
Proceedings of the 2010 Winter Simulation Conference 
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds. 

 
 
 

DYNAMIC ADJUSTMENT OF REPLENISHMENT PARAMETERS USING OPTIMUM-
SEEKING SIMULATION 

 
 

Chandandeep S. Grewal 
S. T. Enns 

Paul Rogers 
 

University of Calgary  
Department of Mechanical and Manufacturing Engineering  

Calgary, T3B 2V4, CANADA 
 
 

 
ABSTRACT 

This paper addresses the use of discrete-event simulation and heuristic optimization to dynamically adjust 
the parameters within a continuous-review reorder point replenishment strategy. This dynamic adjustment 
helps to manage inventory and service levels in a simple supply chain environment with seasonal demand. 
A discrete-event simulation model of a capacitated supply chain is developed and a procedure to dynami-
cally adjust the replenishment parameters based on re-optimization during different parts of the seasonal 
demand cycle is explained. The simulation logic and optimization procedure are described. Further, anal-
ysis of the impact on inventory is performed. 

1 INTRODUCTION 

Many companies, such as apparel, pharmaceutical, food, toy and industrial equipment manufacturing, ex-
perience seasonal demand patterns (Metters 1998). Seasonal demand patterns are difficult to handle in 
terms of managing inventory and delivery service level. In high demand seasons, more inventory is re-
quired to meet demand if delivery service levels are not to be sacrificed.  In low demand seasons, less in-
ventory is necessary to meet demand and excessive holding costs will result if inventories are not re-
duced. Minimizing inventory while maintaining a desired service level requires adjustment of the decision 
variables for the replenishment strategy. Continuous-review reorder point (ROP) systems are one com-
monly used replenishment strategy.  
 The timing of replenishment orders in ROP strategies is based on the current inventory position and 
the reorder point (Silver et al. 1998). Whenever the inventory position, which includes backorders, falls to 
the reorder point (OP), a new order is triggered. A fixed batch, or lot size (LS) quantity, is then ordered. 
Therefore, the decision variables usually associated with ROP strategies are the OP and the LS. If these 
variables are reset dynamically through time, based on a seasonal demand pattern, there are the additional 
issues of how often and when to change values. Therefore, the time period (TP) during which different 
OP and LS values are used becomes a third type of decision variable. Ideally these decision variables 
should be optimized across a seasonal demand cycle.  
 There are a few studies that have dealt with seasonal demand patterns but these have not concentrated 
on the dynamic adjustment of replenishment parameters (Johansen and Riis 1995; Metters 1997; Regast-
tieri et al. 2007). Dynamic adjustment using analytical models is not feasible, especially in stochastic 
supply chain scenarios. Simulation is a more appropriate tool for such problems. However, it appears no 
study using simulation has so far been reported. The present paper describes the use of optimum-seeking 
simulation to manage inventory under seasonal demand using dynamic replenishment parameter adjust-
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ment. Reorder points and lot sizes are changed from one demand region to the next. Furthermore, read-
justment is based on interfacing the simulation model with a heuristic optimization engine. Hence the me-
thodology facilitates both dynamic adjustment as well as use of optimal, or near optimal, replenishment 
parameters. Optimum-seeking simulation is defined as the optimization of decision variables to maximize 
or minimize performance measures based on the outputs from stochastic simulations (Rogers 2002). 

The next section presents the problem formulation. Section 3 describes a capacitated supply chain 
scenario along with the parameters and assumptions used in the model. Section 4 presents an optimum-
seeking simulation model along with the optimization procedure. Section 5 discusses the simulation expe-
riment results along with the near optimal replenishment parameters, with and without dynamic adjust-
ment. Conclusions are presented in the last section. 

