
MAS Coursework Design in NetLogo

Ilias Sakellariou
University of Macedonia

Dept. of Applied Informatics
156 Egnatia str, Thessaloniki

54006, Greece
iliass@uom.gr

Petros Kefalas
CITY College

International Faculty
of the University of Sheffield
Dept. of Computer Science
13 Tsimiski str, Thessaloniki

54624, Greece
kefalas@city.academic.gr

Ioanna Stamatopoulou
CITY College

International Faculty
of the University of Sheffield
Dept. of Computer Science
13 Tsimiski str, Thessaloniki

54624, Greece
istamatopoulou@seerc.org

ABSTRACT
In the context of an Intelligent Agents course, we have cho-
sen NetLogo as the means to satisfy the students’ demand
for hands-on practice, to help them understand at a deeper
level the otherwise theoretical aspects involved in the design
of a multi-agent system (MAS). In this paper we present in
detail the structure of the two pieces of coursework assigned
to the students, the first one introducing students to the
reactive architecture and the second, building on the first,
to the hybrid architecture, also incorporating agent com-
munication issues and interaction protocols. More particu-
larly, we present an indicative MAS scenario that is given
to the students as a case study for investigation as well as
a thorough description of what is expected from them. The
scenario facilitates practical agent design and simulation,
contributes to the expected learning outcomes and provides
various assessment opportunities.

1. INTRODUCTION
Setting an Intelligent Agent (IA) coursework assignment

within an undergraduate one-semester course is a somewhat
challenging task. On one hand, the nature of topics that
are addressed by such a course, such as agent architectures,
intentional notions and communication and cooperation pro-
tocols, dictate the need for offering some practical hands-on
experience of the issues and problems involved in the area, in
order to increase student understanding and facilitate learn-
ing. On the other hand, the time and student course load
constraints imposed by standard undergraduate, and even
some postgraduate, programmes could be prohibitive to em-
ploying one of the available fully fledged tools for agent de-
velopment [1, 2, 3, 5, 9].

The challenge described above arose while teaching an In-
telligent Agents course in the final semester of the final year
of a Computer Science undergraduate programme. Out of
a plethora of topics which are included in the course’s syl-
labus [13], it was considered important to provide practical
experience in a number of fundamental aspects, such as rep-
resentative agent architectures (such as reactive, BDI and
hybrid), agent communication languages (such as KQML

Cite as: MAS Coursework Design in NetLogo, Ilias Sakellariou, Petros
Kefalas and Ioanna Stamatopoulou, EDUMAS 09 Workshop of the
8th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2009), M. Beer, M. Fasli and D. Richards (eds.), May,
12, 2009, Budapest, Hungary, pp. 47-54.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and FIPA ACL) and interaction protocols (such as the Con-
tract Net protocol). The coursework assigned to the stu-
dents had to fulfil three important learning outcomes of the
overall course, according to which a student should be able
to:

• discuss and synthesise agent solutions;

• sensibly design multi-agent systems;

• cope with key issues in implementing agent-based and
multi-agent systems.

Given the constraints mentioned above, the adopted so-
lution involved a multi-agent simulation platform, NetLogo
[14], which in previous work we have appropriately extended
by message passing and belief-desire-intention agent devel-
opment libraries [12] so that certain restrictions imposed by
the platform are overcome. The justification for choosing
NetLogo over other options has also been reported elsewhere
[13] and based on our class experience, it has proved to be
quite a successful choice.

What we aim with the current paper is to present the
approach that we have followed to coursework setting us-
ing NetLogo, justifying the choices we adopted and demon-
strating further opportunities with respect to what can be
assessed by similar assignments. In Section 2 discuss the
rationale behind approach while Section 3 presents a taxi
transportation scenario used as a basis for the coursework
and, more particularly, how the environment has been mod-
elled using the NetLogo programming structures. Sections
4 and 5 describe in detail the two pieces of coursework as-
signed to students, respectively, and Section 6 concludes the
paper.

