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ABSTRACT

In this paper, we consider the problem of minimizing the operational costs of systems with Skills-Based-Routing (SBR). In
such systems, customers of multiple classes are routed to servers of multiple skills. In the settings we consider, each server
skill is associated with a corresponding cost, and service level can either appear as a strong constraint or incur a cost.
The solution we propose is based on the Stochastic Approximation (SA) approach. Since SBR models are analytically
intractable in general, we use computer simulation to evaluate service-level measures. Under the assumption of convexity
of the service-level as functions in staffing levels, SA provides an analytical proof of convergence, together with a rate of
convergence. We show, via numerical examples, that although the convexity assumption does not hold for all cases and all
types of service-level objectives, the algorithm nevertheless identifies the optimal solution.

1 INTRODUCTION

This paper is motivated mainly by Telephone Call Centers, where the term SBR is originating from. The SBR framework,
however, arises in other contexts of service systems, for example technical support providers, banking systems, health-care
etc. In these settings, heterogenous customers are routed to appropriately skilled server according to some custom routing
policy.
Call centers, and service systems in general, give rise to many operational problems. A central example is the Staffing
Problem: under an existing operational reality, finding the minimal-cost staffing levels that is required to meet some given
Quality of Service (QoS) constraints. This problem has received a great deal of attention over the years, as it rightly deserves:
staffing costs are estimated at about 70% of a call center’s operational costs. Staffing ”wisely” can thus result in substantial
savings while achieving operational objectives.
We define two different optimization formulations. In one, we find the minimal cost staffing levels whereas service level
appears as a hard constraint that must be satisfied. In the other formulation, service levels incur costs; we thus try to identify
the staffing levels that minimize the total operational costs.
Due to model complexities, there exists only limited amount of analytical results for very special cases of SBR designs. Some
of these works include Gurvich, Armony, and Mandelbaum (2008) and Armony and Mandelbaum (2004) who identify an
asymptotical optimal routing and staffing schemes for the

∨
-design and the inverted-

∨
design respectively. In the

∨
-design,

there are several customer classes and all servers are statistically identical, whereas in the inverted-
∨

design (also denoted∧
-design), there is a single customer class and several server skills. Gurvich and Whitt (see Gurvich and Whitt 2010 and

Gurvich and Whitt 2008), propose a family of Routing controls called Queue-Idleness-Ratio (QIR) rules which, under some
regularity conditions on the network structure, facilitates the establishment of a solution to the joint problem of design,
staffing and routing in a nearly optimal manner.
Another approach is to use simplifying analytical models to propose an initial intelligent solution, then apply simulation in
order to validate and refine this solution (cf. Wallace and Whitt 2005). Although this approach is generally heuristic, it
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typically produces good results for a broad range of problems, and in some cases it even provides important insights.
In this paper, we use simulation to evaluate service levels. The main advantage of using simulation is its ability to accommodate
complex models that capture reality far better than simplifying analytical models. Complicated features such as time-varying
rates, general distributions and even uncertainty of the parameters value can be integrated into the simulation fairly easily.
On the other hand, simulation by itself does not provide any closed-form expression nor a prescription to identify the optimal
solution as can be often derived directly by analytical models. However, simulation is an integral part of a certain class of
stochastic optimization computational approach which is based on Monte-Carlo sampling techniques.
The most common approach based on Monte-Carlo sampling techniques is the Sample Average Approximation (SAA). SAA
approximates the original stochastic problem by a sample average problem, in which the ”true” function is replaced with a
sample average function. The obtained SAA problem, however, still has to be solved by an appropriate numerical method.
The SAA was used in many contexts under different names, and specifically in the context of Call Centers staffing. Atlason,
Epelman, and Henderson (2004) present a simulation-based analytic center cutting plane method to solve a sample average
approximation of the problem of minimizing staffing costs in an inbound call center, while maintaining desirable service
level in multiple time periods. A similar approach is taken in Cezik and L’ecuyer (2008) for minimizing the staffing costs of
a multiskill call center. Namely, Cezik and L’ecuyer (2008) uses an iterative cutting-plane algorithm on an integer program,
with additional heuristics to overcome numerical difficulties.
We use an alternative approach called the Stochastic Approximation (SA). SA goes back to the pioneering paper by Robbins
and Monro 1951, and has been significantly improved and modified by various works. Some of the important contributions
appear in Polyak and Juditsky 1992 and a recent work by Juditsky et al. 2008. Unlike SAA, SA does not attempt to provide
statistically significant estimations for the inspected solutions, rather it uses noisy estimation to iterate between solutions
according to subgradient descent methods. The convergence to global optima thus depends on the convexity of the stochastic
function. Similarly to Atlason, Epelman, and Henderson (2004) and Cezik and L’ecuyer (2008), we make the assumption
that the service level functions that we consider are convex in the staffing levels.
Although combined with a good algorithm, SAA was traditionally considered to produce superior performance over the SA
method, it was demonstrated in Juditsky et al. 2008 that their modified SA approach can be competitive and even significantly
outperform the SAA for a certain class of stochastic problems.
The rest of this paper is organized as follows. In §2 we introduce our model for an SBR service system and formulate
corresponding optimal staffing problems. We also describe in general the SA approach with some modified and improved
procedures that we use in our algorithms. We describe in details our proposed SA-based solution in §3, presenting our
algorithms and sub-routines. We also provide a proof of convergence stemming from Stochastic Approximation theory. In
§4 we describe a numerical study and demonstrate the accuracy of our algorithm in various settings of SBR systems and
routing controls and also in time-varying environments. Our experiments show that the convexity assumption is applicable
in many cases and, more importantly, even when the convexity assumption is refuted, our algorithms still provide optimal
solutions.
Finally, §5 concludes this paper and propose future work.