2 PROBLEM DESCRIPTION 

In this research the customer demand is time-varying and follows a seasonal pattern. The seasonal de-
mand pattern for each product is described by a sinusoidal pattern with four parameters. These are the 
mean demand rate, amplitude, cycle length and demand pattern lag. The mathematical expression for the 
expected demand of product type i during any time period t can be defined as follows: 

            (1) 
where: 

i  - product type  
Di(t)  - expected demand during time period t for product type i 
Di  - mean demand rate across a demand cycle for product type i 
Ai  - amplitude of the demand pattern for product i 
C - cycle length of the seasonal demand pattern   
Li - demand pattern lag for product type i 
Sin ( )  - sine function expressed in radians 

 
This equation defines the expected customer demand. The actual demand, discussed in the next section, is 
defined by a Poisson process with a mean equal to the expected demand defined by Equation (1). In this 
research two product types are assumed (i = 1, 2). 
 Figure 1 shows the general pattern for a two-product example where the seasonal demand patterns are 
half a cycle out of phase. The number of periods in each cycle is 8784, which is typical of the number of 
hours in one year (366 days). Since the products are out of phase with each other, the load on the manu-
facturing facility will be fairly constant. However, the amount of each product produced in each part of 
the cycle will likely vary. This means the optimal lot sizes (LS) will vary. Since this affects the reple-
nishment lead times due to capacity constraints, the optimal reorder points (OP) will also vary in each 
part of the cycle.   
 As shown in Figure 1, a 3-level adjustment of the replenishment decision variables is being consi-
dered. The seasonal demand cycle is divided into three regions, with region Y occurring twice per cycle. 
For product type 1, region X is a peak region, region Z is a trough region and region Y is a transient re-
gion. Similarly for product type 2, region X is a trough region, region Z is a peak region and region Y is a 
transient region. The lot sizes (LS) and order points (OP) for product type i in these three regions are des-
ignated as , , , , and respectively.  
 The region in which each set of OP and LS values are used is controlled by another set of decision va-
riables, and . The variable is the proportion a half cycle (4392 hours) at which the 
decision variables will change to those appropriate for region X. The value  is the proportion of a 
half-cycle for which the variables appropriate for the peak or trough demand regions, X and Z, will remain 
in effect. In other words, this variable defines the length of region X and Z.  Since the demand patterns are 
considered to be out of phase by half a cycle in this research, the values of  and  are shown 
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equal for both product types in Figure 1. Therefore,  and completely define the position and 
lengths of regions X, Y and Z. The challenge is then to determine the optimal decision variables for both 
replenishment and the regions over which they will be used.  
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Figure 1: Dynamic adjustment of replenishment parameters under seasonal demand 

3 SYSTEM DESCRIPTION 

The capacitated supply chain used in this research, shown in Figure 2, consisted of customer demand, a 
finished goods warehouse, a manufacturing plant, a transport system and a replenishment order system. It 
was assumed that this supply chain involved two types of products. These products were not interchange-
able with respect to customer demand but did have the same processing requirement characteristics, mak-
ing it simpler to concentrate on the behavior under focus in this study. Unlimited raw materials for the 
manufacturing process were assumed to be immediately available from the supplier. 

 