2. ASSESSMENT REQUIREMENTS

2.1 Assessment Rationale
As in any typical IA course, it was very important that

the students gain some hands-on experience and that they
are being assessed from a very practical perspective in:

• designing and evaluating a reactive multi-agent system
for a given problem scenario,

• proposing and justifying the BDI and Hybrid architec-
tures and precisely identifying components like beliefs,
desires and intentions that are newly introduced in the
context of the course,

• understanding and correctly using (in terms of seman-
tics) the FIPA ACL agent communication language [6]
in a MAS,

• successfully employing an interaction protocol in a spe-
cific problem scenario, and identifying all the issues
that arise.

Resorting to a fully fledged platform was not a viable
choice due to the constraints mentioned above: this was a fi-
nal year course, in an already overloaded semester, in which
students had to also work toward their final year project.
Consequently, selecting an appropriate programming envi-
ronment was a crucial issue, since the former had to adhere
to a number of requirements, such as present the minimum
installation problems, provide easy visualisation of the agent
behaviour, support the multi-agent system aspects assessed
and at the same time clearly demonstrate the difficulties in
AMAS programming.

As aforementioned, the platform of choice was NetLogo
[13], a modelling environment targeted to the simulation of
multi-agent systems that involve a large number of agents.
The platform aims to provide “a cross-platform multi-agent
programmable modelling environment” [14]. A number of
features make NetLogo an excellent platform for teaching
IA [13]: a simple, expressive programming language with a
small learning curve, rapid GUI creation and custom visuali-
sations, an environment consisting of patches (components of
a grid) and turtles (agents that “live” on the grid), enhanced
through the use of user defined variables that allow the mod-
elling of complex environments and agents with their own
state, respectively. The platform directly supports the cre-
ation of reactive agent architectures, a feature we have taken
advantage of not only for educational purposes but also as a
means to support our research [10]. Communicating, reason-
ing agents (BDI or hybrid) on the other hand can be devel-
oped by using two libraries, specifically designed to support
more complex multi-agent simulation on the platform [12].
As such, NetLogo together with the two libraries offers us
the opportunity to set coursework assignments that meet
our teaching needs.

2.2 Assignment Scenarios
Undoubtedly, the closer to reality an assignment scenario

is, the most appealing it appears to the students. Such real
world scenarios serve also the purpose of further establishing
the fact that AMAS technology can potentially be applied
to a number of areas. Throughout the years that the course
has been delivered, we have used a variety of such scenarios,
such as fire forest detection and prevention, airport logistics,
satellite alignment, some of which have been reported in [11,
12, 13].

In order to further increase student interest and demon-
strate how different architectures and protocols tackle the
same problem, all coursework given to students in a cohort
concern the same scenario. This imposes some constraints
on the range of application areas that could serve as case
studies but provides a better testbed for comparing various
agent architectures. To summarise, in our opinion a good
coursework scenario should:

• involve a real world problem, to which students can
relate,

• be appropriate for both reactive and DBI multi-agent
solutions, in order to meet our assessment require-
ments,

• have some sort of spatial reasoning that would provide
a nice visualisation on the selected platform.

To illustrate our proposed approach to coursework set-
ting, we describe in the sections that follow an assignment
scenario concerning taxi transportation.

3. TAXI TRANSPORTATION SCENARIO
This scenario concerns taxi transportation of passengers

located in various parts of a fictitious city to its airport. The
idea is rather simple and common: passengers that require
a ride to the local airport appear randomly in the city area.
The term “randomly” refers both to the time and the loca-
tion that the passengers appear in the city. Agents control
taxis with the task of picking up the passengers and trans-
porting them to the airport.

Obviously, the above problem can be easily tackled by
both reactive agents, that randomly drive around the city
looking for passengers and by BDI-hybrid agents that use a
protocol to coordinate the transportation. Visualisation, on
the other hand, involves creating a “bird’s-eye-view” outline
of a simple city and allowing the agents to move on this
city. The first issues that had to be addressed is how to
model the environment and how to create a visualisation /
experimentation environment that the students will use.

3.1 Designing the Environment
The NetLogo platform is ideal for rapidly creating such

environments. First of all, the fact that a set of variables
can be defined for each patch allows the modelling of com-
plex environments. Furthermore, since turtles can inspect
the patch variables, developing the agents’ sensors is greatly
facilitated. In the specific case, setting the environment in-
volves the following two issues:

• Modelling the streets, i.e. the set of patches where
agents are allowed to drive. The decision was to in-
clude a patch specific variable road that gets the value
1 if the patch belongs to a road, 2 if the patch belongs
to a junction and 0 otherwise.