2 PROBLEM FORMULATION

The model we consider, in its most general form is described as follows: there is a finite I of customer classes, and a finite
set J of server pools (stations). We denote the cardinality of the sets I and J by I and J, respectively. Customers of
class i ∈I arrive according to a Poisson process with rate λi (note that in the time-varying context λi may be a function of
time), and the time they are willing to wait before abandoning is taken from a distribution DP

i (the superscript P stands for
Patience). Servers of pool j ∈J process customers of class i ∈I according to a service duration from distribution DS

i, j
(the superscript S stands for Service). Moreover, each pool of servers is associated with a cost such that the staffing cost
per time unit of a server from pool j ∈J is c j.
We consider two optimization problems: a Cost Optimization Problem and a Constraint Satisfaction Problem.
The Cost Optimization Problem is formulated as follows:

min
N

cT N +
K

∑
k=1

f k(N)

s.t. AT N ≤ b

N ∈ ZJ
+

(1)
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Here f k(N) are service-level related average cost functions, where cost is measured per unit of time. For instance,
f k(N) = cab

k λkPN {abk} is the average cost of abandonments per unit of time, in case each abandonment of class k customer
incurs a cost of cab

k . Another example for such a function may be f k(N) = λkEN
{

cW
k (Wk)

}
, which is the expected cost of

waiting time per time unit, given a cost function cW
k for the waiting-time-in-queue of class k customers.

In the Constraint Satisfaction Problem, one is interested in solving

min
N

cT N

s.t. f k(N)≤ αk ∀k = 1, . . . ,K

AT N ≤ b

N ∈ ZJ
+

. (2)

Here f k(N) denotes a Service Level Objective associated with a specific performance measure and class of customers. The
most common objective takes the form ”no more than 20% of type i customers are to wait more than 20 seconds” which can
be expressed mathematically by P{Wi > 20sec} ≤ 0.2. Other typical constraints include performance measures such as the
probability of abandonment (P{Abandon}) or average wait (E

{
Wq
}

). An important performance measure, rarely tracked,
is the delay probability (P

{
Wq > 0

}
).