Customer

Warehouse

Customer Demand

Manufacturing 
Plant Supplier

Get products

Processing time
Setup time

Unlimited raw 
material supply

Replenishment strategy
�Reorder point

seasonal

Transportation
�Transit time

In
fo

rm
ati

on
 Fl

ow

 
Figure 2: A capacitated supply chain scenario 

 
 The customer demand for each product type was assumed to be Poisson, meaning the interarrival 
times between customers followed an exponential distribution.  However, the mean customer interarrival 
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time was dictated by the expected demand during the current time period, as stated by Equation (1). Each 
customer was assumed to require only one unit of either product type 1 or 2. If warehouse finished goods 
inventory of the required product type was in stock, the customer demand was filled immediately. Other-
wise the demand was backordered and filled immediately once inventory became available. There were 
assumed to be no lost sales.  The mean demand rate over the complete demand cycle was set to 20 per 
time unit for both product types, with the time units assumed to be hours. The demand pattern cycle 
length was assumed to be 8784 hours, approximately equivalent to one year.  
 The amplitude of the demand pattern for product 1 was assumed to be 40% of the mean demand rate 
over a cycle. This means the peak expected demand was 28 units per hour while the trough expected de-
mand was 12 units per hour.  For product 2, the amplitude of the demand pattern was assumed to be 20% 
of the mean demand rate. These relatively high and low levels of seasonality were selected to allow the 
effects of seasonality to be better analyzed. The demand patterns for the two products were offset by half 
the cycle length, similar to those shown in Figures 1. In other words, the lag between the patterns was 
4392 hours, which is equivalent to one half year. This meant that the aggregate processing time workloads 
at the manufacturing plant, represented as a single resource, were fairly constant through time.  
 The replenishment decision variables that change through time are the reorder point (OP) and the 
reorder quantity, or lot size (LS), for each product type. The replenishment lot size was assumed to be the 
production batch size at the manufacturer as well. The inventory position was reviewed at each event 
where the inventory changed. The inventory position was defined as the current finished goods inventory, 
unfilled orders released (work-in-process) and customer backorders. The unfilled orders released included 
the orders being transmitted to the manufacturer, the orders waiting in queue or being processed at the 
manufacturer and the orders being shipped to the warehouse. Customer backorders were treated as nega-
tive values when evaluating the inventory position. Anytime the inventory position fell to the reorder 
point, a new order to the manufacturer was initiated. The orders being transmitted to the manufacturer in-
curred a delay for processing, randomly generated from a uniform distribution with parameters (0, 4) 
hours, and an order travel time, randomly generated from a triangular distribution with parameters (4, 8, 
12) hours.  
 Once orders were received at the manufacturer they were processed in first-come-first-serve (FCFS) 
priority. The manufacturer was considered to have only one processing stage. A setup was required be-
tween each order (or batch), regardless of the sequence of the product types being produced. This setup 
time was assumed to follow a Gamma distribution with a mean of 0.25 hours and standard deviation of 
0.125 hours. Each unit in the order had a deterministic processing time of 0.015 hours. These values were 
the same for both product types. The total batch processing time was the setup time plus the processing 
time per unit times the lot size (LS).  Once an order was completed at the manufacturer it had to wait for a 
transporter to ship it to the warehouse. Transporters were released from the manufacturer at fixed inter-
vals of 4 hours and could carry one or multiple lot-size orders of any product type. The downstream travel 
time distribution was again triangular with parameters (4, 8, 12) hours. Once the orders were received at 
the warehouse, they were added to finished goods inventory and deducted from the count of unfilled or-
ders released. 

4 OPTIMUM-SEEKING SIMULATION MODEL 

This section describes the structure and logic of the discrete-event simulation model, along with the opti-
mization procedure. The logic used for the dynamic adjustment of replenishment parameters is described 
but not the logic for the reorder point replenishment strategy itself.  

4.1 Structure and Logic of simulation model 
Arena 12.0® was used to develop the discrete-event simulation model for the supply chain scenario de-
scribed above (Kelton, Sadowski, and Sturrock 2007). This simulation model was highly parametric, flex-
ible and easy to understand. It permitted the reorder point replenishment strategies to be implemented 
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with and without dynamic adjustment of the replenishment parameters. It could also be interfaced with an 
optimization engine known as OptQuest®. Figure 3 shows a snapshot of the simulation model prepared in 
Arena®. The number on each module represents the steps in the following procedure for dynamic ad-
justment. Note that the delays described pertain only to the logic of changing the replenishment strategy 
parameters and not all the other events in the simulation models. 

 

1 2

3 87654

119

3 87654

10 12

119 10 12

 
 

Figure 3: Snapshot of the dynamic adjustment simulation steps in Arena® 
 

Step 1: Create one entity using the Create module in Arena®. 

Step 2: Entity is duplicated for implementing the logic for two product types. The original entity 
will implement the logic for product type 1 and duplicate entity will implement the dy-
namic logic for product type 2. 

Step 3: Set LSi and OPi values equal to  and  (i.e. region Y values respectively). Two di-
mensional array variables were defined in Arena® for the LS and OP values in each re-
gion. Rows define the product type and columns define the variable value for each re-
gion.  vLotSizeArray (1,1) and vOrderPointArray(1,1) set the LS1 and OP1 values equal to 

 and  values respectively. Similarly vLotSizeArray (2,1) and vOrderPointAr-
ray(2,1) set the values for product type 2. The Assign module was used for this purpose. 

Step 4: Delay for time period equal to  half of sinusoidal cycle length for product type
i. A Delay module was used for each product type. The Arena® variable vOffsetTo-
Peak(1) and vOffsetToPeak(2) were used to control this timing for product 1 and 2 re-
spectively. 