• Providing information regarding the distance between
a patch and an airport gate. This is useful in the case
of reactive agents, since the latter rely only on local in-
formation in order to navigate toward the airport. The
solution involves the introduction of a patch variable
distance-airport that holds the Manhattan distance of
the patch to the airport.

The environment is generated by appropriate NetLogo
code, including the variable assignments required as men-
tioned above. Taxis, passengers, gates, streets and junctions
are colour coded so as to provide immediate information on
the status of the system to the user (Fig. 1).

3.2 Assumptions and Support
Students were provided with a set of procedures and a full

GUI environment to run the experiment. The GUI controls
allow the user to set the total number of taxis in the city,

Figure 1: Entities in the scenario environment

their speed, a parameter that controls their random move-
ment, and the total number of passengers that will appear
during the experiment. A number of metrics and monitors
were implemented including:

• the simulation time (ticks) required by the multi-agent
system to complete the task,

• the number of collisions between taxis or of a taxi to
a street edge, so that coursework assessment is facili-
tated,

• the number of passengers that have arrived to the air-
port, are waiting for a taxi or are on board taxis, and

• the number of passengers left to appear in the simula-
tion according to the experiment settings.

The complete environment is shown in Fig. 2. Of course
there is a number of other real-life features that could be
implemented, such as traffic lights, other vehicles moving in
the city, one-way streets, etc. thus a number of extensions to
the actual environment itself could be implemented by the
educator, or asked as part of the coursework by the students.

4. COURSEWORK 1: REACTIVE AGENTS
Based on our experience, students have much less prob-

lems understanding and applying reactive architectures, such
as the subsumption architecture [4], for such scenarios. Thus
the first coursework concerns the implementation of a multi-
agent system consisting of reactive agents. According to the
learning outcomes of the coursework the students should be
able to:

• understand in depth the reactive agent architecture,
its advantages and disadvantages,

• design a simple reactive agent to perform a task,

• build a simple prototype of a reactive agent system,

• evaluate the design choices made, based on the simu-
lation results.

Students were assessed according to the following criteria:

• Correctness, originality and justification of the pro-
posed agent architectures;

• Implementation and code documentation;

• Analysis and presentation of experimental results;

• Presentation of the report (clarity, structure etc.).

Since (a) students had not been exposed to NetLogo pro-
gramming earlier in the curriculum and (b) the main aim
was to provide an insight on the issues and problems regard-
ing the reactive architectures, a suggestion is to release the
NetLogo implementation of the environment and the agents’
sensors and actuators as part of the assignment handout. As
a result, students can only concentrate on designing the re-
active architecture and evaluating their design choices. The
code fragment that follows is an example of the NetLogo
code students were provided that concerns a sensor that de-
tects a street edge on the left side of the agent:

to-report detect-street-edge-left

ifelse [road = 0] of patch-left-and-ahead 30 1

[report true][report false]

end

Note how easily such a sensor can be implemented, given
the NetLogo primitives and the environment representation
described in section 3.1. A set of agent actions was also
released with the handout. The code that follows, shows
the implementation of three taxi agent actions, the first one
stochastically turning the agent by 90 degrees, the second
one moving the agent ahead according to the speed set in
the GUI and the third one placing the agent closer to the
airport gate, by forcing it to face a patch with a minimum
distance from the latter.

to turn-randomly-90

let p random 100

if p < probability-to-turn

[set heading heading + one-of [90 -90]]

end

to move-ahead

fd speed

end

to move-to-airport

move-ahead

face min-one-of neighbors4 with

[road > 0] [distance-airport]

end

Given the set of agent’s sensors and actions students were
asked to design, implement and justify a reactive architec-
ture for the taxi agents. The architecture consists of a num-
ber of rules that dictate which is the appropriate action the
agent should take, given the current input form the sensors.
A simple inhibition relation relying on rule ordering is used
and it can easily be ensured that at each execution cycle
only one rule can fire. A model answer is shown below.

