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ABSTRACT

RePast is a well-known agent-based toolkit for 
modelling and simulation of complex systems. The 
toolkit is normally used on a single workstation, where 
modelling, execution and visualization aspects are dealt 
with. This paper describes an approach aimed to 
distributing RePast models, with minimal changes, over 
a networked context so as to address very large and 
reconfigurable models whose computational needs (in 
space and time) can be difficult to satisfy on a single 
machine. Novel in the approach is an exploitation of a 
lean actor infrastructure implemented in Java. Actors 
bring to RePast agents migration, location-transparent 
naming, efficient communications, and a control-centric 
framework. Actors can be orchestrated by an in-the-
large custom control structure which can ensure the 
necessary message precedence constraints. Preliminary 
experience is being carried out using HLA/RTI as 
middleware. However, the realization can also work 
with other standard transport layers such as Java Socket 
and Java RMI. The paper introduces the design 
rationale behind mapping RePast on to actors and 
discusses a distributed example. 

INTRODUCTION

Multi-agent systems (MAS) (Wooldridge, 2002) 
simulations have proved their usefulness in such diverse 
application domains as physics, anthropology, biology, 
sociology, artificial intelligence etc. However, the 
complexity of some MAS scalable models can be so 
highly demanding in computational resources to 
prohibit their execution on a standalone sequential 
computer. Therefore, the problem exists of porting a 
MAS on a distributed context so as to take advantage of 
the processing capabilities furnished by a collection of 
low-cost networked computers. 
RePast (RePast, on-line)(Collier, on-line)(Macal &
North, 2006) is a state-of-art collection of tools and 
libraries useful for modelling and simulation in Java of 
multi-agent systems. Its effectiveness has been assessed 
in (Tobias & Hofmann, 2004). RePast borrows much 
from the design of the Swarm simulation toolkit 

(Swarm, on-line). A similar toolkit is SIM_AGENT 
(SIM_AGENT, on-line). 
An experience of distributing sequential RePast over the 
High Level Architecture/Runtime Infrastructure 
(HLA/RTI) middleware (Kuhl et al., 2000) is described 
in a recent paper (Minson & Theodoropolous, 2008). 
HLA was chosen because it eases interoperability with 
existing simulation systems, and promotes model reuse. 
The implementation directly integrates the RePast 
mechanisms within the HLA/RTI infrastructure. A 
distributed RePast simulator is an HLA federation of 
multiple interacting instances of RePast models. 
Distributed synchronization depends on conservative 
synchronization (Fujimoto, 2000) which favours 
trasparency and backward compatibility with sequential 
RePast model. The RePast scheduling algorithm was 
replaced with a new one which constrains local time 
advancement in a federate, in synchronization with the 
rest of the federation. Space/environment objects are 
mapped on the object architecture (Federation Object 
Model or FOM) and the publish/subscribe pattern 
supported by HLA. A critical problem concerns 
concurrent access/update to shared attributes, e.g. of the 
environment. Conflicts resolution is achieved by 
divesting attribute ownership to RTI. All of this can 
have performance penalties in the runtime. A similar 
realization was previously experimented with 
distributing SIM_AGENT toolkit on top of HLA (Lees 
et al., 2007). 
This paper proposes an original approach to distributing 
RePast simulations which is based on actors (Agha, 
1986) and in particular on the Theatre architecture 
(Cicirelli et al., 2007a-b)(Cicirelli et al., 2009). 
Adopted actors are reactive threadless agents which 
communicate to one another by asynchronous message-
passing. Actors bring to RePast agents migration, 
location-transparent naming, efficient communications, 
and a control-centric framework. Actors can be 
orchestrated by an in-the-large custom control structure 
which can ensure the necessary message precedence 
constraints. Such standard transport layers can be used 
as Java Socket and Java RMI. Actors were ported also 
on top of the HLA/RTI middleware (Cicirelli et al.,
2009) which provides, among others, transport layer 
and time management services. A key difference from 
(Minson & Theodoropolous, 2008) relates to conflict 
management on shared objects. In this work the 
recourse to attribute ownership mechanisms of RTI is 
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avoided. Local environment and space objects are 
accessed in the normal way. Consistency and conflict 
resolution in the access to shared and remote 
environment variables are mediated by environment 
actors and messages, and harnessing features of the 
simulation control engine. 
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Figure 2: Runtime scenario 

