
DISTRIBUTING REPAST SIMULATIONS USING ACTORS

F. Cicirelli, A. Furfaro, A. Giordano, L. Nigro
Laboratorio di Ingegneria del Software

Dipartimento di Elettronica Informatica e Sistemistica
Università della Calabria
87036 Rende (CS) – Italy

E-mail: {f.cicirelli,a.furfaro,a.giordano}@deis.unical.it, l.nigro@unical.it

KEYWORDS
Modelling and simulation, multi-agent systems, RePast,
actors, distributed simulation, HLA/RTI, Java.

ABSTRACT

RePast is a well-known agent-based toolkit for
modelling and simulation of complex systems. The
toolkit is normally used on a single workstation, where
modelling, execution and visualization aspects are dealt
with. This paper describes an approach aimed to
distributing RePast models, with minimal changes, over
a networked context so as to address very large and
reconfigurable models whose computational needs (in
space and time) can be difficult to satisfy on a single
machine. Novel in the approach is an exploitation of a
lean actor infrastructure implemented in Java. Actors
bring to RePast agents migration, location-transparent
naming, efficient communications, and a control-centric
framework. Actors can be orchestrated by an in-the-
large custom control structure which can ensure the
necessary message precedence constraints. Preliminary
experience is being carried out using HLA/RTI as
middleware. However, the realization can also work
with other standard transport layers such as Java Socket
and Java RMI. The paper introduces the design
rationale behind mapping RePast on to actors and
discusses a distributed example.

INTRODUCTION

Multi-agent systems (MAS) (Wooldridge, 2002)
simulations have proved their usefulness in such diverse
application domains as physics, anthropology, biology,
sociology, artificial intelligence etc. However, the
complexity of some MAS scalable models can be so
highly demanding in computational resources to
prohibit their execution on a standalone sequential
computer. Therefore, the problem exists of porting a
MAS on a distributed context so as to take advantage of
the processing capabilities furnished by a collection of
low-cost networked computers.
RePast (RePast, on-line)(Collier, on-line)(Macal &
North, 2006) is a state-of-art collection of tools and
libraries useful for modelling and simulation in Java of
multi-agent systems. Its effectiveness has been assessed
in (Tobias & Hofmann, 2004). RePast borrows much
from the design of the Swarm simulation toolkit

(Swarm, on-line). A similar toolkit is SIM_AGENT
(SIM_AGENT, on-line).
An experience of distributing sequential RePast over the
High Level Architecture/Runtime Infrastructure
(HLA/RTI) middleware (Kuhl et al., 2000) is described
in a recent paper (Minson & Theodoropolous, 2008).
HLA was chosen because it eases interoperability with
existing simulation systems, and promotes model reuse.
The implementation directly integrates the RePast
mechanisms within the HLA/RTI infrastructure. A
distributed RePast simulator is an HLA federation of
multiple interacting instances of RePast models.
Distributed synchronization depends on conservative
synchronization (Fujimoto, 2000) which favours
trasparency and backward compatibility with sequential
RePast model. The RePast scheduling algorithm was
replaced with a new one which constrains local time
advancement in a federate, in synchronization with the
rest of the federation. Space/environment objects are
mapped on the object architecture (Federation Object
Model or FOM) and the publish/subscribe pattern
supported by HLA. A critical problem concerns
concurrent access/update to shared attributes, e.g. of the
environment. Conflicts resolution is achieved by
divesting attribute ownership to RTI. All of this can
have performance penalties in the runtime. A similar
realization was previously experimented with
distributing SIM_AGENT toolkit on top of HLA (Lees
et al., 2007).
This paper proposes an original approach to distributing
RePast simulations which is based on actors (Agha,
1986) and in particular on the Theatre architecture
(Cicirelli et al., 2007a-b)(Cicirelli et al., 2009).
Adopted actors are reactive threadless agents which
communicate to one another by asynchronous message-
passing. Actors bring to RePast agents migration,
location-transparent naming, efficient communications,
and a control-centric framework. Actors can be
orchestrated by an in-the-large custom control structure
which can ensure the necessary message precedence
constraints. Such standard transport layers can be used
as Java Socket and Java RMI. Actors were ported also
on top of the HLA/RTI middleware (Cicirelli et al.,
2009) which provides, among others, transport layer
and time management services. A key difference from
(Minson & Theodoropolous, 2008) relates to conflict
management on shared objects. In this work the
recourse to attribute ownership mechanisms of RTI is

