
Proceedings of the 2010 Winter Simulation Conference

B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

INTRODUCTION TO SIMIO

C. Dennis Pegden

David T. Sturrock

Simio LLC

504 Beaver St.

Sewickley, PA, 15143, USA

ABSTRACT

This paper describes the modeling system – Simio
TM

- that is designed to simplify model building by

promoting a modeling paradigm shift from the process orientation to an object orientation. Simio is a

simulation modeling framework based on intelligent objects. The intelligent objects are built by mod-

elers and then may be reused in multiple modeling projects. Although the Simio framework is focused on

object-based modeling, it also supports a seamless use of multiple modeling paradigms including event,

process, object, and agent-based modeling.

1 THE SIMIO OBJECT PARADIGM

Simio is a simulation modeling framework based on intelligent objects. The intelligent objects are built

by modelers and then may be reused in multiple modeling projects. Objects can be stored in libraries and

easily shared. A beginning modeler may prefer to use pre-built objects from libraries, however the system

is designed to make it easy for even beginning modelers to build their own intelligent objects for use in

building hierarchical models.

 An object might be a machine, robot, airplane, customer, doctor, tank, bus, ship, or any other thing

that you might encounter in your system. A model is built by combining objects that represent the physi-

cal components of the system. A Simio model looks like the real system. The model logic and animation

is built as a single step. Further, you might typically work in 2D mode for ease of modeling, but the fully

automatic compelling 3D animation is just a single keystroke away.

 An object may be animated in 3D to reflect the changing state of the object. For example a forklift

truck raises and lowers its lift, a robot opens and closes its gripper, and a battle tank turns its turret. The

animated model provides a moving picture of the system in operation. Simio provides a direct link to

Google Warehouse

(a free massive online library of graphic symbols) for animating 3D objects.

 Objects are built using the concepts of object-orientation. However unlike other object oriented simu-

lation systems, the process of building an object is very simple and completely graphical. There is no

need to write programming code to create new objects.

 The activity of building an object in Simio is identical to the activity of building a model – in fact

there is no difference between an object and a model. This concept is referred to as the equivalence prin-

ciple and is central to the design of Simio. Whenever you build a model it is by definition an object that

can be instantiated into another model. For example, if you combine two machines and a robot into a

model of a work cell, the work cell model is itself an object that can then be instantiated any number of

times into other models. The work cell is an object just like the machines and robot are objects. In Simio

there is no way to separate the idea of building a model from the concept of building an object. Every

model that is built in Simio is automatically a building block that can be used in building higher level

models.

1978-1-4244-9864-2/10/$26.00 ©2010 IEEE

Pegden and Sturrock

Figure 1: Ease of 2D Modeling, with Compelling 3D Presentations

Figure 2: 3D Object Imported directly into Simio from Google Symbol Warehouse

2

Pegden and Sturrock

2 THE OBJECT ORIENTED FOUNDATION

Many popular programming languages such as C++, C#, and Java are all built around the basic principles

of object oriented programming (OOP). In this programming paradigm software is constructed as a col-

lection of cooperating objects that are instantiated from classes. These classes are designed using the core

principles of abstraction, encapsulation, polymorphism, inheritance, and composition.

 The abstraction principle can be summarized as focusing on the essential. The basic principle is to

make the classes structure as simple as possible.

 The encapsulation principle specifies that only the object can change its state. Encapsulation seals the

implementation of the object class from the outside world.

 Polymorphism provides a consistent method for messages to trigger object actions. Each object class

decides how to respond to a specific message.

 Inheritance is a key concept that allows new object classes to be derived from existing object classes:

this is sometimes referred to as the “is-a” relationship. This is also referred to as sub-classing since we

are creating a more specialized class of an object. Sub-classing typically allows the object behavior to be

extended with new logic, and also modified by overriding some of the existing logic.

 Composition allows new object classes to be built by combining existing object classes: this is some-

times referred to as the “has-a” relationship. Objects become building blocks for creating higher level ob-

jects.

 It is interesting to note that the roots of these ideas date back to the early 1960’s with the Simula 67

simulation modeling tool. This modeling tool was created by Kristen Nygaard and Ole-Johan Dahl

(1962) of the Norwegian Computing Center in Oslo to model the behavior of ships. They introduced the

basic concepts of creating classes of objects that own their data and behavior, and could be instantiated

into other objects. This was the birth of hierarchical modeling and object-oriented programming.

 Many people assume that object-oriented programming concepts were developed within the pro-

gramming world; however this was not the case. These principles were developed for building simulation

models, and then adopted by the programming world.