The achieved mapping of RePast over actors is named 
ACTOR_REPAST. In this paper ACTOR_REPAST 
design and prototype implementation is discussed in 
terms of preliminary experience with HLA. Other 
distributed scenarios are possible. 
The paper is structured as follows. First RePast 
modelling and simulation concepts are summarized. 
Then the adopted actor model is presented together with 
a conservative distributed simulation engine. The paper 
goes on by discussing ACTOR_REPAST design and 
prototype implementation, and an adaptation of the 
actor-based conservative simulation engine to 
distributed RePast simulations. After that a model 
example and its execution are demonstrated. Finally, 
conclusions are drawn with an indication of on-going 
and future work 

REPAST CONCEPTS 

The RePast toolkit includes a runtime executive 
(scheduler and controller components) which furnishes 
an event-driven simulation engine, and a user 
interaction interface through which a simulation 
experiment can be controlled.
A system (see Fig. 1) typically consists of a collection 
of agents, a collection of spaces modelling the physical 
environment within which the agents are situated (have 
coordinates) and operate, and a model object which 
contains information (e.g. for configuration) about the 
entire system. The state of system is scattered among 
model, agent and space objects. An agent-based 
simulation normally proceeds in two stages. The first 
one is a setup stage that prepares the simulation for 
execution. The second stage is the actual running of 
the simulation. During the setup phase, the model 
object is created as an instance of a Model class 

(implementing the SimModel interface) which makes 
instances of agents and spaces, display and scheduler 
(the latter is an instance of the Schedule class). It is the 
executive which actually asks the model object to 
execute the setup phase. After that, when the 
simulation is started, the executive achieves from the 
model object the scheduler object used to control the 
simulation. Fig. 1 summarizes the operations of model 
bootstrap, whereas Fig. 2 depicts model execution. 
RePast events are instances of the BasicAction class. 
An event occurrence is mirrored by an invocation of 
the execute() method of a basic action object. Actions 
are scheduled to occur at certain simulation times 
(ticks). Ticks can be equally spaced or, more in 
general, not equally-spaced or event-driven. All 
pending events existing at a given moment are 
buffered, ranked by ascending timestamps, within the 
scheduler object. At each iteration of its control loop, 
the controller asks scheduler to extract the (or one) 
most imminent pending action and to dispatch it to its 
destination object, i.e. model or agent. The 
consequence of an event occurrence is in general a 
chain of method invocations, which can cause state 
changes in agents, in model or in space objects. 
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Figure 1: Starup scenario 

Space objects can be data (or diffusive) spaces or 
object (agent) spaces. An application based on 
diffusive spaces typically has the model which 
repeatedly executes a cycle made up of three basic 
phases: diffuse- modify-update. During the diffuse 
phase, the environment is asked to synchronously 
update itself according to a diffusive logic. Then, in 
the modify phase agents are allowed to introduce 
further changes to the data space. For consistency, 
though, these changes are stored in a temporary copy 
of the environment. Finally, in the update phase, the 
temporary copy is restored on the actual environment. 
An object space, on the other hand, behaves more 
asynchronously. Agents can issue get/put operations to 



spaces, which affect immediately the environment. At 
each tick, the Model object causes the environment 
changes to be displayed by invoking the Display 
redraw method. 

ACTORS

The following gives an overview of a variant of the 
Actor model (Agha, 1986) which is used for distributing 
RePast. The same architecture is being experimented for 
supporting Parallel DEVS (Zeigler et al., 2000)(Cicirelli 
et al., 2008). Actors (Cicirelli et al., 2009) are reactive 
thread-less objects which encapsulate a data state and 
communicate to one another by asynchronous message 
passing. Messages are typed objects. Actors are at rest 
until a message arrives. Message processing is atomic: it 
cannot be suspended nor preempted. Message 
processing represents the unit of scheduling and 
dispatching for a theatre. The dynamic behavior of an 
actor is modeled as a finite state machine which is 
realized in the handler(message) method which receives 
the message to process as a parameter. Responding to a 
message consists in general of the following actions:  

new actors are (possibly) created 
some messages are sent to known actors 
(acquaintances). For proactive behavior, an actor 
can send to itself one or more messages 
the actor migrates to another execution locus 
(theatre, see below) 
current state of the actor is changed (become 
operation). 