Proceedings 23rd European Conference on Modelling and
Simulation ©ECMS Javier Otamendi, Andrzej Bargiela,
José Luis Montes, Luis Miguel Doncel Pedrera (Editors)
ISBN: 978-0-9553018-8-9 / ISBN: 978-0-9553018-9-6 (CD)

avoided. Local environment and space objects are
accessed in the normal way. Consistency and conflict
resolution in the access to shared and remote
environment variables are mediated by environment
actors and messages, and harnessing features of the
simulation control engine.

Space 0 Space 1 Space M

Display

Application

Agent 0 Agent1 Agent N

Scheduler
SimModel Interface

MODEL

Controller

schedule/dispatch

Interact

get/put

Executiveexecute

Interact

schedule/dispatch

get/put

Figure 2: Runtime scenario

The achieved mapping of RePast over actors is named
ACTOR_REPAST. In this paper ACTOR_REPAST
design and prototype implementation is discussed in
terms of preliminary experience with HLA. Other
distributed scenarios are possible.
The paper is structured as follows. First RePast
modelling and simulation concepts are summarized.
Then the adopted actor model is presented together with
a conservative distributed simulation engine. The paper
goes on by discussing ACTOR_REPAST design and
prototype implementation, and an adaptation of the
actor-based conservative simulation engine to
distributed RePast simulations. After that a model
example and its execution are demonstrated. Finally,
conclusions are drawn with an indication of on-going
and future work

REPAST CONCEPTS

The RePast toolkit includes a runtime executive
(scheduler and controller components) which furnishes
an event-driven simulation engine, and a user
interaction interface through which a simulation
experiment can be controlled.
A system (see Fig. 1) typically consists of a collection
of agents, a collection of spaces modelling the physical
environment within which the agents are situated (have
coordinates) and operate, and a model object which
contains information (e.g. for configuration) about the
entire system. The state of system is scattered among
model, agent and space objects. An agent-based
simulation normally proceeds in two stages. The first
one is a setup stage that prepares the simulation for
execution. The second stage is the actual running of
the simulation. During the setup phase, the model
object is created as an instance of a Model class

(implementing the SimModel interface) which makes
instances of agents and spaces, display and scheduler
(the latter is an instance of the Schedule class). It is the
executive which actually asks the model object to
execute the setup phase. After that, when the
simulation is started, the executive achieves from the
model object the scheduler object used to control the
simulation. Fig. 1 summarizes the operations of model
bootstrap, whereas Fig. 2 depicts model execution.
RePast events are instances of the BasicAction class.
An event occurrence is mirrored by an invocation of
the execute() method of a basic action object. Actions
are scheduled to occur at certain simulation times
(ticks). Ticks can be equally spaced or, more in
general, not equally-spaced or event-driven. All
pending events existing at a given moment are
buffered, ranked by ascending timestamps, within the
scheduler object. At each iteration of its control loop,
the controller asks scheduler to extract the (or one)
most imminent pending action and to dispatch it to its
destination object, i.e. model or agent. The
consequence of an event occurrence is in general a
chain of method invocations, which can cause state
changes in agents, in model or in space objects.

Space 0 Space 1 Space M

Display

Application

Agent 0 Agent1 Agent N

Scheduler
SimModel Interface

MODEL

Controller

make

make

make

make

Executive

Figure 1: Starup scenario

Space objects can be data (or diffusive) spaces or
object (agent) spaces. An application based on
diffusive spaces typically has the model which
repeatedly executes a cycle made up of three basic
phases: diffuse- modify-update. During the diffuse
phase, the environment is asked to synchronously
update itself according to a diffusive logic. Then, in
the modify phase agents are allowed to introduce
further changes to the data space. For consistency,
though, these changes are stored in a temporary copy
of the environment. Finally, in the update phase, the
temporary copy is restored on the actual environment.
An object space, on the other hand, behaves more
asynchronously. Agents can issue get/put operations to

spaces, which affect immediately the environment. At
each tick, the Model object causes the environment
changes to be displayed by invoking the Display
redraw method.