Figure 2: The scenario environment in NetLogo

to execute-taxi-behaviour

if not have-passenger and

detect-passenger [pick-up-a-passenger stop]

if detect-taxi [turn-away stop]

if detect-street-edge-left [rt 5 stop]

if detect-street-edge-right [lt 5 stop]

if have-passenger and

reached-airport [drop-passenger stop]

if have-passenger [move-to-airport stop]

if detect-junction [move-randomly-90 stop]

if true [move-ahead stop]

end

Evaluation of the design choices was performed via the
provided monitors, as part of the coursework. Students were
able to evaluate their design based on the metrics mentioned
above (time ticks, the total number of taxi collisions, etc).
Incorporating other metrics such as the total waiting time of
the passengers (or possibly the average), total distance trav-
elled by the taxis etc., is a straightforward task. A number
of other questions regarding experiment parameters were set
for students, such as:

• How does speed affect the number collisions?

• What is the affect of the number of taxis to the overall
system efficiency (time ticks)?

• What could be possible enhancements within the lim-
its of the reactive architecture that could improve the
overall system’s efficiency?

The first two questions require some experimentation and
presentation of the results along with brief explanation and
justification. The last question is more intriguing and might
require further development of NetLogo code, thus allow-
ing for a better assessment and mark distribution over the
cohort.

5. COURSEWORK 2: HYBRID ARCHI-
TECTURE, COOPERATIVE MAS

The second coursework concerns the design and imple-
mentation of hybrid cooperative agents and is far more de-
manding and challenging. The scenario in this case is as
follows: each passenger can broadcast its request for trans-
portation to all taxis, which in turn can reply to the request
negatively or positively, in the latter case also reporting their
distance from the calling passenger. Thus, both taxis and
passengers are agents under this scenario.

Passengers are modelled as stationary and communicating
BDI agents, with the top level persistent intention being that
of “finding a taxi”. Taxis, on the other hand, since they have
to move in a highly dynamic environment, i.e. in streets
populated with other taxis, and navigate safely towards the
airport, are modelled as hybrid agents: the lower layer is
responsible for emergency action, such as avoiding collisions
with other taxis and keeping the taxi within street limits,
while the higher layer is responsible for message exchange,
cooperation and plan generation.

The expected learning outcomes of the second coursework
are that the students:

• understand in depth the issues and difficulties involved
when building a multi-agent system, such as agent
communication languages, interactions protocols etc.,

• propose a suitable agent architecture in order to per-
form a problem solving task,

• use an existing library to construct FIPA ACL-like
messages and implement an interaction protocol,

• build a simple prototype of a multi-agent system,

• evaluate the design choices made, based on simulation
results.

Students are assessed according to the following criteria:

• Correctness, originality and justification of the pro-
posed agent architectures;

• Correctness and justification of the cooperation proto-
cols proposed;

• Implementation and code documentation;

• Analysis and presentation of experimental results;

• Presentation of the report (clarity, structure etc.).

The assignment handout in this case included the imple-
mentation of the environment, which is identical to the pre-
vious coursework, the set of sensors and actuators of the
agents (as in the case of reactive agents) and the two li-
braries [12] that extend the basic NetLogo platform, one
allowing message exchange (message library) and the other
the implementation of BDI agents (BDI library). This was
considered necessary, since the standard NetLogo platform
does not provide any primitives towards this direction (for
a list of the primitives provided by the two libraries see Ta-
ble 1). A simple example that demonstrates the use of the
libraries was given to students in the form of a naive multi-
agent system, where each passenger reports its position to
all taxi agents and the latter rush to the caller with no co-
ordination whatsoever. After identifying the problems with
the given implementation, students were asked to:

• study and experiment with the given multi-agent sce-
nario and propose and implement minor changes that
could increase its performance (such as taxi agents not
rushing to the first caller, but to the closest),

• proposing a cooperation protocol and defining the nec-
essary FIPA messages that it dictates be exchanged,

• defining the beliefs and intentions of the agents under
the proposed protocol,

• implement the system using the two libraries provided.

Naturally, the most appropriate solution involves employ-
ing the Contract Net protocol [7] between passengers and
taxis. According to the protocol, passengers play the role of
“managers”, while taxis assume the role of “contractors” and
the evaluation criterion of bids is the distance of the taxi
from the calling passenger.

The BDI library allows NetLogo agents to construct and
follow plans of actions through gradual intention refinement.

