	from	the	region	(seeDangles	et	al.	2008,	appendix
A).	Random	number	used	is	based	on	random	procedure	in	VisualWoks	(VisualWorks®	NonCommercial,	7.5	of	April	16,	2007.	Copyright	©	1999-2007	Cincom	Systems,	Inc.	All	Rights
Reserved.).

(1)

The	stochastic	temperature	replaces	average	temperature	in	all	equations	bellow.

Precipitation

A4.5 As	for	temperature,	we	choose	to	introduce	a	stochastic	factor	to	obtain	a	stochastic	precipitation	PStoi.	Using	a	random	number	j	from	1	to	12	(VisualWorks®	NonCommercial,	7.5	of	April	16,
2007.	Copyright	©	1999-2007	Cincom	Systems,	Inc.	All	Rights	Reserved.),	we	take	the	average	of	the	monthly	amount	of	precipitation	Pi;j	corresponding	to	the	random	number	and	the
following.

(2)

PTM	life	dynamics

A4.6 Data	on	development	and	survival	for	immature	stages	(eggs,	larva,	and	pupa)	and	on	fecundity	for	adults	were	acquired	from	two	sources.	First	we	used	published	data	from	laboratory
experiments	performed	in	the	Andean	region	(Notz	et	al	1995;Dangles	et	al.	2008).	Second	we	used	data	obtained	within	the	last	8	years	at	the	Entomology	Laboratory	at	the	PUCE	(Pollet,
Barragan	&	Padilla,	unpublished	data).	For	these	two	sources,	only	data	acquired	under	constant	temperatures	(±	2°C)	were	considered.	In	all	studies,	relative	humidity	ranged	from	60	to	90%,
values	above	any	physiological	stress.

Crude	mortality

A4.7 Overall	force	of	mortality	among	a	population	is	the	sum	of	crude	cause-specific	forces.	Here	we	consider	innate	mortality	(λi),	dispersal	related	mortality	(λd)	and	predation	(λe)	(seeRoux
1993;Roux	et	al.	1997)	for	P.	operculella.
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(3)

A4.8 Innate	mortality	is	not	taken	into	account	using	equation	(3),	because	a	temperature	dependent	parameter	fits	better	to	reality	than	λi	(see	bellow).

A4.9 We	are	also	considering	separately	survival	rate	with	predation	SPredation	by	birds,	spiders,	ants	and	others	predators	for	the	adult	stage	following	equation	(4)	(Tanhuanpää	et	al.	2003).	Level
of	predation	_i	scales	from	0	to	10	(ie	10	the	lower,	0	the	higher	level),	in	order	to	simulate	different	scenarios,	from	theory	to	reality.

(4)

Temperature	dependent	mortality

A4.10 Temperature	is	the	most	basic	controller	in	poikilothermic	organisms	(Zaslavski	et	al.	1988).	Survival	rate	under	laboratories	conditions	has	been	studied	for	the	three	PTM	species,	using	a
temperature	dependent	kinetic	model.

A4.11 We	used	the	following	equation	to	calculate	the	survival	rate	SD	for	each	stage	at	each	temperature	for	which	data	were	available:

(5)

with	ST	the	total	survival	at	the	given	stage,	expressed	as	a	proportion,	and	DD	the	days	to	development.	Following	Roux	(1993),	we	applied	the	Sharpe	and	DeMichel	model	(eq.	5)	to	the
survival-response	to	temperature	as	in	equation	6:

(6)

with	a,	b,	c,	d,	e,	and	f	the	equation	parameters	to	be	estimated.

Table	3:	Parameter	values	of	the	kinetic	model	(equation	7)	describing	the	stage	specific	survival	rate	SD(T)	response	of	the	three	invasive	PTM	species
(T.	solanivora,	P.	operculella,	and	S.	tangolias)	to	constant	temperatures.	Note	that	temperature	is	given	in	Kelvin	degrees.