ACTORS

The following gives an overview of a variant of the
Actor model (Agha, 1986) which is used for distributing
RePast. The same architecture is being experimented for
supporting Parallel DEVS (Zeigler et al., 2000)(Cicirelli
et al., 2008). Actors (Cicirelli et al., 2009) are reactive
thread-less objects which encapsulate a data state and
communicate to one another by asynchronous message
passing. Messages are typed objects. Actors are at rest
until a message arrives. Message processing is atomic: it
cannot be suspended nor preempted. Message
processing represents the unit of scheduling and
dispatching for a theatre. The dynamic behavior of an
actor is modeled as a finite state machine which is
realized in the handler(message) method which receives
the message to process as a parameter. Responding to a
message consists in general of the following actions:

new actors are (possibly) created
some messages are sent to known actors
(acquaintances). For proactive behavior, an actor
can send to itself one or more messages
the actor migrates to another execution locus
(theatre, see below)
current state of the actor is changed (become
operation).

Actor mechanisms are supported in Java by a minimal
API. Actor classes derive directly or indirectly from the
Actor base class. Similarly, message classes derive from
the Message base class. A subsystem of actors allocated
for execution on a computing node of a networked
context is treated as a unit-in-the-large and is termed a
theatre. A theatre furnishes the communication
(including migration), scheduling and dispatching
message-based services to actors. A fundamental
component of a theatre is the control machine which
interacts with peers in a distributed context through a
suitable transport layer.
A migrating actor leaves on the originating theatre a
forwarder (proxy) version of itself which will route
incoming messages to the destination theatre where the
real version of the actor exists. To avoid multi-hop
communications, the address information of a moving
actor is updated on the source theatre so as to mirror
current actor location.

CONSERVATIVE CONTROL ENGINE

Control machines of a distributed system are required to
coordinate each other according to a specific control
structure in order to guarantee messages are ultimately
executed in timestamp and causal order during a
distributed simulation (Fujimoto, 2000). The actor
model was implemented in a case on top of IEEE 1516
standard HLA/RTI middleware (Cicirelli et al.,

2008)(Kuhl et al., 2000)(Pitch, on-line) whose in-built
time management services can be exploited to achieve,
e.g., a conservative distributed simulation engine like
the one outlined in the following.
A theatre naturally maps on to an HLA federate. It is
assumed that the theatres/federates of an HLA
federation are both time constrained and time
regulating. Each theatre asks RTI for a time
advancement through Next-Event-Request-Available
(NERA) calls (zero lookahead) (Kuhl et al., 2000).
Simulation (or virtual) time grows according to model
time. However, at a given model time, simultaneous or
contemporary events are handled by a tie-breaking
mechanism which ranks events on the basis of their
generation. The generation concept is useful to ensure
cause-effect relationships among messages. Of course,
the effect has always to be processed after its cause. For
example, contemporary messages created by an actor in
the course of responding to an incoming message m,
can be managed in the next generation with respect to
the generation of m. The logical time presented to
HLA/RTI through a NERA is actually a triple
<virtual time, generation, step>. virtual-time is the
model time. The (optional) step field acts as a least
significant bit of generation. The control structure can
use the step field to further discriminate some
concurrent messages. For instance, a migration request
can purposely be delayed at the end of current
generation to ensure pending messages destined to the
migrating actor are processed in the source theatre
before migration. All of this can be achieved by
scheduling the migration to occur at step=1 of current
generation, and waiting from RTI the corresponding
release of Time-Advance-Grant.
A specialization of the above control strategy was
implemented to support Parallel DEVS models
(Cicirelli et al., 2008). Another adaptation is discussed
later in this paper as part of distributing RePast.