 Although the simulation world created the original object-oriented concepts, it has yet to produce an

object-oriented modeling framework that practitioners have widely embraced. Although there have been

a number of attempts to provide such a framework, in the end practitioners have for the most part stuck to

their proven process orientation for modeling. One of the big reasons for this is that most past attempts

have simply been object-oriented programming libraries that require the user to step back in time 25 years

and again code their models and/or objects in a programming language.

3 THE SIMIO OBJECT FRAMEWORK

The Simio object framework is built on the same basic principles as object oriented programming lan-

guages; however these principles are applied within a modeling framework and not a programming

framework. For example the Microsoft development team that designed C# applied these basic principles

in the design of that programming language. Although these same principles drive the design of Simio,

the result is not a programming language, but rather a graphical modeling system. This distinction is im-

portant in understanding the design of Simio.

 Simio is not simply a simulation modeling tool that is programmed in an OOP language (although it

is programmed in C#). Likewise it is not simply a set of classes available in an OOP language such as

Java or C++ that are useful for building simulation models. Simio is a graphical modeling framework to

support the construction of simulation models that is designed around the basic object oriented principles.

For example when you create an object such as a “machine” in Simio, the principle of inheritance allows

you to create a new class of machines that inherits the base behavior of a “machine”, but this behavior can

be modified (overridden) and extended. Whereas in a programming language we extend or override be-

havior by writing methods in a programming language, in Simio we extend or override behavior by add-

ing and overriding graphically defined process models.

3

Pegden and Sturrock

 This distinction between object oriented modeling and object oriented programming is crucial. With

Simio the skills required to define and add new objects to the system are modeling skills, not program-

ming skills.

4 THE ANATOMY OF AN OBJECT (MODEL)

When you create a model in Simio, you are creating an object class from which multiple instances can be

created. This process is referred to as instantiation.

 When you instantiate an object into a model, you may specify properties of the object that govern the

behavior of this specific instance of this object. For example the properties for a machine might include

the setup, processing, and teardown time, along with a bill or materials and a operator required during the

setup. The creator of the object decides on the number and the meaning of the properties. The properties

in Simio are strongly typed and can represent numeric values, Booleans, strings, object references, dates

and times, etc. Since any model that you build is by definition an object, you have the opportunity to pa-

rameterize your model through properties as well.

 It should be noted that instantiating a model is not the same as copying or cloning the model. When a

model is used as a building block in the construction of other models it may be instantiated many times in

many different models. The model instance simply holds a reference to the one model definition that is

used over and over again. The instance also holds the property values since these are unique to each in-

stance. However the model logic is shared by all instances. Regardless of how many instances are

created, there is only one class definition of the object, and each instance refers back to this single defini-

tion. Each instance holds the properties that are unique to that instance, but looks back to the definition to

get its underlying behavior. If the behavior in the definition is changed then all instances automatically

make use of this new behavior.

 In addition to properties, objects also have states. States are also strongly typed but always map to a

numeric value. For example the Booleans true and false map to 1 and 0, and an enumerated list of state

names map to the list index position (0, 1, …., N) in the list. A state changes as a result of the execution

of the logic inside the object. Properties can be thought of as inputs to an object, and states can be

thought of as output responses that change throughout the execution of the object logic. A state might

represent a count of completed parts, the status of a machine selected from an enumerated state list, the

temperature of an ingot heating in a furnace, the level of oil in a ship being filled, or the accumulation

level on a conveyor belt.

 There are two basic types of states: discrete and continuous. A discrete state is a value that only

changes at event times (customer arrival, machine breakdown, etc.) A continuous state (e.g. tank level,

position of a cart, etc.) has a value that changes continuously over time.

5 THREE OBJECT TIERS

One of the important and unique internal design features of Simio is the use of a three tier object structure

that separates an object into an object definition, object instance, and object realization. The object defi-

nition specifies the object behavior and it is shared by all instances of the object. An object instance is

simply an instance of that object within a parent object definition (e.g. a lathe machine instance is placed

inside a work cell definition). The object instance defines the property values for each individual instance

of the object and this instance data is in turn shared by all object realizations.

 The object realization is used to represent a specific realization of an instance within an expanded

model hierarchy. For example, each time a new work cell instance is placed in a parent object definition

(e.g. a production line) it creates the need for a new realization for the embedded lathe. Although the

work cell definition is built from a single lathe instance, this single lathe instance cannot hold the state

values corresponding to multiple lathe realizations that result from multiple instances of the work cell.

The object realizations provide the mechanism for holding this hierarchical state information in a very

compact form. The object realizations are only created during model execution and hold only the model

4

Pegden and Sturrock

state variables and a reference to their parent object instance. This is a highly efficient structure that is

crucial for large scale applications such as agent-based models that can have many thousands of object

realizations.