Manipulating Beliefs

create-belief [b-type content]

belief-type [bel]

belief-content [bel]

add-belief [bel]

remove-belief [bel]

exists-belief [bel]

exist-beliefs-of-type [b-type]

beliefs-of-type [b-type]

get-belief [b-type]

read-first-belief-of-type [b-type]

update-belief [bel]

Manipulating Intentions

execute-intentions

get-intention

intention-name [intention]

intention-done [intention]

remove-intention [intention]

add-intention [name done]

Message Exchange

create-message [performative]

create-reply [performative msg]

add-sender [sender msg]

add-receiver [receiver msg]

add-multiple-receivers [receivers msg]

add-content [content msg]

to-report add [msg field value]

get-performative [msg]

get-sender [msg]

get-content [msg]

get-receivers [msg]

send [msg]

receive [msg]

get-message

remove-msg

broadcast-to [breed msg]

Table 1: Primitives provided to students of the
FIPA ACL Message Passing and BDI NetLogo li-
braries

Although the library is rather limited compared to fully-
fledge agent development systems, such as the PRS [8], it
offers adequate facilities to develop agents of the level of
complexity needed by such undergraduate coursework. For
example in the code below, the top-level intention “find-a-
taxi” is further refined to three lower level intentions:

;;; Plan to find a taxi (in reverse order)

to find-a-taxi

set color yellow

add-intention

"evaluate-proposals-and-send-replies" "true"

add-intention

"collect-proposals"

timeout_expired cfp-deadline

add-intention "send-cfp-to-agents" "true"

end

Note that the add-intention call adds an intention to
a stack, and that the intention persists until its condition
becomes true. The first argument of the add-intention

procedure is the name of the intention that corresponds to a
NetLogo user-defined procedure, while the second is the per-
sistence checking condition. More details about the libraries
can be found in [11].

The message library allows the implementation of all mes-
sage exchange required by the cooperation protocol. For in-
stance the following code sends the call for proposals to all
taxis participating in the scenario:

to send-cfp-to-agents

broadcast-to taxis

add-content

(list "taxi needed" my-coordinates)

create-message "cfp"

end

Taxis on the other hand are hybrid agents, since they need
to respond immediately to emergency situations regardless
of the overall plan the agent is following and at the same time
allow the control to pass to the higher level if no emergency
rises. Simple hybrid architectures can be implemented with
ease in NetLogo, as shown in the code below:

to taxi-behaviour

;;; Reactive Layer

if detect-taxi [turn-away stop]

if detect-street-edge-left [rt 5 stop]

if detect-street-edge-right [lt 5 stop]

;;; Proactive Layer

execute-intentions

end

The reactive layer consists of three rules that implement
collision avoidance. If any of the rules fires, control does
not proceed to the execute-intentions BDI library pro-
cedure, that “runs” the proactive layer of the agent. Thus,
although the above approach is rather simplistic compared
to the structures and models proposed for hybrid agents (red
hybrids), it serves its purpose of demonstrating to students
problems and notions involved in the design of such systems,
and especially possible reactive - proactive layer interactions.

Taxi agents are initialised with the top level, persistent
intention “listen to messages”, which is never removed from
the intention stack and the following code extract shows
the behaviour of the agent when it has adopted particular
intention.

to listen-to-messages

let msg 0

let performative 0

while [not empty? incoming-queue] [

set msg get-message

set performative get-performative msg

if performative = "cfp"

[evaluate-and-reply-cfp msg]

if performative = "accept-proposal"

[plan-to-pickup-passenger msg stop]

if performative = "reject-proposal"

[do-nothing]]

end

There are two interesting points in the code above. The
first concerns message processing: agents can easily inspect
the performatives of the FIPA like messages received and
take appropriate action, by resorting to the primitives of
the message exchange library. For instance, in this specific
case, the get-performative primitive is used to extract the
performative of the messages received. The second point
concerns the complexity of the agent’s plans and is bet-
ter demonstrated by the implementation of the following
plan-to-pickup-passenger procedure:

to plan-to-pickup-passenger [msg]

let coords item 1 get-content msg

let pass_no item 2 get-content msg

let junction select-close-junction-point coords

add-intention "drop-passenger" "true"

add-intention

"carry-passenger-to-airport" "reached-airport"

add-intention

(word "check-passenger-onboard" pass_no)