In both problem formulations (1) and (2), we are allowing additional linear constraints on the staffing levels. These constraints
arise from operational issues such as servers’ availability, training considerations etc. For instance, if there are only 50
expert servers, one should incorporate the simple constraint Nexpert ≤ 50. The requirement that at least 10% out of the
entire workforce should be trainees is translated into the linear constraint Ntrainee ≥ 0.1(Ntrainee +Nexpert), and so on. More
importantly, we use these linear constraints to introduce Stability Conditions: in a multi-class, multi-pool system, this is the
set of necessary conditions for stabilizing the system, i.e. none of the queues explodes in the long run. The contribution
of these constraints is two-fold: first, the search space is reduced and thus convergence is faster; second, the service level
functions, reduced to the restricted region, are more likely to be convex and thus the validity of the algorithm is guaranteed.
Indeed, if we look at a single-class single-pool queue (G/G/N), then service level measurements such as the delay probability
are convex on the set N ≥ R , λ

µ
, but not on ZJ

+. Namely, the delay probability is essentially 1 for all staffing levels that
are smaller than the offered load R, and start decreasing in a convex manner from that point and on. In our multi-class,
multi-pool situation, we expect to have the same behavior component-wise, i.e. if we examine the staffing levels in each
pool while fixing the staffing in all others, the delay probability of a certain class will equal to one for any staffing levels
that falls out of the ”stability” region, and decrease monotonically when increasing the staffing in the specific pool in the
”stability” region.

The main difficulty of solving (1) and (2) is the intractability of the functions f k. Indeed, only for a scanty set of relatively
simple models, with a specific design and control, few objective functions similar to the ones described above can be
calculated either analytically, numerically or asymptotically. One is then led naturally to resort to simulation.

The solution we propose is based on a Stochastic Optimization approach called Stochastic Approximation (SA). We give a
general outline of this approach and demonstrate its application to our problem in the following section.

3 STOCHASTIC APPROXIMATION

The Stochastic Approximation (SA) approach uses Monte-Carlo sampling techniques to solve optimization problems of the
form

min
x∈X
{ f (x) := E{F (x,ξ )}} , (3)

where X ⊂Rn is a non-empty bounded closed convex set, ξ is a random vector whose probability distribution P is supported
on a set Ξ ⊂ Rd , and F : X ×Ξ→ R. It is further assumed that, for every ξ ∈ Ξ, the function F (·,ξ ) is convex and that,
for every x ∈ X , the function F (x, ·) is integrable with respect to P.
A recent work by Juditsky et al. 2008 extended this framework to solve also problems that take the form

min
x∈X

max
k=1,...,K

{
f k (x) := E

{
Fk (x,ξ )

}}
. (4)
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SA makes the following assumptions:

Assumption 1. There is a way of generating iid samples ξ1,ξ2, . . . of the random vector ξ .

Assumption 2. There is an Oracle at our disposal that, for any ξ ∈ Ξ and x ∈ X, returns the value of F (x,ξ ) and a
stochastic sub-gradient - a vector G(x,ξ ) such that g(x) := E{G(x,ξ )} is well defined and is a sub-gradient of f (·) at x,
i.e. f (y)≥ f (x)+gT (x)(y− x) ,∀y ∈ X (g(x) ∈ ∂ f (x)).

Before presenting our SA-based optimization algorithms, let us first establish the connection between the objective
functions in (3) and (4) considered by the SA and the service level functions f k(N) from our optimization problems (1) and
(2).
Denote by (Ω,F ,P) the probability space formed by the distributions of arrival times, service times and patience. For some SL
types, the expectation form arises quite naturally. For instance, if we look at SL functions of the form f (N) = E [#Abandons],
i.e. the expected number of abandonments, over a given optimization horizon and staffing levels N ∈Rn, then we fall exactly
into the domain of SA. Namely, define F : RJ ×Ω→ R such that F (N,ω) is a random variable denoting the number of
abandonments, given a possible outcome ω and staffing levels N ∈ ZJ

+. We can write

f (N) :=
∫

Ω

F (N,ω)dP(ω) , (5)

which is equivalent to f (x) := E [F (x,ξ )] in (3): in (3) the random variable F (x,ω) is defined with an intermediate random
vector ξ , where in our case it is imbedded in the probability space (Ω,F ,P).
In other cases, however, we may need to perform additional steps before using SA. For example, when using simulation,
the conventional way to represent the SL function P