6 THREE WAYS TO BUILD OBJECT DEFINITIONS

The previous example in which we defined a new object definition (work cell) by combining other objects

(machines and a robot) is one example of how we can create object definitions in Simio. This type of ob-

ject is called a composed object because we create this object by combining two or more component ob-

jects. This object building approach is fully hierarchical, i.e. a composed object can be used as a compo-

nent object in building higher level objects. This is only one way of building objects in Simio - there are

two other important methods.

 The most basic method for creating objects in Simio is by defining the logical processes that alter

their state in response to events. For example, a machine object might be built by defining the processes

that alter the machine state as events occur such as part arrival, tool breakdown, etc. This type of model-

ing is similar to the process modeling done in traditional modeling systems in use today such as Arena or

GPSS. An object that is defined by describing its native processes is called a base object. A base object

can in turn be used as a component object for building higher level objects.

 The final method for building objects in Simio is based on the concept of inheritance. In this case we

create an object from an existing object by overriding (i.e. replacing) one or more processes within the

object, or adding additional processes to extend its behavior. In other words we start with an object that is

almost what we want, and then we modify and extend it as necessary to make it serve our own purpose.

For example we might build a specialized drill object from a generalized machine object by adding addi-

tional processes to handle the failure and replacement of the drill bit. An object that is built in this way is

referred to as a derived object because it is sub-classed from an existing object.

 Regardless which method is used to create an object, once created it is used in exactly the same way.

An object can be instantiated any number of times into a model. You simply select the object of interest

and place it (instantiate it) into your model.

7 OBJECT CLASS

There are six basic classes of objects in Simio. These six classes of objects provide a starting point for

creating intelligent objects within Simio. By default, all six of these classes of objects have very little na-

tive intelligence, but all have the ability to gain intelligence. You build intelligent versions of these ob-

jects by modeling their behavior as a collection of event driven processes.

Figure 3: Basic Simio Object Classes

 The first class is the fixed object. This object has a fixed location in the model and is used to

represent the things in your system that do not move from one location to another. Fixed objects are used

to represent stationary equipment such as machines, fueling stations, etc.

5

Pegden and Sturrock

 Agents are objects that can freely move through 3-dimensional space. Agents are also typically used

for developing agent-based models. This modeling view is useful for studying systems that are composed

of many independently acting intelligent objects that interact with each other and in so doing create the

overall system behavior. Examples of applications include market acceptance of a new product or ser-

vice, or population growth of competing species within an environment.

 An entity is sub-classed from the Agent class and has one important added behavior. Entities can

move through the system from object to object over a network of links and nodes. Examples of entities

include customers in a service system, work pieces in a manufacturing system, ships in a transportation

system, tanks in a combat system, and doctors, nurses, and patients in a health delivery system.

 Note that in traditional modeling systems such as GPSS or Arena the entities are passive and are acted

upon by the model processes. However in Simio the entities can have intelligence and control their own

behavior.

 Link and node objects are used to build networks over which entities may flow. A link defines a

pathway for entity movement between objects. A node defines a starting or ending point for a link. Links

and nodes can be combined together into complex networks. Although the base link has little intelligence

we can add behavior to allow it to model unconstrained flow, congested traffic flow, or complex material

handling systems such as accumulating conveyors or power and free systems.

 The final class of object is a transporter and is sub-classed from the entity class. A transporter is an

entity that has the added capability to pickup, carry, and drop off one or more other entities. By default

transporters have none of this behavior, but by adding model logic to this class we can create a wide range

of transporter behaviors. A transporter can model a taxi cab, bus, AGV, subway car, forklift truck, or any

other object that has the ability to carry other entities from one location to another.

 A key feature of Simio is the ability to create a wide range of object behaviors from these six basic

classes. The Simio modeling framework is application domain neutral – i.e. these six basic classes are not

specific to manufacturing, service systems, healthcare, military, etc.. However it is easy to build applica-

tion focused libraries comprised of intelligent objects from these six classes designed for specific applica-

tion.. For example it is relatively simple to build an object (in this case a link) that represents a complex

accumulating conveyor for use in manufacturing applications. The design philosophy of Simio directs

that this type of domain specific logic belongs in the objects that are built by users, and not programmed

into the core system.

8 CREATING INTELLIGENT OBJECTS WITH PROCESSES

Modeling in Simio begins with base objects – it is the foundation on which higher level objects are built.

A base object in Simio is a fixed object, agent, entity, link, node, or transporter that has intelligence added

by one or more processes. Processes give an object its intelligence by defining the logic that is executed

in response to events.

