

MICROSCOPIC DISCRETE EVENT URBAN TRAFFIC MODEL

VALIDATION USING SIMULATION

Emmanuel López-Neri
Universidad del Valle de México, Campus Guadalajara Sur

Periférico Sur No. 8100 C.P. 45601,

Guadalajara, Jal. México.

emmanuel.lopez@guadalajara.uvmnet.edu

In this paper a microscopic discrete event urban traffic model validation using simulation is presented. In a previous study a
hierarchical microscopic urban traffic system (UTS) model was developed [1]. That model integrates the event oriented and agent-

based approach. The UTS is described using the multi-level Petri net based formalism, named n-LNS. The first level describes the

traffic network; the second level models the behavior of diverse road network users considered as agents, and the third level
specifies detailed procedures performed by the agents, namely travel plans, tasks, etc.. Usually simulators are designed using time

step approach and are validated using real data and is verified that the flow/density relationship (fundamental diagram) are

conserved and then state the simulator generates a valid behavior. However, the model used in this paper uses the event oriented

approach, doing more complex the process to obtain these validation graphs and their corresponding analysis. In order to validate it,

was developed a library known as CiudadelaSim [1].

Keywords: discrete event, traffic simulation, microscopic validation, n-LNS, Petri nets

Introduction

An urban traffic system (UTS) is composed of vehicles, pedestrians, traffic lights, and a traffic network

structure. The large number of the vehicles provokes well known problems such as traffic jams, air and

noise pollution, fuel consumption, stress, etc. These problems may be reduced by the efficient use of

current urban resources through the performance analysis under different traffic light control policies

along the day. Model-based simulation is often used for evaluating UTS yielding statistics about travel

times, fuel consumption, and road density; such information is useful to study traffic control strategies,

urban transport routes, etc. Simulation has been increasingly adopted by the engineers and personnel

charged to plan the signaling policies of the traffic network, in the literature there exist different

approaches to model UTS [2].

Within the urban area, micro-simulation is better adapted for the analysis in detail of the vehicles

behavior, the performance of streets and intersections, and the effectiveness of traffic lights control

strategies [3][2]. Under the micro-simulation approach an UTS can be considered as a discrete event

system in which the simulation time advance is handled using the next event technique [4][5].

In this paper a previous study of hierarchical microscopic urban traffic system (UTS) model is used [1].

That model integrates the event oriented and agent-based approach. The UTS is described using the

multi-level Petri net based formalism, named n-LNS. The first level describes the traffic network; the

second level models the behavior of diverse road network users considered as agents, and the third level

specifies detailed procedures performed by the agents, namely travel plans, tasks, etc..

Usually simulators are designed using time step approach and are validated using real data and is verified

that the flow/density relationship (fundamental diagram) are conserved and then state the simulator

generates a valid behavior. However, the model used in this paper uses the event oriented approach, doing

more complex the process to obtain these validation graphs and their corresponding analysis. In order to

validate it, was developed a library known as CiudadelaSim [1]. The system is open-source and free.

CiudadelaSim may be downloaded at http://sites.google.com/site/ciudadelasimsite/. CiudadelaSim is not

derived from any other toolkit, but rather was built from scratch using multi-agent event oriented

principles. Our design philosophy was to build a fast, orthogonal, minimal model library to which an

experienced Java programmer can easily add features, rather than one with many domain-specific,

intertwined features which are difficult to remove or modify.

Urban Traffic System Components

The UTS entities or components are: network streets and intersections, road users (vehicle, pedestrians,

cyclists, etc.), traffic signs (dynamic: traffic light, and static: speed limit sign) and individual and

emergent behavior (see fig. 3).are classed into static and dynamic entities. Static entities cannot change

 384

their state, for instance traffic signals (speed limit, priority flow, etc.) or the street network. Dynamical

entities or road users are objects that can move through the road network and/or change their own state,

i.e., they have their own behavior (cars, pedestrians, traffic lights, variable messages signs, etc.).

The road user behavior is defined as a discrete event system. For instance, the relevant events for the

entity named “vehicle” are advance, stop, accelerate, decelerate, change lane, and the states are stopped

and advancing. Since in actual UTS the car drivers see other cars in their neighborhood or field of view

(FOV), then road users perceive the events of other dynamic entities in their neighborhood.

Besides the description of the behavior of dynamic entities, the evolving rules must be also specified.