Step 5: Set the LSi and OPi values equal to  and (i.e. region X values respectively). The 
Assign module was used to set these values. vLotSizeArray (1,2) and vOrderPointAr-
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ray(1,2) will set the LS1 and OP1 values equal to  and  respectively. Similarly 
vLotSizeArray (2,2) and vOrderPointArray(2,2) will set the values for product type 2.  

Step 6: Delay for time period equal to  half of sinusoidal cycle length for product type i. 
A Delay module was used for each product type. Arena® variables vPeakDuration(1) 
and vPeakDuration(2) were used to control this timing for product 1 and 2 respectively. 

Step 7: Set the LSi and OPi values equal to  and  (i.e. region Y values). Similar settings as 
described in step 4 were required to assign the appropriate LS and OP values.   

Step 8: Delay for time equal to  half of sinusoidal cycle length for product type i.
The Delay module was again used to implement this in the simulation model. 

Step 9: Set LSi and OPi values equal to  and  (i.e. region Z values) using the Assign 
module. vLotSizeArray (1,3) and vOrderPointArray(1,3) set the LS1 and OP1 values equal 
to  and  respectively. Similarly vLotSizeArray (2,3) and vOrderPointArray(2,3) 
set these values for product type 2. 

Step 10: Delay for time period equal to  half of sinusoidal cycle length for product type i. 

Step 11: Set LSi and OPi equal to  and  (i.e. region Y values). Similar settings as described 
in step 4 were required.   

Step 12: Delay for time period equal to  half of sinusoidal cycle length for product 
type i. 

Step 13: Repeat this logic for each seasonal cycle. 

4.2 Optimization model and procedure 

This section presents the formulation of the optimization problem with and without dynamic adjustment 
of the replenishment variables. Secondly, the optimization procedure using OptQuest® is described. 

4.2.1 Optimization model formulation 

The optimization problem for the static reorder point strategy, without dynamic adjustment of the reple-
nishment parameters, can be defined as follows: 

 
                                                         (2) 

 
 Subject to: 

  
  
  
LSi and OPi are integers 

 where, 
TI  - total inventory in the system 
WIPi  - work-in-process inventory for product type i 
FGi  - finished goods inventory for product type i 
ts - start of simulation data collection 
te - end of simulation data collection 
�i  - actual service level for product type i 
�p  - pre-defined, or target, service level 
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LSi - lot size for product type i 
OPi - order point for product type i 
L(LSi)  - lower search bound for lot size for product type i 
U(LSi)  - upper search bound for lot size for product type i 
L(OPi) - lower search bound for order point for product type i 
U(OPi) - upper search bound for order point for product type i 

  
 Equation (2) seeks to minimize the time-averaged inventory in the system across the two products 
types, i. This is done subject to meeting a customer delivery service level constraint, �p. In this research 
the service level, �, is defined as the proportion of customer orders filled immediately from finished 
goods inventory stock at the warehouse. This is often also referred to as the fill rate. Since the lot size 
(LSi) and reorder point (OPi) decision variables are integer, it is not be possible to obtain the target level 
constraint, �p, exactly. Therefore the actual service level observed, �i, will be slightly higher than the con-
straint.  
 Similarly, the optimization problem for the dynamic adjustment strategy, shown in Figure 1, was de-
fined using the following: 
 
     (3) 
 
Subject to: 

     
          

    
    

          
    
    
     
    
 
where LSi

X, LSi
Y and LSi

Z are the lot sizes and OPi
X, OPi

Y and OPi
Z are the reorder points for region X, Y 

and Z respectively. These decision variables, as well as the lower and upper bounds for the search, L( ) 
and U( ), are again integer values. TPi

offset and TPi
prtr are the decision variables defining where regions X, Y 

and Z start and end.

4.2.2 Optimization procedure in OptQuest® 

OptQuest® is a heuristic search procedure designed to find optimal parameters, or decision variables, 
with respect to a defined objective function. OptQuest® can be integrated with Arena® to perform simu-
lation optimization. Once the simulation model is created and the optimization problem is formulated, it is 
easy to perform simulation optimization. Key issues involved in setting up the optimization model are the 
selection of control parameters, the objective function and constraints. The procedure to set up the opti-
mization problem with dynamic adjustment is shown in Figure 4 and described below: 

Step 1: Set decision the variables, such as . vLotSi-
zeArray (...), vOrderPointArray (...), vOffsetToPeak(.), vPeakDuration(.). Figure 4 shows 
the variables under their OptQuest® control name.  
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Step 2: OptQuest® requires the specification of lower, suggested, and upper values for the variables 

that are to be optimized. These facilitate constraining the search space and making the search 
more efficient. Define the lower bounds, upper bounds, step of increment, lot size, and order 
points as integers. As well, the timing variables should be set to change in discrete steps. 