ACTOR_REPAST

A RePast model is partitioned into a collection of
Logical Processes (LPs) which are allocated for the
execution on different computing nodes of a networked
system. The structure of nodes/LPs is summarized in
Fig. 3. Each LP hosts a portion (region) of the
environment and a subset of agents (mapped as actors).
Agents can migrate from an LP to another at runtime.
The following points out basic problems arising from
partitioning and the particular software engineering
solutions which were adopted to cope with them.
Mapping issues essentially fall in three main areas: state
space representation, scheduling system, conflict
resolution on shared variables.

Partitioning and Region Boundaries

Partitioning mainly splits environmental spaces into
regions assigned to distinct LPs. As suggested by Fig. 3,
the RePast model is “instantiated” on each participating

node. In reality, only the environment portion relevant
to each particular node gets effectively instantiated at
configuration time. Configuration will assign real or
proxy versions of the agents (actors) to the various
nodes which comprise the distributed system. Of
course, the display facilities into each node are relative
to the environment portion managed by the node. As a
consequence of instantiating the “entire” model on
every node, the Model object gets replicated on each
node. However, only the Model object in the master
node (designated at configuration time) is allowed to
start-up the simulation by scheduling the initial actions.
In the following it is assumed that a RePast agent
perceives only a part of its environment identifiable as
its neighbourhood (or “sphere of influence” (Logan &
Theodoropoulos, 2001)). Environmental region
boundaries introduce shared variables for the agents
belonging to adjacent LPs. A detailed look at region
boundaries is exposed in Figures 4 and 5 where the
border of two neighbouring LPs is shown. More
complex boundary scenarios can occur in practice. In
particular, Fig. 5) clarifies that the border region of an
LP is in reality composed of two parts: a local border of
the LP and a mirror border of the local border of the
adjacent LP. The mirror parts are replicas of boundary
space cells. A first problem raised by boundary regions
is the requirement of keeping consistent local and
mirrored parts. An update to a boundary local cell must
be reflected also in the mirror part. A second problem
concerns conflict resolution during concurrent accesses
to shared space cells by agents executing in the two
LPs. In the approach described in this paper, conflicts
are resolved by harnessing mechanisms of the
distributed simulation engine (see later in this paper).

Mapping Design Rationale

Middleware (e.g. HLA)/
Transport Layer

Theatre/Actors

RePast

Application model

Middleware (e.g. HLA)/
Transport Layer

Theatre/Actors

RePast

Application model

Middleware (e.g. HLA)/
Transport Layer

Theatre/Actors

RePast

Application model

Communications Network

...

Figure 3: Architecture of a networked RePast model

Mapping design was guided by the goal of maintaining
a distributed model almost transparent with respect to
the sequential model. In the proposed mapping, local
action executions behave exactly as in the non
distributed version of the RePast model. However,
remote action requests, i.e. when the target agent is
located on a remote LP, are captured in actor messages
and sent across the network. To achieve this effect,
agents and model object of a RePast system are turned
into actors. Since agents have no special constraints in
RePast, a (minimal) requirement was added to develop
agent classes and model classes respectively as heir of
base classes ACTOR_AGENT and ACTOR_MODEL,
which derive from Actor and provide relevant common
behaviour. Action objects are transformed into
messages and scheduled in the theatre’s control
machine of the LP. A key point of ACTOR_REPAST is
a transfer of control responsibilities from RePast to
theatre control machine. Basically, RePast controller
remains in charge of interactive events only. Simulation
and time management services are instead provided by
theatre control machines.
To figure out common behaviour of actor-agents, the
handler(incoming_message) method of
ACTOR_AGENT is actually responsible of invoking a
specific method (whose name is stored in the incoming
message) of the corresponding RePast agent, with the
help of Java reflection. As another example, when a
message is up to be dispatched to a forwarder, i.e. a

Local LP 0

Local border LP 0

Mirror border LP 1 (Local border LP 0)

Local border LP 0

Local LP 1

Mirror border LP 0 (Local border LP 1)