{
Wq > 0

}
is by the following ratio:

PN
{

Wq > 0
}

=
∫

Ω
D(N,ω)dP(ω)∫
Ω

A(ω)dP(ω)
; (6)

here D(N,ω) denotes the number of delayed customers and A(ω) denotes the total number of arrivals, over a given
time-horizon.
Fortunately, the expectation in the denominator of (6) is independent of the staffing levels N. We can thus accommodate such
SL functions as follows: In Cost Optimization, f appears in the objective function. Since the denominator is independent
of the decision variables N, we can ignore it completely as it has no affect over the solution. In this case we just set
F (N,ω) := D(N,ω).
In the Constraint Satisfaction, the SL functions appear as constraints, e.g.

P{W > 0} ≤ α (7)

In this case, we translate (7) into

E [D(N, ·)]≤ αE [A(·)] , (8)

where E [A(·)] can be calculated in advance, and therefore the right-hand-side of (8) is constant.

We use computer simulation to both generate iid sample ω1,ω2, . . . from Ω, and calculate the values of Fk (N,ω) for
any N ∈RJ

+ and ω ∈Ω that arise along the steps of the algorithms. An important point to be made here is that, in practice,
we are required to evaluate the functions Fk (N,ω) for non-integral values of N, even though N is discrete in our case (there
is no such thing as a fraction of a server). In this case, we round the point N to the nearest integral point and plug it into
the simulation to obtain the required value.
Similarly to (Atlason, Epelman, and Henderson 2004), we evaluate the stochastic sub-gradient Gk (N,ω) by taking finite
differences of length 1 as follows: {

Gk (N,ω)
}

i
:= Fk (N + ei,ω)−Fk (N,ω) . (9)
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Here, ei denotes a vector of the same dimension as N, in which all entries are zeros except for the i’th component which
equals to one.
There are several optional ways of producing sub-gradients, such as infinitesimal perturbation analysis (cf. Ho and Cao
1983) and likelihood ratio gradient estimation (cf. Glynn 1987). In fact, the finite differences method does not guarantee to
yield a sub-gradient. Examples in which this method fails are easy to find. Nevertheless, finite differences still appear as a
reasonable method and our numerical studies demonstrate that the method could yield optimal solutions.

3.1 Cost Optimization

We apply the Robust SA algorithm in a straightforward manner to solve the Cost Optimization Problem.
The Robust SA algorithm solves (3) by mimicking a simple gradient descent method and consequently averaging the obtained
iterates (cf. Polyak and Juditsky 1992, Juditsky et al. 2008). More specifically, given a step size γ and the number of
iterations T , the Robust SA algorithm may be defined by the following iterative step:

x j+1 := ΠX (x j− γG(x j,ξ j)) , j = 1,2, . . . , (10)

and it produces x̂T as a final solution:

x̂T :=
1
T

T

∑
t=1

xt , (11)

where ΠX (x) is the metric projection operator onto the set X , that is ΠX (x) := argminx′∈X ||x′ −x||. We will use this notation
throughout this paper.
A few preliminary calculations are required in order to provide the step size γ and the number of iteration T , which guarantee
a desirable accuracy of the solution.
These include, among other quantities, to calculate the bound M2

∗ := supx∈X E
{
||G(x, ·) ||22

}
, where G is the sub-gradient of

the objective function, composed of the service cost vector and the summation of sub-gradients of the SL cost functions.
Formally, G(x,ω) := c+∑

K
k=1 Gk (x,ω). In most cases, finding a bound to the subgradient Gk is not a difficult task. Such

bounds could be obtained, for instance, using simple queueing models or simulation.
We define the search space X =

{
x : AT x≤ b

}
. For practical considerations, we further reduce X by intersecting it with

the J-dimensional cube C =
{

x : 0≤ x j ≤ xb
j , ∀ j = 1, . . . ,J

}
. Here, xb

j is the required number of agents in pool j that
guarantees a perfect service experience (delay probability of all the customer classes that are served by this pool is essentially
0), given that all customers that could are served by this pool only. We compute the value of xb

j by finding the minimal
staffing level in a corresponding Erlang model for which the delay probability is 0 (practically, smaller than some small
threshold) with the cumulative arrival rate λ = ∑i∈I( j) λi and service rate µ = 1

λ
∑i∈I( j)

λi
µ ji

; I ( j) denotes the set of classes
that are served by pool j. It is easy to see that any solution that is not in C is dominated in terms of cost by some solution
in C . Note that the additional constraints imposed by C are useful in reducing the search space, which eventually decreases
the number of required iterations.