"true"

add-intention

(word "pick-up-passenger " pass_no) "true"

add-intention (word "move-to-dest " coords)

(word "at-dest " coords)

add-intention (word "move-to-dest" junction)

(word "at-dest " junction)

end

Through the execution of this procedure, the agent forms
a plan to pick up and transport a passenger to the airport.
This plan consists of navigation steps that move the taxi
agent to the passenger location (first go to the closest to the
passenger junction and then move to the passenger loca-
tion), pick up the passenger and check that the passenger is
on board, carry the passenger to the airport until you have
reached the airport and finally drop the passenger. Note
that, as previously, there are check points of the form of
persistence conditions for the removal of an intention (the
agent is committed to transporting the passenger to the air-
port until it has reached the airport), but also more elab-
orate check points in which the agent can revise its set of
intentions —the check-passenger-onboard is such a case
when the agent, if it has not successfully picked up the pas-
senger, must remove the rest of the plan steps, i.e. its inten-
tions, and inform the calling passenger with an appropriate
“failure” message:

to check-passenger-onboard [pass_no]

ifelse onboard > 0

[do-nothing]

[remove-intention

(list "carry-passenger-to-airport"

"reached-airport")

remove-intention

(list "drop-passenger" "true")

send add-content

"sorry, I could not find you"

add-receiver pass_no create-message "failure"

]

end

As demonstrated, by using the BDI library we can also

implement different commitment strategies and plan revis-
ing techniques and expose the student to the related notions
and problems.

The opportunities to make the scenario more sophisticated
are numerous and depend on the learning outcomes of the
coursework that is to be set. Possible variations include:

• Introducing two types of taxi agents, some of which
drive around the city picking up passengers reactively
and the others being call taxi agents. This extension
adds a bit to the complexity and since passengers could
cancel a request, it demands a more elaborate interac-
tion protocol.

• Introducing a calling centre in order to have passen-
gers directing their requests to a single point that will
allocate taxis to requests by initiating again a Con-
tract NET protocol. This extension can become more
interesting if there are more that one calling centres
and the respective taxi agent teams compete.

• Allowing taxi agents to pick up more than one passen-
gers on their way to the airport (Greek Taxi Trans-
portation Scenario) and thus raise issues such as op-
portunistic planning, etc.

• Increasing the level of complexity of the environment,
by introducing an addressing scheme for streets closer
to reality (street names, street numbers, etc.), one
way-streets and so on, so that the planning process
of the agent requires more sophisticated techniques.

6. DISCUSSION AND CONCLUSIONS
Our intention with this paper was to disseminate our ap-

proach to the setting of coursework for an IA course and
to share our experience with NetLogo assignments with col-
leagues who might be interested. What we have presented
may either be used as a set of guidelines for setting the
coursework or even as demonstration material for the pur-
poses of clarifying the involved IA concepts in the minds of
students.

We have followed the presented approach for a number of
years now and our overall impression is that students en-
joy this form of agent development, which, however limited,
provides an insight to the issues raised when implementing
Multi-Agent Systems. Their satisfaction increased in com-
parison to the early years of the introduction of the course
in which coursework was restricted only to design issues and
theoretical questions. We believe that both the visualisation
environment and the minimum programming effort required
contributed towards this direction. It should also be noted
that their final examination performance has also been in-
creased due to the better understanding of the intentional
notions involved in MAS (beliefs, intentions, etc).

Asides from the feedback we got from the students regard-
ing their overall satisfaction, as part of general questionnaire
they complete for all units at the end of every semester, and
from the change we perceived in their performance, the pre-
vious academic year last we also provided a more targeted
questionnaire, aiming to evaluate students’ perception par-
ticularly in relation to the use of NetLogo. According to
this feedback, indicatively we mention that 93.8% of the
students found that NetLogo’s visual environment helped
them to better understand agent behaviour, and that the ini-
tial code provided for the 1st coursework assignment helped

them in developing the solution. 71.4% of the students sim-
ilarly felt that the provided BDI and FIPA-ACL libraries
helped them in developing a solution for the 2nd course-
work assignment. Finally, when asked, only 12.5% and 0%
of the students would have preferred Java or Prolog, respec-
tively, as the language of choice for their IA assignments
(these are the two languages they are primarily exposed to
in their studies). For the complete results of the evaluation,
the interested reader is referred to [13].