These rules govern the joint behavior of entities. For instance, an evolving rule could be “two or more

entities cannot be in the same space at the same time”. The evolving rules are axioms that the UTS

entities cannot violate. The interaction of one road user with other road users, static components, and

traffic signs leads to more complex behaviors known as emergent behaviors, for example: queues, traffic

jams, gridlock, green wave, etc. [6]. This emergent behavior is not explicitly captured in the model, but it

will be appear when the UTS model evolves, for instance, when a micro-simulator is used. The

knowledge about queues, traffic jams, etc., allow to road users making better decisions during their

execution.

The road network is a set S of interconnected streets and intersections called segments; it contains the

traveling road users the dynamic and static traffic signals. These interconnections are defined by the

following two relations:

The segment is the UTS environment basic modeling unit. Each segment represents a network structure

road where the entity could displace in a sequential way. The entity may find physical obstacles during

their displacement or caused by obey certain traffic policies; among other informative objects. Only one

direction at time is allowed in each intersection. In this way, each intersection segment can contains only

one vehicle at time. Also, the use of some segments is restricted to a certain kinds of entities.

3 lanes 3 lanes

segments

Street “B”

Street “A”

A
v

e
n

u
e

 “
E

”

Street “B”

Street “A”

A
v

e
n

u
e

 “
E

”

2
 la

n
e

s
2

 la
n

e
s

segments

street“B”

Streets “A”

A
v

e
n

u
e

 “
E

”

Street “B”

Street “A”

A
v

e
n

u
e

 “
E

”

2
 la

n
e

s
2

 la
n

e
s

a) b)

Figure 1. Urban traffic network description using segments a) Intersection b) Roundabout

Definition An object obji is a 3-tuple defined by obji = (typei, valuei, wi) where:

• typei ∈ {staticSignal, variableMessageSign, bump, trafficLight, stopSignal}.

• valuei is the information provided to the entity, such that������∈ ℵ.

• wi is the object relative position at segment, such that �� ∈ ℜ
	

Definition 1. A segment si is a 5-tuple defined by si = (Oi, typeSi, ai, bi) where:

•	 Oi={objj } is the set of objects in the segment i.

•	 typeS�ϵ {use���������, cross �!�"#���$, exclusive)�", exclusive#���$} represents the segment

restrictions use.

•	 ai,bi =(lati,longi) y lati,longi ∈ℜ, which are the geometric coordinates (latitude y longitude) that

describe the segment endpoints on a map.

The next relationships allow to establish the connections between segments:

Relation 1. Sequential Neighborhood. NS = {(si, sj) | sisj ∈ S, the entities can displace sequentially from

segment si to segment sj, adding it to the tail end of sj }. If ∃,-� , -./012 → ∃(-., -�)012, since the

relationship NS describes the physical connection between segments.

If the entity's ability to make a change lane is modeled then is added the following relation:

Relation 2: Contiguous Neighborhood NC = {(si, sj) | sisj ∈ S, the entities can displace in a parallel way

from si to sj and be added in any segment position}. If ∃,-�, -./016 → ∃(-., -�)016, since the

relationship NC describes the physical connection between segments.

Urban Traffic System Model based on n-LNS

The UTS model is expressed with n-LNS using three levels. In the first level the road network is

described, the general behavior of the road users is specified by level 2 nets; then the tasks or procedures

needed to implement specific behaviors of the road user are represented by nets of level 3. Figure 2 shows

the hierarchical UTS description using n-LNS.

The formalism follows the approach of nets within nets introduced by R. Valk [24], in which a two level

nested net scheme called EOS (Elementary Object System) is proposed. An extension to the Valk’s

technique, called n-LNS, has been proposed [23]; in this section we present an overview of n-LNS. A

more accurate definition of the formalism is detailed in [23]. In the next section is presented the UTS

model using n-LNS, for a detailed information refer to [1].

Urban Traffic System Level 3

Level 2

Level 1

Figure 2. Hierarchical urban traffic system abstraction levels using n-LNS

First Level: The road network

The road network model can be straightforward obtained. For every segment si ∈ S, a place pi is

assigned. Then one transition tij is added for every (si, sj) in NC or NS, together with arcs (pi, tij) and (tij,

pj). Furthermore some transitions ti must be added for every segment si source or sink; arcs (ti, pi) or (pi, ti)

are added accordingly. Using this strategy the resulting model typeNet1,1 (EnvironmentNET1) for the

traffic network showed in figure 3, the static traffic signals for instance speed limit, bumps position,

segment size, are information sent to the agent when a leavSeg transition is fired (t06, t17,etc.).