Algorithm: Cost Optimization(δ ,ε)

Initialization: Calculate γ , T and xb according to 3.1. Set i := 1; xi := ΠX
( 1

2 xb
)

Step 1 Run simulation to generate ωi and obtain the value Gk (xi,ωi) ∀k = 1, . . . ,K;

Step 2 Set G(xi,ωi) := c+∑
K
k=1 Gk (xi,ωi), xi+1 := ΠX (xi− γG(xi,ωi));

Step 3 If i≥ T return the solution x̂T := 1
T ∑

T
t=1 xt ;

Step 4 Set i := i+1. Go to Step 1;

Figure 1: Cost Optimization Algorithm

The Cost Optimization algorithm is displayed in Figure 1.
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Theorem 1. Upon termination of the Cost Optimization Algorithm at point x̂T , with step-size γ , we achieve

P{ f (x̂T )− f (x̄)≥ δ} ≤ ε, (12)

where f is the objective function in the Cost Optimization Problem (1), and x̄ is a minimizer of f .

Proof. It follows from (2.19) in Juditsky et al. 2008 that E{ f (x̂T )− f (x̄)} ≤ εδ . Then (12) is immediate by the Markov
inequality.

3.1.1 Constraints Satisfaction

The Constraint Satisfaction Problem appears to be more complicated in the sense that it does not fit the form of the optimization
problem (3). Namely the functions f k (x) appear as constraints rather than objective functions. To this end, we start first
with solving the following Minimax Problem

min
x∈XC

max
k=1,...K

{
f k (x)−αk

}
, (13)

where XC :=
{

x ∈ X : cT x = C
}

. Suppose that solving (13) yields some solution x̂. We shall then be able to identify, with the
help of some additional validation mechanism, if x̂ satisfies the constraints in (2). Namely, there is some feasible solution x
that incurs a cost of C monitory units, if and only if max

k=1,...,K

{
f k (x̂)−αk

}
≤ 0. We then search for the minimal cost C for

which a feasible solution exists, in a binary search fashion; the above procedure of solving (13) and validating the solution
feasibility is used to either return the feasible solution or determine that one does not exist.
Our validation mechanism is again based on simulation. We generate the least number of samples for which the calculated
confidence intervals with confidence level α either indicate that there is some constraint that is broken or that all constraints
are met with accuracy δ .
We apply the Saddle Point Mirror Descent SA that is proposed in Juditsky et al. 2008 to solve (13). Similarly to the Robust
SA, in order to guarantee desired accuracy δ with confidence level ε , the step size γ and number of iterations T is calculated
based on the problem parameters. We denote by SaddleSA(C,δ ,ε) the procedure that solves (13) with cost C, accuracy δ

and confidence level ε .
Next, we define the range of the cost in which we perform the binary search.
For this purpose, we calculate an upper bound for the optimal cost. Since we cannot assume anything regarding the routing
scheme, we consider the case where each class of customers i is routed to pool j which maximizes the cost of the required
staffing level Ni j for meeting the SL constraint. We can compute the required staffing levels for typical SL functions using
a simple stationary queueing system (such as Erlang-C, or Erlang-A). For other SL functions that cannot be computed in
this way, we replace with the constraint P{W > 0} = 0 (practically, smaller than some threshold) which is the strongest
constraint possible in the sense that satisfying the constraint P{W > 0}= 0 implies satisfying any other SL constraint. Let

xi j =
{

Ni j, j ∈ argmaxk ckNik;
0, otherwise.

and let x j = ∑
I
i=1 xi j. Then our upper bound is given by Cmax = cT x.