The approach described in this paper, allows plenty of
room for a number of issues and topics to be assessed. Agent
planning, commitment strategies, agent architectures, mes-
sage passing, cooperation protocol design and evaluation,
issues on functional and spatial decomposition of problems,
and even team formation and disbanding can be addressed
given an appropriate scenario.

Future extensions include a number of issues. One of our
first goals is to enhance debugging facilities with respect to
the message passing and intentions. Currently, the user can
view the intentions of each agent participating in the exper-
iment by inspecting the corresponding agent variable, which
is rather limited. All the messages exchanged can be dis-
played in the GUI environment, but given the high number
of both participating agents and messages, their inspection
requires some effort on behalf of the students. A solution
could be to export both intentions and messages, appro-
priately time stamped (using ticks), and provide some ani-
mation/visualisation tool to facilitate debugging. Of course,
we are currently investigating the implementation of various
scenarios that involve other protocols, e.g. auctions, imple-
mentable with the use of the existing message exchange and
BDI libraries. Finally, multi-team competition games, such
as RoboSoccer, seem to be a natural extension of the current
work, however, more enhancements to the standard NetL-
ogo platform and existing libraries are required for such an
environment.

7. REFERENCES
[1] M. D. Beer and R. Hill. Teaching multi-agent systems

in a UK new university. In Proceedings of 1st AAMAS
Workshop on Teaching Multi-AgentSystems, 2004.

[2] M. D. Beer and R. Hill. Multi-agent systems and the
wider artificial intelligence computing curriculum. In
Proceedings of the 1st UK Workshop on Artificial
Intelligence in Education, 2005.

[3] R. H. Bordini. A recent experience in teaching
multi-agent systems using Jason. In Proceedings of the
2nd AAMAS Workshop on Teaching Multi-Agent
Systems, 2005.

[4] R. A. Brooks. Intelligence without representation.
Artificial Intelligence, 47:139–159, 1991.

[5] M. Fasli and M. Michalakopoulos. Designing and
implementing e-market games. In Proceedings of the
IEEE Symposium on Computational Intelligence in
Games, pages 44–50. IEEE Press, 2005.

[6] Foundation for Intelligent Physical Agents. FIPA ACL
Message Structure Specification, 2002.
www.fipa.org/specs/fipa00061/.

[7] Foundation for Intelligent Physical Agents. FIPA
Contract Net Interaction Protocol Specification, 2002.
www.fipa.org/specs/fipa00029/.

[8] M. P. Georgeff and A. L. Lansky. Reactive reasoning

and planning. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 677–682, 1987.

[9] H. Hara, K. Sugawara, and T. Kinoshita. Design of
TAF for training agent-based framework. In
Proceedings of 1st AAMAS Workshop on Teaching
Multi-AgentSystems, 2004.

[10] P. Kefalas, I. Stamatopoulou, I. Sakellariou, and
G. Eleftherakis. Transforming Communicating
X-machines into P Systems. Natural Computing, 2008.
To appear.

[11] I. Sakellariou. Extending NetLogo to support BDI-like
architecture and FIPA ACL-like message passing:
Libraries’ manuals and examples.
http://eos.uom.gr/viliass/projects/NetLogo.

[12] I. Sakellariou, P. Kefalas, and I. Stamatopoulou.
Enhancing NetLogo to simulate BDI communicating
agents. In Artificial Intelligence: Theories, Models and
Applications, Proceedings of the 5th Hellenic
Conference on AI (SETN’08), volume 5138 of Lecture
Notes in Computer Science, pages 263–275. Springer,
2008.

[13] I. Sakellariou, P. Kefalas, and I. Stamatopoulou.
Teaching intelligent agents using NetLogo. In
A. Cortesi and F. Luccio, editors, Proceedings of
Informatics Education Europe III (IEE-III), pages
209–221, 2008.

[14] U. Wilensky. Netlogo. Center for Connected Learning
and Computer-based Modelling. Northwestern
University, Evanston, IL.
http://ccl.northwestern.edu/netlogo., 1999.