Figure 5: Detailed view of border regions

Local LP 0

Shared LP 0 Shared LP 1

Local LP 1

Figure 4: Boundary regions of two adjacent LPs

proxy of a moved actor, the behaviour in
ACTOR_AGENT manages to route the message to the
corresponding remote actor. Similar behaviour is
provided by ACTOR_MODEL. It is worth noting that a
model object does not require migration.
A more general task is accomplished by interceptors,
i.e. entities which intercept method calls and
superimpose to them suitable behaviour, with the goal
of minimizing “code intrusion” in the original RePast
model. Interceptors are realized as cross-cutting
concerns or aspects (Kiczales et al., 2001) of AspectJ
(AspectJ, on-line).
An aspect controls the execution of the chain of method
calls triggered by dispatching an action. When the target
agent of a method invocation is local, the aspect lets the
agent to execute the method call in the normal way. In
the case the receiver is remote, the aspect replaces the
standard behaviour of method call by building a
message, filling it with information about the requested
method, and sending the message over the network. A
second aspect is concerned specifically with capturing
action scheduling requests in the RePast model and
redirecting them to the theatre control machine. A third
aspect is used during the start-up phase of a model to
inhibit initial action scheduling in non master LPs.
Therefore, the Model object really executes only in the
master LP.
An important actor in every LP, created at start-up time,
is the “environment actor” (EnvActor) which knows
about configuration information (taken from a
configuration file) of the entire RePast model, and
offers a common interface to the model for accessing
spaces and environments. For example, the idea that
every node/LP is an instantiation of the “entire” model
implies that into each sub-model assigned to an LP be
present the “global view” to the environment. The
transformation of positional coordinates for a situated
agent from the global-view to the local-view
corresponding to the portion of the environment
effectively managed by the LP is accomplished by the
EnvActor. A second responsibility of EnvActor is that
of propagating to its peer(s) in neighbouring LP(s) the
updates of agents in the local border of the belonging
LP. Similarly, when an agent moves to the border
region, the EnvActor is in charge to migrate the agent, if
required, to a neighbour LP. EnvActor is also a key for
the diffuse/update/redraw processes. In particular, when
the model in the master node raises a
diffuse/update/redraw operation, the request is
intercepted and a corresponding message is created and
sent to all the LPs, which is heard by the EnvActors. An
EnvActor then acts so as to actuate the
diffuse/update/redraw operation in the local
environment.

Distributed Simulation Engine and Conflict
Management

An HLA distributed RePast model is governed by an
adaptation of the conservative simulation engine

previously reported in this paper. The adaptation
concerns a particular use of both the generation and
step fields of the time notion presented to RTI, with the
goal of controlling contemporary messages occurring at
a given simulation time. More precisely, the generation
field is used to resolve conflicts on shared environment
border objects by constraining adjacent LPs to make
requests to conflicting objects at different real times. All
of this is achieved by assigning to conflicting agents a
different occurrence generation. The step field, instead,
is devoted, at each generation of current time or to next
simulation time, to ensure that update operations to
border cells are definitely propagated to adjacent LPs
before such updates are visible to the model. Toward
this, all updates to border cells are captured by an
EnvActor and collected into a bag message, one for
each distinct adjacent LP. Each bag message is sent
across the network to be processed at step=1 of current
generation. Therefore, when bags are eventually
received and processed by corresponding EnvActors,
their effect will only be heard at the next generation or
next tick. Also at step=1 are realized agent migrations.
At the beginning of any simulation time, a method of
the EnvAct is launched which analyzes the border area
and assigns to potentially conflicting agents different
generation numbers. These numbers are stored and will
be used for scheduling, at current simulation time,
action messages or method invocation messages
triggered by an action, directed to border agents. It is
worth noting that agent population of the border regions
of two adjacent LPs is identical. Moreover, the
algorithm is run at both sides of the adjacent LPs and
makes an identical assignment to the same agents of the
border area. In the following, the operation of the
algorithm will be sketched in the hypothesis of having
agents which can move to a next position with unit
distance. Fig. 6) shows an example of border
(potentially) conflicting agents. Recall that a border
region (see also Figg. 4 and 5) is composed of two sub
regions, one corresponding to a local area of the LP, the
other to a mirror of the local area of adjacent LP. In
addition, in the hypothesis of unit-step movements, the
two sub-regions are concretely two columns wide. Fig.
7) depicts a worst case situation of conflicts where 7