Finally, the Constraints Satisfaction Algorithm is displayed in Figure 2.

Theorem 2. Following the constraint Satisfaction procedure, with accuracy of δ , cost accuracy δC and confidence level ε

in the sub-procedures Feasible and MirrorSaddleSA, we achieve the following:

1. Feasibility: P
{

max
k=1,...,K

(
f k (x̂)−αk

)
> δ

}
≤ 1− (1− ε)

dlog Cmax
δC
e

2. Optimality: P
{

cT x̂− c∗ > δC
}
≤ 1− (1−2ε)

dlog Cmax
δC
e
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Algorithm: Feasible(x,δ ,ε)
Input: solution x, accuracy δ , confidence level ε

Initialization: For each k = 1, . . . ,K, set the confidence interval [lbk,rbk] = [0,1]

Step 1 Generate n samples

Step 2 Calculate the confidence interval [lbk,rbk] based on all samples

Step 3 If ubk ≤ αk +δ ∀k = 1, . . . ,K return ’True’

Step 4 If ∃k s.t. lbk ≥ αk +δ return ’False’

Step 5 Go to Step 1

Algorithm: Constraints Satisfaction(δ ,δC,ε)
Input: feasibility accuracy δ , cost accuracy δC, confidence level ε

Initialization: dC := Cmax, x∗ := x;

Step 1 if dC ≤ δC return the solution x∗;

Step 2 dC := dC/2;

Step 3 if Feasible(x,δ ,ε) returns ’True’ then set x∗ := x, C := C−dC, x := x C
(C+dC) .

Go to Step 1;

Step 4 x := SaddleSA(C,δ ,ε);

Step 5 if Feasible(x,δ ,ε) returns ’True’ then Set x∗ := x, C := C−dC, x := x C
(C+dC)

Go to Step 1;

Step 6 C := C +dC, x := x C
(C−dC) . Go to Step 1;

Figure 2: Constraint Satisfaction Algorithm

Proof. First, note that the CS algorithm terminates after exactly dlog Cmax
δC
e iterations. Denote by x̂(i) the solution

obtained by the i-th iteration. Furthermore, we say that a cost C is feasible if there exists a δ -feasible solution x̂, that is
maxk=1,...,K f k (x̂)−αk < δ and cT x̂ = C. Then,

1. The probability that Feasible
(
x̂(i)
)

returns the answer ’True’ given that x̂(i) is not feasible is bounded by ε . Hence,
the probability that the final solution x̂ is not feasible is bounded by the probability that in at least one iteration i
of the algorithm, the sub-procedure Feasible wrongly declared x̂(i) as feasible. Since there are logCmax iterations,
we deduce the result.

2. There are two events by which the algorithm will fail to identify a feasible solution, even though such one exists:
Event A: The sub-procedure SaddleSA fails to find a δ -optimal solution. The probability of this event is bounded
by ε

Event B: SaddleSA successfully finds aa δ -optimal solution which is wrongly denied by the sub-procedure Feaisble.
The probability of this even is bounded by ε (1− ε)
The probability that at some iteration i with a feasible cost Ci, the algorithm will fail to identify a feasible solution
is thus bounded by 2ε− ε2 < 2ε . In the worst case, the cost will be feasible at all iterations and hence the result.