 386

t2,8

t0,1

t1,0

t1,4

t4,1

t5,4

t4,5

t9,5

t5,9

t7,9

t9,7

t11,7

t7,11

t4,3

t3,4

t7,6

t6,7

t10,6

t10,11

t6,10

t8,6

t6,8

t3,2

t2,3

t8,2

t0,3 t3,0

t3,6

t6,3 t7,4

t4,7

t11,10

p0 p1

p2
p3 p4

p5

p8 p6 p7 p9

p10
p11

Figure 3. Road Network described with type net EnvironmentNET1

Second Level: Agents

The decision making mechanism (DMM) of an agent is described by the net typeNet2,1 showed in figure

4. During the reasoning process, the evolving rules and traffic policies are taken into account.

ACTIVITIES PROCESS

EXEC_ACTIVITY

PROTOCOLS

INTERACTING
initInteraction

endInteraction

sendReceive

endActivity

t4

t2

t8

p2p1

p4

p5

p6

SKILLS

p3
t6t7

t5

useSkill
endSkill

initActivity t1

updatedProcess
t3

DECISION_MAKING
p7

Figure 4. Decision Making Mechanism Described by typeNet2,1

Third Level: Objects

Agent activities can be described by a third level net. In figure 5 shows the typeNet3,1 that describe

the vehicle driver activities and its possible states. If a in typeNet3,1 transition is fired, then a fact is

modified. Each transition (agent event) modifies some of the agent facts; for instance the endChLn

transition modifies the position fact. These events start a DMM cycle. For other dynamical entities in the

UTS, the behavior can be also represented by level 3 nets.

initArrivalSegment,

initSenseAdvancing,

initLeaveSegment,

initChangeLane

initArrivalLane initSenseStopped
updatedProcess updatedProcess

entityi

initStart,
t1 initChangeLane t2

t3

STOPPED ADVANCING
p1 p2t4

initStop

Figure 5. Vehicle Activities Described by typeNet3,1

Simulator Implementation

CiudadelaSim library is the UTS n-LNS model implementation using Java™. This library provides to the

computer programmer the necessary classes to implement a specific traffic model using the multi-agent

paradigm. This library can be substituted, partially changed or increased to test new techniques or

paradigms in an easy way. The CiudadelaSim library provides all the classes needed to implement

different types of driver’s behaviors as well as the models for the main driving task: car following, gap

acceptance, and lane change. We have used a modular approach allowing each component to be easily

redefined and extended.

A simulation is an instantiation of the classes from the CiudadelaSim library with the corresponding

parameters to a specific experiment. The simulation can provide output statistics of each segment, as well

as global network statistics. The results of the simulation and the links occupation ratios are obtain easily.

Also a XML interface is provided to describe the UTS models using UTYiL language for the data model

[6]. In figure 1 the correspondent library architecture is shown.

The library consists of five distributed modules: the car generator, traffic light control, simulation kernel,

visualization and statics analyzer (see figure 6). These modules are distributed along the network. In order

to distribute the simulation is used a connectivity software ProActive known as middleware [7]. The

middleware allows a clear communication between different computers connected into a network

(Internet, Intranet, etc.).

FEL

Vehicles

FEL

Vehicles

FEL

Vehicles

FEL

Vehicles

FEL

Vehicles

Simulation Kernel

Event List

Segment

Visualizer

Statistics Analyzer

Vehicle Generation

Traffic Control

Figure 6. CiudadelaSim Architecture

In figure 7 the simulator class diagram is depicted. The carGenerator, ligthControl, Analyzer,

Visualisation, SimulatorControler and StreetController classes implement the Proactive interface

RunActive, this allow each module be distributed along the network.

Figure 7. CiudadelaSim UML class diagram

The SimulatorController class creates instances of all other classes, read the UTS description model and

generates the required data structures. The class carGenerator use a Poisson distribution to generate new

vehicle events. This class sends the new events to the correspondent StreetController FEL structure. The

ligthControl class generates new change light events for each tfi in the traffic network structure. The

Visualization class reads output from each simulation and graphically show the entity movement. The

Analyzer class also reads output from each simulation but use them to obtain results statics for density,

flow and travel times for each segment.

The StreetController class executes the events of each segment concurrently, but taking care of the

causality rules. In this class the runActivity() method could be modified to evaluate distinct execution

strategies. The space is subdivided by sequential sets of events (SQS) assigned to each segment. The

potential event (event with minor timestamp) of each segment is ordered in a potential event list so could

be executed in a distributed and concurrent approach. In figure 8 is shown the future event lists and

potential event lists data structures.