Species Instar a b c d e f
S.	tangolias Egg 0,834 10,94 -234000 282,4 616600 304,1

Larva 0,694 -236,3 -420300 283.1 1551000 305,6
Pupa 0,882 39,93 -992700 282,9 1110000 304,7

P.	operculella Egg 0,917 50 -200000 283.3 400000 310.1
Larva 0,950 -150 -400000 284.4 900000 310.0
Pupa 0,960 50 -800000 283.1 700000 312.2

T.	solanivora Egg 0,822 -758,5 -212100 281,9 405200 303,8
Larva 0,758 -180,2 -475700 282,7 1298000 301,5
Pupa 0,900 -73,72 -1263000 286,5 1095000 306,3

A4.12 For	temperatures	higher	than	13°C,	P.	operculella	immature	stages	showed	higher	survival	rates	(0.9-1.0)	and	tolerance	to	high	temperatures	(up	to	37°C)	than	the	two	other	species.	Both	T.
solanivora	and	S.	tangolias	had	a	slightly	better	tolerance	to	low	temperatures	than	P.	operculella.

Precipitation	dependent	mortality

A4.13 Precipitations	play	a	minor	but	significant	role	in	moth	survival	rate	(Wakisaka	et	al.	1989;Kobori	et	al.	2003).	Because	each	insect	stage	is	concerned	and	because	no	studies	have	been
conduced	on	PTM,	we	use	a	correcting	factor	on	survival	rate.	This	rate	is	dependent	on	the	amount	of	precipitations	in	mm	over	two	months	randomly	chosen	on	the	GIS	database
(SICAGRO).	The	correcting	factor	is	adjusted	from	hypothetical	relationship	based	upon	available	knowledge.

Neighborhood	dispersal

A4.14 We	consider	that	the	fraction	of	PTM	leaving	a	cell	is	dependent	on	adult	population	density	and	quality	of	habitat	ni	within	the	cell	(see	alsoBendor	et	al.	2006;Bendor	and	Metcalf
2006b;Eizaguirre	et	al.	2004).	PTM	do	not	have	a	perception	of	the	environment	situated	in	a	neighborhood	cell.	According	to	Bendor	et	al.,	we	assume	that	emigration	rate	(ye),	follows	an	s-
shaped	curve,	which	levels	out	as	it	approaches	the	maximum	density	(carrying	capacity).	Density	is	a	fraction	of	K,	carrying	capacity	(0	<	density	<	K).

(7)

A4.15 We	assumed	that	PTM	can	travel	up	to	200	m	away	from	their	origin	during	a	generation	(larvae	can	hardly	move	to	1m	and	adults'	life	time	is	very	short).	The	probability	of	a	PTM	to	cover	a
defined	distance	(yd)	is	a	decreasing	function	of	emigration	rate.	This	function	may	certainly	overestimate	PTM	dispersal	but	we	prefer	overestimation	than	below	estimation	(Cameron	et	al.
2002a;	2002b).

(8)

A4.16 As	our	unit	cell	is	0.25	km2,	each	migrating	PTM,	depending	on	its	position	on	the	square,	and	on	distance	covered	d,	has	a	probability	(yeR)	of	crossing	the	cell	boarder.	We	assume	that	PTM
move	inside	the	cell	either	horizontally	or	vertically.	This	assumption	may	certainly	overestimate	PTM	dispersal	but	we	prefer	overestimation	than	below	estimation	(Cameron	et	al.	2002a;
2002b).
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(9)

Reproduction

Mating	rate

A4.17 Mating	rate	is	correlated	with	age,	sex	ratio	and	weigh	of	individuals,	but	also	with	distance	from	one	individual	to	another	(Makee	et	al.	2001;Cameron	et	al.	2004).	No	specific	studies	have
been	made	on	mating	rate	under	natural	conditions,	and	laboratory	measurements	may	frequently	represent	an	overestimation	of	the	natural	situation	because	laboratory	females	have	little
opportunity	to	avoid	mating	(Reinhardt	et	al.	2007).	However,	as	our	cells	are	500	m	long,	and	thanks	to	field	observation,	we	know	that	pheromones	works	at	least	on	a	200	m	radius,	and	we
assume	that	within	a	cell,	mating	rate	is	equal	to	one	no	matter	the	density.

Sex	ratio

A4.18 Among	PTM	population,	sex	ratio	has	been	studied	and	is	1:1	(Saour	1999).	After	dispersal,	the	remaining	adult	population,	combined	with	the	mating	rate	and	the	sex	ratio	give	the	gravid
females	population.