4 NUMERICAL EXPERIMENTS

In this section we describe our numerical study. We provide some results from our experiments and describe them in general
outlines. For full details and comprehensive analysis, the reader is kindly referred to <Zohar Dissertation>. We have
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tested our algorithms on various systems. We have experimented with different kinds of designs including the V-model -
a model with two types of customers and one type of agents, the N-model - a model with two types of customers and
two types of agents, one type can serve both types of customers and one is dedicated for one type of customers, and the
M-model - a model with two types of customers and three types of agents, one type can serve all types of customers and
the other two types are dedicated each to a different type of customers. We have also considered several types of routing
policies. Specifically, we considered the Static Priority (SP), the Threshold Priority (TP) and the Fixed-Queue-Ratio (FQR).
According to SP, each type of customer has a prioritization over the servers types, and each type of server has a prioritization
over the types of customers. Arriving customers are routed to an available server with the highest priority; when becoming
available, a server will admit the earliest arriving customer of the highest priority type. TP is similar to SP with the additional
constraint that a customer of type i can be admitted to service only if the number of idle servers exceeds some threshold τi.
FQR is used to maintain (pre-defined) fixed ratios between the queues length of all the types of customers, and fixed ratios
between the number of idle servers of each type. We have also experimented with different types of service distributions
DS, patience distribution DP and various types of service level objectives.
The first part of our study concentrated on stationary models. We used simulation in order to reconstruct the functional
objectives and constrains f k (N) from our problems (1) and (2). We used this for two purposes: first, it allowed us to check
the correctness of the assumption about convexity, and second, it was used in order to identify the (approximated) optimal
solution and objective which consequently provided a solid ground for validating our results. In some cases, the service
level function seemed to be convex. It was then evident that our algorithms converged to the true optimal solution or very
close to it. In some other cases, however, not all the service levels were convex on the entire search space. In these cases,
we defined additional linear constraints stemming from stabilization consideration, i.e. necessary conditions for the system
to stabilize and not explode at the long run. This limited the search to a region on which all the service levels are very likely
to be convex. Indeed, we were successful in attaining optimal or close-to-optimal solutions.
Tables 1 and 2 summarize some of our experiments results. In this tables we used µ = (µ11, . . . ,µ1I ,µ21 . . .µJI) to denote
the vector of service rates, i.e. the inverse of the average service times. µ ji corresponds to the service rate by which agents
from type j serve customers from class i. For the Log-Normal distribution, we used a standard deviation σ = 1

µ
, i.e. same

coefficient of variation as the exponential distribution; In the same way we used θ to denote the vector of abandonment rate
when it was relevant, SL denotes the type of service level that appear either in the objective function or in the constraints,
depending on the formulation of the problem. In the former, we denote by cS the vector of cost coefficients of the service
levels in objective function, and in the latter we specify the constraints bounds by α . The staffing cost vector is denoted by
cN . At the bottom section, we describe the results: We present the solution obtained by our algorithm N̂, the true optimal
solution N∗ as derived by simulation, and the difference between the objective function value of N̂ and N∗, f̂ − f ∗.

Table 1: Cost Optimization Results

Examples
1 2

Model N N
DS exp exp
DP - exp

Routing SP SP
µ (1,0,1.5,2) (1,0,1.5,2)
θ - (1,1)

SL E [W ] P{ab}
cN (1,2) (1,2)
cS (20,10) (300,200)

N̂ (80,54) (98,58)
N∗ (88,47) (102,56)

f̂ − f ∗ 1.97 1.1
f̂− f ∗

f ∗ 0.01 0.005
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Table 2: Constraints Satisfaction Results

Examples
1 2 3 4 5 6

Model V N N N N M
DS exp exp exp logn exp exp
DP - - - - exp -

Routing TP SP FQR SP SP SP
µ (1.5,2) (1,0,1.5,2) (1,0,1.5,2) (1,0,1.5,2) (1,0,1.5,2) (1,0,1.5,2,0,2.5)
θ - - - - (1,1) -

SL P{W > 0} P{W > 0} P{W > t} P{W > 0} P{ab} P{W > 0}
cN (1,1) (1,2) (1,2) (1,2) (1,2) (1,2,2)
α (0.2,0.5) (0.2,0.5) (0.2,0.2) (0.2,0.5) (0.05,0.1) (0.2,0.5)