 Each process is a sequence of process steps that is triggered by an event and is executed by a token.

A token is released at the start of the process and is simply a thread of execution (similar to entities in

Arena). A token may have properties (input parameters) and states (runtime changeable values) that con-

trol the execution of the process steps. You can define your own classes of tokens that have different

combinations of properties and states.

 The modeling power of Simio comes from the set of events that are automatically triggered for the six

basic classes of objects, along with the process steps that are available to model state changes that occur

in response to these events. Fully mastering the art of building intelligent objects involves learning the

events and the collection of available process steps, along with the knowledge and experience of how to

combine these steps to represent complex logic.

 Each step in Simio models a simple process such as holding the token for a time delay, seiz-

ing/releasing of a resource, waiting for an event to occur, assigning a new value to a state, or deciding be-

tween alternate flow paths. Some steps (e.g. Delay) are general purpose steps that are useful in modeling

objects, links, entities, transporters, agents, and groups. Other steps are only useful for specific objects.

6

Pegden and Sturrock

For example, the Pickup and Dropoff steps are only useful for adding intelligence to transporters and the

Engage and Disengage steps are only useful in adding intelligence to Links.

 Each object class has its own set of events. For example, a link provides events that fire when entities

enter and leave the link, merge fully onto the link, collide with or separate from other entities that reside

on the link, move within a specified range of another entity, etc. By providing model logic to respond to

these events we can completely control the movement of entities across the link. For example, to add ac-

cumulation logic to the link we simply write a small process that its triggered when an entity collides with

the entity it is following, and reassigns the speed of the entity to match the speed of the entity that it is fol-

lowing.

Figure 4: Graphical Process Definition

 The process steps that are used to define the underlying logic for an object are stateless – i.e. they

have properties (input parameters) but no states (output responses). This is important because this means

that a single copy of the process can be held by the object class definition, and shared by an arbitrary

number of object instances. If the process logic is changed, this fact is automatically reflected by all in-

stances of the object.

 The states for an object instance are held in elements. Elements define the dynamic components of

an object and may have both properties (input parameters) and states (runtime changeable values). With-

in an object the tokens may execute steps that change the states of the elements that are owned by the ob-

ject.

 An example of an element is the station that defines a location within an object. Stations are also

used to define entry and exit points into and out of an object. Entities can transfer into and out of stations

(using the Transfer step), and a station maintains a queue of entities currently in the station as well as enti-

ties waiting to transfer into the station. A station has a capacity that limits transfers into a station. Hence

an entity arriving to an object over a link can only exit the link and enter the object if the entry station for

the object has capacity available.

9 FINITE CAPACITY SCHEDULING

Although simulation has traditionally been applied to the design problem, it can also be used on an opera-

tional basis to generate production schedules for the factory floor. When used in this mode, simulation is

a Finite Capacity Scheduler (FCS) and provides an alternative to other FCS methods such as optimization

algorithms and job-at-a-time sequencers. However simulation based FCS has a number of important ad-

7

Pegden and Sturrock

vantages (e.g. speed of execution and flexible scheduling logic) that make it a powerful solution for

scheduling applications

 Simulation provides a simple yet flexible method for generating a finite capacity schedule for the fac-

tory floor. The basic approach with simulation-based scheduling is to run the factory model using the

starting state of the factory and the set of planned orders to be produced. Decision rules are incorporated

into the model to make job selection, resource selection, and routing decisions. The simulation constructs

a schedule by simulating the flow of work through the facility and making “smart” decisions based on the

scheduling rules specified. The simulation results are typically displayed as jobs loaded on interactive

Gantt chart that can be further manipulated by the user. There are a large number of rules that can be ap-

plied within a simulation model to generate different types of schedules focused on measures such as

maximizing throughput, maintaining high utilization on a bottleneck, minimizing changeovers, or meet-

ing specified due dates.

 Because of the special requirements imposed by scheduling applications (e.g. the need for specialized

decision rules and the need to view the results in the form of an interactive Gantt chart), simulation-based

scheduling applications have typically employed specialized simulators specifically designed for this ap-

plication area. The problem with this approach is that the specialized simulators have built-in, data-driven

factory models that cannot be altered or changed to fit the application. In many cases this built-in model

is an overly simplified view of the complexities of the production floor. .This one model fits all approach

severely limits the range of applications for these tools. Some production processes can be adequately

represented by this fixed model, but many others cannot.

 Simio takes a different approach by allowing the factory model to be defined using the full general-

purpose modeling power of the tool. Hence the range of applications is no longer restricted by a fixed

built-in model that cannot be altered or changed between applications. The complexities of the produc-

tion process can be fully captured by the user-built Simio model. This not only includes the logic within

each work center, but also the material handling required to move jobs between work centers.