Listas de

Lista de

Eventos

Potenciales
 der

sig

ant

izq
evt1

sig

SQS1

der

sig

ant

izq
evt2

der der

sig

ant

izq
evt3

sig

der

sig

ant

izq
evt4

der

sig

ant

izq
evt5

sig

der

sig

ant

izq
evt6

SQS2 SQS3

rootCtrl

eventList1 eventList1 eventList1
Eventos

Futuros

= null

Figure 8. Future event list and potential event list data structure implementations.

Case Study Description

Using the CiudadelaSim library a microscopic urban traffic simulation is run. The modeled area consists

of 38 streets (one lane) of a vehicular traffic network section (see figure 9). The traffic is regulated by

traffic lights (tfi) at each intersection. Each tfi control the vehicle flow from street si. The study site is

located at the downtown of Guadalajara city, so it experiences heavy congestion even during non-peak

periods.

Garibaldi st.

Reforma st.

Ju
a

n
 N

.
C

u
m

p
lid

o
 s

t.

C
ru

z
ve

rd
e

 s
t.

San Felipe st.

Juan Manuel St.

Je
su

s
st

.

Independiencia St.

Figure 9. Segment road system of an italian town[]

Traffic Control

The possible vehicle paths at the intersections, subdivided by the phases of the traffic light control

system, are shown in figure 10. In the first phase, the traffic lights are green for vehicular flows incoming

from sides A and C and red for flows incoming from sides B and D. In the second phase, the lights are

green for sides B and D and red otherwise.

s2

C

B

A

s2

s3 s4 D

C

B D

A

s3 s4

Traffic Light tf3Traffic Light tf2 s5 s5

Figure 10. Scheme of vehicular paths of the traffic lights phase one

The figure 11 depicts the four different control strategies used during the simulation run. In the first 600

seconds the strategy A is used; after 600 seconds the strategy B is used; finally strategy C is used.

Phase 1 Phase 2
�

10s 10s 70 s

35 s 35 s 20 s

10s 10s 70 s

35 s 35 s 20 s

30s 25s 45 s

30 s 25 s 45 s

tf35

tf0

Strategy A
�

tf0

tf35

Strategy B

tf35

tf0

Strategy C

Figure 11. Traffic Light control strategies used in simulation

Vehicle Generation

In order to create new entities as the road users, a list of source segments are specified in the population

generation system. In the case study the segments 0, 1, 3, 35, 32, 34, 46 y 47 are source segments. The

model used in this research is a Poisson distribution, but could be substituted by real demographic data.

The Poisson distribution is noted by the formula:

P(n)=((λt)
n
e

-λt
) / n!

where:

P(n) is the probability of exactly n vehicles arrive at time t

λ is the average arrival rate (veh/ min)

t is the duration of time over which the vehicles are counted

Output data model

CiudadelaSim generates the file log.dat. This file contains the event execution of the simulation. In Table

1 is shown the format used. The first field (objectID) contains the unique number identification for each

vehicle; evtime field contains the event execution time; the segment field contains the segment id where

the event was executed; the evPos field contains the segment position where the event was executed and

finally the evtype field contains the event type that was executed using the next symbology 1=SE (stop

Event),2=CE (Cross Event), 3 = LCE (Light Change Event), 5 = CLE (Change Lane Event), 6 = CLEE

(Change Lane End Event), 7 = ALE (Arrival Link Event), 8 = LLE (Leave Link Event), 9 = BE (Begin

Event), 10 = AE (Arrival Event), 11 = WSE (Warning Event for stop), 12 = WBE (warning Event for

start). Figure 1 depicts the example of use.

Results Analysis

The Analyzer class generates the field flowdensity.dat as shown in figure 1. This file is generated reading

the file generated by the simulation, each time an event type equal to 7 is read then increments the

numberOutVehicles variable and when the event type is equal to 8 then the numberInputVehicles variable

is incremented. Then is calculated the density (space of a segment equal to 100 mts used on an instant

time) and flow in each segment using the next equations:

flow = numberOutputVehicles / numberInputVehicles

density = numberInputVehicles – numberOutputVehicles

The calculated values for each second are stored in the file flowdensity.dat as shown in table 1.

Table 1: FlowDensity.dat sample file format.

Density Value Flow Value

11.0 0.35294117647058826

11.0 0.35294117647058826

12.0 0.3333333333333333

11.0 0.3888888888888889

11.0 0.3888888888888889

11.0 0.3888888888888889

11.0 0.3888888888888889

Using the calculated values of table 1, then is obtained a plot with axis X the density values and Y axis

the flow values.