N̂ 172 (83,68) (91,60) (92,62) (79,63) (105,37,9)
N∗ 172 (85,67) (92,59) (92,62) (80,60) (105,39,7)

f̂ − f ∗ 0 0 1 0 3 0
f̂− f ∗

f ∗ 0 0 0.0046 0 0.0146 0

The probably more interesting cases, practically speaking, are systems in which arrival rates vary with time. Consequently,
staffing levels must also be allowed to change with time in order to meet with the timely constraints or align with the timely
cost optimization.
In the most general case, we seek to optimize a system on a given time horizon, which may differ from Service Level
interval (the time basis on which the Service Levels are measured) and from the planning period (the shortest amount
of time over which staffing must remain constant). For instance, we may wish to optimize the staffing levels during a
whole week, satisfying daily service level constraints, and considering hourly planning period. We are dealing with this
situation as follows. We simulate sample paths over the entire time horizon and gather the relevant statistics aggregated
by the Service Levels intervals. This enables us to differentiate the Service Level with respect to the staffing level in each
pool, on each planning period. We will thus have to make the assumption that the service level functions are convex in the
J×T -dimensional staffing vector, where J is the number of pools and T is the number of planning periods. To facilitate,
following the example from above, in each iteration of our algorithm, we run a simulation over the entire week and gather
the relevant statistics aggregated by day. For each daily Service Level, we estimate the gradient by increasing the staffing
levels of each pool in each hour of the week and measure the Finite Differences.
It may be also possible to consider decomposing the problem into smaller independent problems. This can be achieved by
first dividing the time horizon into intervals of the same length of the Service Level intervals, and then treat the global
optimization problem as several smaller independent problems that are solved sequentially, interval by interval. The state at
the end of each interval is taken as the state at the beginning of the consecutive interval. This approach could potentially
accelerate the computations without compromising much on global optimality. We applied this approach to realistic example.
In this example, we took data of a random day from a real medium-size Call Center, providing different types of banking
services. We focused on two types of calls: calls coming from Business customers and Quick Request calls. The arrival
rates of both types of incoming calls seem very typical to a standard call center (see Figure 3). Furthermore, we fitted a
distribution for the service times, assuming that service times are dependent of the type of customer, but do not depend on
the server taking the call. The log-normal seemed like the best fit. We also fitted a distribution for the patience of customers,
i.e. the time they are willing to wait for service before they abandon the call. In this case, the patience of both customer
types fitted to the exponential distribution. There are two types of servers in this system. One type is catering to both
customer types, while the other is dedicated only to Business customers, and their cost are similar. Based on this setting,
we have compared between two optimization problem. In both problems, we took a planning period of one hour (i.e. we
allowed the staffing to change on at each hour of the day). In the first case, we demanded that not more than 10 percents
of Business customer and not more than 50 percents of Quick Request customers will have to be delayed on any hour (i.e.
hourly service-level interval). In the second case, we relaxed the service level constraint to be measured on daily basis (daily
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Figure 3: Call Volumes to a Medium-Size Call-Center

service-level interval). Results revealed that in the second case, our algorithm found a solution with a corresponding cost
that was 11% lower than the cost obtained in the first case. However, in this case, while the service levels were very good
during rush hour (8:00 am until 17:00 pm), essentially all the customers that arrived outside of these hours delayed and
encountered a bad service experience (average wait is several minutes). Smaller difference were detected when we tried to
satisfy constraints on the probability to abandon both hourly and daily.

5 CONCLUSIONS

In this work we developed simulation-based algorithms for identifying optimal staffing of systems with skills-based-routing,
given the routing scheme. An interactive version of our SBR simulator will be installed on <SEElab Server>. These
algorithms can be used for very general settings, including time-varying models and general distributions, to either optimize
service levels and labor costs or optimize labor costs while satisfying some desirable Service Level constraints.
The algorithms were proven to work very well, and in most cases attained the optimal solution even when the service levels
were not convex in the staffing levels. However, in few other cases, the non-convexity nature of the service levels caused
the algorithms to converge to sub-optimal solution. Although this can be controlled by applying simple procedures, it is
interesting to try to find alternative algorithms that do not rely on convexity, and might even work faster.
While our solution can be very practical for many applications, it lacks the ability to incorporate labor scheduling constraints
and thus can not be used to provide an optimal scheduling solution.
One important future direction is to develop algorithms, or combine the ones that are introduced in this work, with a
scheduling mechanism which is traditionally carried out by some mathematical programming solver.
Another potential direction is to provide optimal solution for more complex systems with complex processes, such as Service
Networks, Petri Nets etc. This will probably require more sophisticated algorithms.
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