 The specialized requirements for FCS applications are addressed by incorporating features into Simio

to specifically support the needs of FCS. These features include the support for externally defined job da-

ta sets along with very flexible modeling of resources and materials. Although these features are specifi-

cally designed to unleash the full modeling power of Simio for FCS applications, they are also useful in

general modeling applications.

Figure 5: Sample Gantt Chart in Simio Scheduling Edition

 A Simio job data set allows a list of jobs to be externally defined for processing by the simulation

model. The jobs are defined in a data set containing one or more tables, with relations defined between

table columns. The specific schema for holding the job data is arbitrary and can be user defined to match

8

Pegden and Sturrock

the data schema for the manufacturing data (e.g. an ERP system). The job data typically includes release

and due date, job routings, setup and processing times, material requirements, as well as other properties

that are relevant to the system of interest.. The objects in Simio can directly reference values specified in

the job data set (e.g. processing time) without knowing the schema that was implemented to store the da-

ta.

 Any object in Simio can serve as a capacitated resource and can have its own independent behavior.

Resources can be selected from a list based on flexible rules such as minimum changeover time or long-

est idle time. Resources also support very flexible rules (earliest due date, least remaining slack, critical

ratio, etc) for selecting between competing jobs that are waiting to seize the resource. Finally the job

usage history for resources can be displayed on an interactive Gantt chart.

 The Materials element in Simio provides direct support to model things that can be consumed and

produced during the execution of the model. Materials can also be defined hierarchically to model a tra-

ditional Bill of Materials (BOM) for manufacturing applications. Hence a manufacturing step can be

modeled as the consumption of a specific list of materials within the hierarchical BOM.

10 SUMMARY

Simio is a new modeling framework based on the core principles of object oriented modeling. It is

unique in the following ways:

1. The Simio framework is a graphical object-oriented modeling framework as opposed to simply a

set of classes in an object-oriented programming language that are useful for simulation model-

ing. The graphical modeling framework of Simio fully supports the core principles of object

oriented modeling without requiring programming skills to add new objects to the system.

2. Simio supports 3D animation as a natural part of the modeling process. Simio provides a direct

interface to Google Warehouse to make it easy to incorporate realistic 3D symbols into your

model.

3. The Simio framework is domain neutral, and allows objects to be built that support many differ-

ent application areas. The process modeling features in Simio make it possible to create new ob-

jects with complex behavior.

4. The Simio framework supports multiple modeling paradigms. The framework supports the mod-

eling of both discrete and continuous systems, and supports an event, process, object, and agent

modeling view.

5. The Simio framework provides specialized features to directly support applications in emulation

and finite capacity scheduling that fully leverage the general modeling capabilities of Simio.

REFERENCES

Kelton, W.D., J. S. Smith, D. T. Sturrock, and A. Verbraeck. 2010. Simio and Simulation: Modeling,

Analysis, Applications. 1st ed. New York: McGraw-Hill, Inc

Nygaard, K and O-J Dahl. SIMULA -- An Extension of ALGOL to the Description of Discrete-Event

Networks, presented at the Second International Conference on Information Processing (1962)

Sturrock, D. T., Success in Simulation, Ongoing blog and discussion at

<http://www.simio.com/blog/> [accessed October 18, 2010].

AUTHOR BIOGRAPHIES

C. DENNIS PEGDEN is the founder and CEO of Simio LLC. He was the founder and CEO of Systems

Modeling Corporation, now part of Rockwell Software, Inc. He has held faculty positions at the Univer-

sity of Alabama in Huntsville and The Pennsylvania State University. He led in the development of the

SLAM, SIMAN, Arena, and Simio simulation tools. He is the author/co-author of three textbooks in si-

9

Pegden and Sturrock

mulation and has published papers in a number of fields including mathematical programming, queuing,

computer arithmetic, scheduling, and simulation. His email is <cdpegden@simio.com>. Additional

company information can be found at <www.simio.com>.

DAVID T. STURROCK is vice-president of Products for Simio LLC. He graduated from the Pennsyl-

vania State University in Industrial Engineering. He has over 25 years experience in the simulation field

and has applied simulation techniques in the areas of transportation systems, scheduling, plant layout, call

centers, capacity analysis, process design, health care, packaging systems and real-time control. He is co-

author of two simulation textbooks and teaches simulation at the University of Pittsburgh. In his present

role for Simio he is responsible for development, support and services for their simulation and scheduling

product suite. His email is <dsturrock@simio.com>.

10