Figure 6: Example of (potentially) conflicting agents

generation numbers are sufficient for resolving
conflicts.
The algorithm proceeds by scanning the complete
border area of the LP starting from the upper left corner
down to (in row order) the right corner in last row. For
each agent (denoted ? in Fig 7)), its relevant
neighbourhood is examined. For the agent ? in Fig. 7)
the relevant neighbourhood is represented by the dashed
rectangle. In fact, the lower part of the neighbourhood is
still not assigned, and the upper right part is composed
of agents belonging to the same adjacent LP. In the
worst case scenario all previously assigned agents in the
relevant neighbourhood have received distinct
generation numbers. Generations of assigned agents in
the relevant neighbourhood are marked as unavailable
for the current agent. Then a generation, randomly
chosen in the set of available generations, is assigned to
current agent. The algorithm naturally reuses
generations and this is important both to keep low the
number of exploited generations but also to increase the
concurrency degree of border agents. Determinacy of
the algorithm (at both sides of adjacent LPs) relies on a
pseudo-random generator whose seed, at each choice, is
defined in terms of current simulation time and the
agent environmental position. Moreover, determinacy is
also ensured by the scanning order of the border area.
It should be noted that border agents without conflicts
are always assigned the first generation (numbered 0) of
a simulation time. In addition, both local agents and
border local agents without conflicts are handled
exactly in the same way.

An Example

ACTOR_REPAST was preliminary tested by using
some sequential models available in the software
distribution of RePast version 3. The following
demonstrates ACTOR_REPAST operation by
distributing the Swarm-based HeatBug multi-agent
model, which is representative of a class of models

where the environment component admits both
diffusive and agent object spaces. The system model
logically consists of two parallel grids: the first one is
populated by heat bug agents. The other grid is
employed for diffusing from cell to cell the heat owned
by bugs. The diffusion logic is already available in the
implementation of RePast diffusive spaces. Heat bugs
are simple agents which absorb and expel heat. Heat
bugs have an ideal temperature and will move in an
attempt to achieve this temperature.

?

?

?

generation already assigned

generation not yet assigned

current agent considered

potential conflicts with

Figure 7: A worst case conflict situation

Figure 8: A screenshot from sequential RePast
simulation of the HeatBug model

Fig. 8 shows a screenshot taken from RePast sequential
model execution. As one can see, bugs tends definitely
to group so as to reach their ideal temperature.

For demonstration purposes, the sequential HeatBug
model was partitioned into two LPs and executed, under
ACTOR_REPAST, on two theatres/federates on top of
HLA pRTI 1516 (Pitch, on-line). The two federate are
allocated to two distinct physical processors consisting
of WinXP platforms, Pentium IV 3.4GHz, 1GB RAM,

Figure 9: A screenshot of the two display taken from
ACTOR_REPAST

interconnected by a 1Gb Ethernet switch. The
distributed system naturally exhibits agent migration
from an LP to the other. The system was configured (in
an XML configuration file, one per LP) with such
information as: (a) the list of LPs, each one specified by
<IP address, port>, (b) the master LP identification, (c)
the topology of the distributed model, with definition of
LP adjacency and size of the border regions. Fig. 9
shows the display produced by the two LPs, which
confirm the basic behaviour of the bug agents.

Other architectural scenarios are possible specifically
for the visualization purposes. For example, as in (Low
et al., 2007) one single federate (time constrained but
not time regulating) could be dedicated only to
visualization.

Conclusions

This paper describes an approach and prototype
implementation to distributing RePast (Collier, on-line)
simulations. The realization, ACTOR_REPAST, owes
to a lean and lightweight actor framework in Java which
allows customization of the simulation control engine.
Preliminary experiments are being carried out using the
HLA/RTI 1516 IEEE standard (Kuhl et al., 2000)(Pitch,
on-line). Other distributed and transport layers, though,
are possible.

Prosecution work is geared at:

improving the transformation from sequential
RePast models to corresponding distributed
versions through a systematic exploitation of Java
text annotations which would help tagging source
classes and methods and hiding behind annotation
management the necessary yet transparent code
changes
optimizing the algorithm which assigns generations
to conflicting agents on border regions. More in
general, a fundamental open issue concerns the
evaluation of different organizations of the
environment component of multi-agent systems
(Logan & Theodoropoulos, 2001)
using ACTOR_REPAST in very complex agent-
based models with the goal of quantifying
specifically the simulation performance towards a
comparison with the implementation described in
(Minson & Theodoropoulos, 2008).