PTM	fecundity

A4.19 Although	energy-partitioning	models	have	been	developed	to	explain	the	shape	of	insect	fecundity	as	a	function	of	aging	(Kindlmann	et	al.	2001),	we	are	not	aware	of	any	mechanistic	models
that	describes	insect	fecundity	as	a	function	of	temperature.	Several	probabilistic	non-linear	models	to	fit	insect	fecundity	across	temperature	have	been	proposed	in	the	literature	(Roux	1993;
Lactin	et	al.	1995;	Kim	and	Lee	2003;	Bonato	et	al.	2007),	but	none	of	them	gave	us	significant	results	with	our	data	(r	<	0.35,	Fstat	<	2.01).	We	therefore	used	weighted	least	square	(WLS)
regression	to	find	the	best	model	that	fits	our	fecundity	data	across	temperature.	WLS	regression	is	particularly	efficient	to	handle	regression	situations	in	which	the	data	points	are	of	varying
quality,	i.e.	the	standard	deviation	of	the	random	errors	in	the	data	may	be	not	constant	across	all	levels	of	the	explanatory	variables,	which	could	be	the	case.	For	the	three	tuber	moth	species,
the	best	fit	was	obtained	with	the	Weibull	distribution	function,	which	has	long	been	recognized	as	useful	function	to	model	insect	development	(Wagner	et	al.	1984).

A4.20 The	effect	of	temperature	upon	fecundity	was	well	described	by	the	Weibull	distribution	functions	(r2	=	0.75,	0.83,	and	0.91	for	T.	solanivora,	S.	tangolias	and	P.	operculella,	respectively).
Results	showed	marked	differences	among	PTM	species,	both	in	terms	of	total	numbers	of	eggs	laid	per	females	and	optimal	fecundity	temperature	:	the	highest	fecundity	was	found	in	T.
solanivora,	with	about	300	eggs/female	at	19°C,	followed	by	S.	tangolias	(220	eggs/female	at	15°C)	and	P.	operculella	(140	eggs	at	23°C).

	Appendix	2:	Animations

A5.1 The	following	animations	illustrate	simulations	in	which	blue	and	red	figurines	represents	agents,	and	blue	and	red	links	agents'	movements	from	village	to	village.	The	number	in	the	top	right
corner	corresponds	to	the	number	of	timeframe	and	the	background	color	to	the	pest	infestation	(black:	no	pest	infestation	;	green:	pest	infestation	due	to	purely	biological	diffusion	;	red	and
blue:	pest	infestation	due	to	an	infested	agent	movement).	At	the	end	of	each	animated	simulation,	the	area	to	the	right	remains	uninfected.	This	area	corresponds	to	higher	elevations	where
the	pest	can	not	survive.

Figure	A-2.	Animated	simulations	showing	the	effect	of	agents'	movements	on	the	pest	spread	with	2	movements	per	timeframe	and	6	movements	per	timeframe.	The	pest	infestation	is
quicker	when	agents	move	more.

Figure	A-3.	Simulations	showing	the	effect	of	agents'	pest	control	knowledge	without	heterogeneity	on	the	pest	spread	with	a	mean	pest	control	knowledge	of	0	and	100.	When	the	pest	control
knowledge	is	high,	the	pest	can	only	disperse	through	diffusion	(i.e.	very	slowly),	compared	to	a	simulation	when	pest	control	knowledge	is	low,	where	the	agents'	behaviors	lead	to	a	full

infestation	by	long	distance	dispersal	events	from	village	to	village.
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Figure	A-4.	Animated	simulation	of	the	game	session.	Parameters	are	presented	in	Table	1.	The	simulation	ran	to	reach	full	infestation	of	the	landscape	suitable	for	the	pest.	Integrating	real
distribution	of	pest	control	knowledge	(Normal	distribution),	we	observed	that	almost	all	the	landscape	is	infested	due	to	long	distance	dispersal	events.	It	revealed	the	importance	to	focus	on

pest	control	knowledge	reinforcement	to	reduce	the	incidence	of	the	pest	at	the	landscape	level.
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