Step 3: Set the response variables, such as inventory and service levels. 

Step 4: Define the constraints such as:    

        and  

In Figure 4, SL1 and SL2 are the service levels for product 1 and 2 respectively.  

Step 5: Set the objective function, which is to minimize the total inventory. 

Step 6: Run the optimum-seeking simulation. Since the procedure is heuristic, the solution may not 
be optimal but should be near optimal. 

 
 

Figure 4: A snapshot of the optimization model setup in OptQuest® 

5 RESULTS AND DISCUSSION

This section first discusses the adjustment of optimal lot sizes and order points.  Further, the behavior of 
inventory levels with and without the dynamic adjustment of replenishment parameters are discussed. Fi-
nished goods, work-in-process and total inventory are examined. 
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5.1 Replenishment parameter adjustment 

The optimal reorder points and lot sizes, based on minimizing total inventory subject to a target service 
level of 85% deliveries from stock, were determined. The optimal reorder points without the dynamic ad-
justment were found to be 586 and 497 for product types 1 and 2, respectively. The optimal lot sizes were 
found to be 46 and 60 for product types 1 and 2, respectively. For the dynamic strategy, the decision va-
riables were reset four times during each demand cycle for each product. The optimal reorder points for 
product type 1 were found to be 605, 491 and 358 for the regions of high, transient and low demand re-
spectively. The following shows the order points and switching points. 
   

 
  
where t is the current simulation time in hours and is represented for one seasonal cycle of one year.  
 For product type 2 the optimal reorder points were 510, 473 and 440 for the regions of high, transient 
and low demand respectively. 
.  

 
 
 The optimal lot sizes for product type 1 were 55, 44 and 34 for the regions of high, transient and low 
demand respectively.  

 

 
 
 The optimal lot sizes for product type 2 were 50, 34 and 36 for the regions of high, transient and low 
demand respectively.  

 

 
 
 The high, transient and low regions for product type 1 correspond to regions X, Y and Z respectively 
in Figure 1. Similarly, the high, transient and low regions for product type 2 correspond to regions Z, Y 
and X respectively. The optimal switching parameters for the dynamic adjustment, TP1

offset and TP2
offset, 

were both found to be 0.09 proportion of a half cycle.  Similarly, TP1
prtr and TP2

prtr, were both found to be 
0.80 proportion of a half cycle. This means the proportion of the full demand cycle covered by regions X 
and Z were each 0.40, while the two transient regions, Y, were each 0.10 of a full cycle. 

5.2 Analysis of Inventory with and without dynamic adjustment 

This section presents the analysis of total inventory, finished goods and work-in-process inventory with 
and without the dynamic adjustment of the replenishment parameters. The values of work-in-process in-
ventory, finished goods inventory and total inventory were collected for two complete seasonal cycles at 
intervals of 10 hours. This resulted in 1761observations for each measure. These observations were then 
plotted as a 10-period moving average to smooth out fluctuations and more clearly present the perfor-
mance measure trends. The left hand axis in the following figures provides reference for the inventory 
counts of each product type. These figures also show the mean demand rate, referenced on the right-hand 
axis, as a smooth solid line. 
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Figures 5 (a) and (b) show the behavior of finished goods inventory without and with dynamic ad-

justment of replenishment parameters. The finished goods inventory fluctuates with a pattern opposite to 
demand since inventories will be drawn down in periods of high demand. It is observed that the finished 
goods inventory becomes more stable through time with dynamic adjustment. The average finished goods 
inventory also decreased drastically. As well, it is observed that the reduction in finished goods inventory 
is greater for the highly seasonal product.  