REFERENCES

Agha G. 1986. Actors: A model for concurrent computation in
distributed systems. The MIT Press.

AspectJ, http://www.eclipse.org/aspectj/
Cicirelli F., A. Furfaro, and L. Nigro. 2007b. “Exploiting

agents for modelling and simulation of coverage control
protocols in large sensor networks”. The Journal of
Systems and Software, 80(11):1817-1832, Elsevier.

Cicirelli F., A. Furfaro and L. Nigro. 2008. “Actor-based
simulation of PDEVS systems over HLA”. In Proceedings
of 41stt Annual Simulation Symposium, Ottawa (Canada),
13-16 April, IEEE Computer Society, pp. 229-236.

Cicirelli F., A. Furfaro and L. Nigro. 2009. “An agent
infrastructure over HLA for distributed simulation of
reconfigurable systems and its application to UAV
coordination”. SIMULATION – Trans. of the Society for
Modeling and Simulation International, 85(1):17-32,
SAGE.

Cicirelli F., A. Furfaro, L. Nigro and F. Pupo. 2007a. “A
component-based architecture for modelling and
simulation of adaptive complex systems”. In Proceedings
of 21st European Conference on Modelling and
Simulation (ECMS'07), pp. 156-163, 4-6 June, Prague,
2007.

Collier N. 2009. RePast: An extensible framework for agent
simulation. http://www.econ.iastate.edu/tesfatsi/
RepastTutorial.Collier.pdf

Fujimoto R. 2000. Parallel and distributed simulation
systems. John Wiley & Sons, New York, NY, USA.
Kiczales G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and

W.G. Griswold. 2001. “Getting started with AspectJ”.
Communications of the ACM, 44(10):59–65.

Kuhl F., J. Dahmann and R. Weatherly. 2000. Creating
computer simulation systems: An introduction to the High
Level Architecture. Prentice Hall, Upper Saddle River, NJ,
USA.

Lees M., B. Logan and G. Theodoropoulos. 2007.
“Distributed simulation of agent-based systems with
HLA”. ACM Trans. on Modeling and Computer
Simulation, 17(3):1-25, July.

Logan B., and G. Theodoropoulos. 2001. “The distributed
simulation ofmulti-agent systems”. In Proceedings of the
IEEE, 89(2):174–185.

Low H.M.Y., W. Cai, S. Zhou. 2007. “A federated agent-
based crowd simulation architecture”. In Proceedings of
21st European Conference on Modelling and Simulation
(ECMS 2007), Prague, June 4-6, pp. 188-194.

Macal C. and M. North. 2006. “Tutorial on agent-based
modeling and simulation, Part 2: How to model with
agents”. In Proc. of 2006 Winter Simulation Conference,
Monterey, CA, Dec. 3-6, pp. 73-83.

Minson R. and G. Theodoropoulos. 2008. “Distributing
RePast agent-based simulation with HLA”. Concurrency
and Computation: Practice and Experience, 20:1225-
1256.

Pitch Kunskapsutveckling AB. pRTI 1516.
http://www.pitch.se/prti1516/ default.asp

RePast projects, http://repast.sourceforge.net/repast_3/
index.html

SimAgent,
http://www.cs.bham.ac.uk/research/projects/poplog/packa
ges/simagent.html

Swarm, http://www.swarm.org
Tobias R. and C. Hofmann. 2004. “Evaluation of free Java

libraries for social-scientific agent-based simulation”. J. of
Artificial Societies and Social Simulation, 7(1).
http://ideas.repec.org/a/jas/jasssj/2003-45-2.html

Wooldridge M. 2002. An introduction to multi-agent systems.
John Wiley & Sons, Ltd.

Zeigler B.P., H. Praehofer and T. Kim. 2000. Theory of
modeling and simulation. Academic Press., New York,
2nd edition.