Control strategies change

The simulator allows to define different control strategies (see figure 11). In figure 12 is shown the

segments st0 and st35 density-flow relationship. The st35 maintains high flow levels (and respectively low

density) than st0. This behavior is generated when the strategy A is used, since the stop time is greater

than green time for st35. That increases the saturation of st0. Although there is a change strategy, 600

seconds after , there is no enough time to reduce density of st0, then continue with high density values.

The change of phases provokes the instability of the diagram. The x axis shows the density and y axis the

flow. Observe how the fundamental diagram of flow-density is conserved.

Figure 12. Flow-Density relationship diagram for st0 and st35 segments

Individual parameters change

The carGenerator class allows to generate vehicles with different attributes or parameters such as:

preferred velocity, safe distance, perception-reaction time, etc. In figure 13 is shown the density of

segment st2 using distinct perception-reaction parameters. In figure 1a the perception-reaction time

parameter is equal to 0.2 min. The observed density increment is caused by the queue of vehicles when

the traffic light turns red. When the traffic light turns green the density decrease and only some

fluctuations appear in the density value. In figure 1b is used a perception-reaction time equal to 8 mins.

Although the traffic light changes to green, the vehicle will delay 8 min. before start. This will convert the

vehicle in an obstacle. Then the segment will increase exponentially their density.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

d
e

n
si

ty

d
e

n
si

ty

time	� time

a)
b)

Figure 13. Density graphics for different perception-reaction times a) 0.2 minutes b) 8 min.

Conclusions

In this paper a hierarchical modeling framework for the simulation of urban traffic systems validation is

presented. Simulation is a powerful tool for traffic managers that allow them to study and evaluate many

traffic control strategies in order to implement the best one. Thus, is proposed a modeling framework that

allows capturing systematically both the urban traffic network and the users’ behavior. The system model

is a modular specification that provides the knowledge used by a micro-simulation engine based on a

multi agent approach in which the vehicles are represented individually by mobile agents. A UTS

description contains several formal models expressed in a three level Petri net formalism allowing

selecting the microscopic desired level of road user behavior and verifying the correct functioning of the

desired behavior before the implementation. The model is validated implementing CiudadelaSim library.

CiudadelaSim is a java application that implements the n-LNS UTS model components. Future research

includes the distribution of the simulation kernel.

References

[1] E.	 Lopez-Neri, E. Lopez-Mellado, and A. Ramirez-Treviño, "Microscopic Modeling Framework for Urban Traffic Systems
Simulation," in the 7th International conference on system simulation and scientific computing, Beijing, China, 2008.

[2] J. Barceló, "Microscopic traffic simulation: A tool for the analysis and assessment of ITS systems," 2001.

[3] J. Barceló, J. L. Ferrer, and D. García, "Microscopic traffic simulation for ATT system analysis. A parallel computing version,"
University of Montreal Contribution to the 25th Aniversary of CRT, 1998.

[4] W. J. Barclay, "Point-to-Point microscopic simulation: a discussion of issues," in	 Proceedings of the First Western Pacific and

Third Australia-Japan Workshop on stochastic models, Christchurch, New Zealand, 1999.

[5] K.	 S. Perumalla, "A Systems Approach to Scalable Transportation Network Modeling," in proceedings of the 2006 Winter

Simulation Conference, vol. 0, 2006, pp. 1500-1507.

[6] E. Lopez-Neri, E. Lopez-Mellado, and A. Ramirez-Treviño, "Un lenguaje para la descripción de la información geográfica de
sistemas de tráfico urbano," in IV Semana Nacional de Ingeniería Electrónica , Aguascalientes,Ags., 2008.

[7] F. Baude, et al., "Grid Computing: Software Environments and Tools," in Programming , Deploying, Composing, for the Grid,

J. C. Cunha and O. F. Rana, Eds. Springer-Verlag, 2006.

	Text1: Session 9. Simulation: Practical Issues
	Text14: The 9th International Conference “RELIABILITY and STATISTICS in TRANSPORTATION and COMMUNICATION - 2009”
	Text16: 385
	Text17:
	Text3: 387
	Text4: 388
	Text5: 389
	Text6: 390
	Text7: 391
	Text8: 392
	Text9: 393
	Text10: Proceedings of the 9th International Conference "Reliability and Statistics in Transportation and Communication"
	Text11: (RelStat'09), 21-24 October 2009, Riga, Latvia, p. 384-393. ISBN 978-9984-818-21-4
	Text12: Transport and Telecommunication Institute, Lomonosova 1, LV-1019, Riga, Latvia