 

10

15

20

25

30

0

50

100

150

200

250

300

350

400

26 28 30 32 34 36 38 40 42 44

D
em

an
d

Fi
ni

sh
ed

 G
oo

ds
 In

ve
nt

or
y

Simulation Time ('000)
10 per. Mov. Avg. (FGI Product 1) 10 per. Mov. Avg. (FGI Product 2)
2 per. Mov. Avg. (Demand Product 1) 2 per. Mov. Avg. (Demand Product 2)  

10

15

20

25

30

0

50

100

150

200

250

300

350

400

26 28 30 32 34 36 38 40 42 44

D
em

an
d

Fi
ni

sh
ed

 G
oo

ds
 In

ve
nt

or
y

Simulation Time ('000)

10 per. Mov. Avg. (FGI Product 1) 10 per. Mov. Avg. (FGI Product 2)
2 per. Mov. Avg. (Demand Product 1) 2 per. Mov. Avg. (Demand Product 2)  

(a) Without dynamic adjustment (b) With dynamic adjustment 

Figure 5: Behavior of finished goods inventory 

Figures 6 (a) and (b) show the behavior of work-in-process inventory without and with dynamic ad-
justment of replenishment parameters. Work-in-process inventory was defined to include orders in transit 
or at the capacity-constrained resource. These graphs indicate that the work-in-process inventory fluc-
tuated quite consistently with the demand. In other words, the patterns are similar and there was little ef-
fect of dynamic adjustment on work-in-process inventory. 
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Figure 6: Behavior of work-in-process inventory 

The behavior of the total inventory levels is shown Figures 7 (a) and (b). The net result of summing 
the finished goods and work-in-process inventory is that total inventory fluctuates in a pattern opposite to 
the demand. In other words, the total inventory for each product type tends to be lowest at high demand. 

The optimal decision variables were also run for 5 independent replications in a separate simulation 
experiment to validate performance. Table 1 summarizes the finished goods inventory (FGI) perfor-
mance, including the standard deviations (SD) and confidence interval half-widths (HW). Table 2 summa-
rizes the total inventory (TI) performance. As well, the actual service levels were checked to confirm they 
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matched the target levels used during simulation-optimization. The observed 95% confidence intervals 
across the five replication were found to 85.18±0.14 and 85.06±0.15 with and without dynamic adjust-
ment, respectively. These values are very close to the 85% target level. 
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Figure 7: Behavior of total inventory 

Table 1: Finished goods inventory statistics 

  
Without Dynamic Adjustment With Dynamic Adjustment 

FGI product 1 FGI Product 2 Total FGI FGI Product 1 FGI Product 2 Total FGI 
Average 183.52 99.38 282.91 78.87 69.78 148.65 
SD 0.20 0.14 0.29 0.29 0.16 0.40 
HW ± 0.50 ± 0.35 ± 0.71 ± 0.71 ± 0.39 ± 1.00 
Minimum 183.24 99.26 282.55 78.57 69.64 148.35 
Maximum 183.74 99.57 283.16 79.31 70.03 149.34 

Table 2: Total inventory statistics 

  

Without Dynamic Adjustment With Dynamic Adjustment 
Total Inventory 

Product 1 
Total Inventory 

Product 2 
Total 

Inventory 
Total Inventory 

Product 1 
Total Inventory 

Product 2 
Total 

Inventory 
Average 414.66 332.40 747.06 310.83 299.87 610.69 
SD 0.15 0.16 0.29 0.08 0.09 0.06 
HW ± 0.37 ± 0.40 ± 0.73 ± 0.20 ± 0.24 ± 0.16 
Minimum 414.44 332.21 746.65 310.72 299.75 610.60 
Maximum 414.81 332.64 747.42 310.92 299.97 610.76 

6 CONCLUSIONS 

This paper has demonstrated the application of discrete-event simulation for the dynamic adjustment of 
replenishment parameters under a seasonal demand pattern. Re-optimization in different seasonal demand 
regions with the use of a heuristic-based optimization engine. 

The results show it is advantageous to adjust and re-optimize replenishment parameters, such as 
reorder points and lot sizes, for different regions in a seasonal demand cycle. It was found that the dynam-
ic adjustment resulted in reductions in total inventory and finished goods inventory of 18.3% and 47.5% 
respectively. The dynamic adjustment also leads to more stable inventory levels through time.  

This approach could also be applied for other replenishment strategies, such as a Kanban strategy. As 
well, it could be generalized to handle different kinds of seasonal patterns. 
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