Actor mechanisms are supported in Java by a minimal 
API. Actor classes derive directly or indirectly from the 
Actor base class. Similarly, message classes derive from 
the Message base class. A subsystem of actors allocated 
for execution on a computing node of a networked 
context is treated as a unit-in-the-large and is termed a 
theatre. A theatre furnishes the communication 
(including migration), scheduling and dispatching 
message-based services to actors. A fundamental 
component of a theatre is the control machine which 
interacts with peers in a distributed context through a 
suitable transport layer.  
A migrating actor leaves on the originating theatre a 
forwarder (proxy) version of itself which will route 
incoming messages to the destination theatre where the 
real version of the actor exists. To avoid multi-hop 
communications, the address information of a moving 
actor is updated on the source theatre so as to mirror 
current actor location. 

CONSERVATIVE CONTROL ENGINE 

Control machines of a distributed system are required to 
coordinate each other according to a specific control 
structure in order to guarantee messages are ultimately 
executed in timestamp and causal order during a 
distributed simulation (Fujimoto, 2000). The actor 
model was implemented in a case on top of IEEE 1516 
standard HLA/RTI middleware (Cicirelli et al.,

2008)(Kuhl et al., 2000)(Pitch, on-line) whose in-built 
time management services can be exploited to achieve, 
e.g., a conservative distributed simulation engine like 
the one outlined in the following. 
A theatre naturally maps on to an HLA federate. It is 
assumed that the theatres/federates of an HLA 
federation are both time constrained and time
regulating. Each theatre asks RTI for a time 
advancement through Next-Event-Request-Available 
(NERA) calls (zero lookahead) (Kuhl et al., 2000). 
Simulation (or virtual) time grows according to model 
time. However, at a given model time, simultaneous or 
contemporary events are handled by a tie-breaking 
mechanism which ranks events on the basis of their 
generation. The generation concept is useful to ensure 
cause-effect relationships among messages. Of course, 
the effect has always to be processed after its cause. For 
example, contemporary messages created by an actor in 
the course of responding to an incoming message m, 
can be managed in the next generation with respect to 
the generation of m. The logical time presented to 
HLA/RTI through a NERA is actually a triple 
<virtual time, generation, step>. virtual-time is the 
model time. The (optional) step field acts as a least 
significant bit of generation. The control structure can 
use the step field to further discriminate some 
concurrent messages. For instance, a migration request 
can purposely be delayed at the end of current 
generation to ensure pending messages destined to the 
migrating actor are processed in the source theatre 
before migration. All of this can be achieved by 
scheduling the migration to occur at step=1 of current 
generation, and waiting from RTI the corresponding 
release of Time-Advance-Grant.  
A specialization of the above control strategy was 
implemented to support Parallel DEVS models 
(Cicirelli et al., 2008). Another adaptation is discussed 
later in this paper as part of distributing RePast. 

ACTOR_REPAST

A RePast model is partitioned into a collection of 
Logical Processes (LPs) which are allocated for the 
execution on different computing nodes of a networked 
system. The structure of nodes/LPs is summarized in 
Fig. 3. Each LP hosts a portion (region) of the 
environment and a subset of agents (mapped as actors). 
Agents can migrate from an LP to another at runtime. 
The following points out basic problems arising from 
partitioning and the particular software engineering 
solutions which were adopted to cope with them. 
Mapping issues essentially fall in three main areas: state 
space representation, scheduling system, conflict 
resolution on shared variables. 

Partitioning and Region Boundaries 

Partitioning mainly splits environmental spaces into 
regions assigned to distinct LPs. As suggested by Fig. 3, 
the RePast model is “instantiated” on each participating 



node. In reality, only the environment portion relevant 
to each particular node gets effectively instantiated at 
configuration time. Configuration will assign real or 
proxy versions of the agents (actors) to the various 
nodes which comprise the distributed system. Of 
course, the display facilities into each node are relative 
to the environment portion managed by the node. As a 
consequence of instantiating the “entire” model on 
every node, the Model object gets replicated on each 
node. However, only the Model object in the master
node (designated at configuration time) is allowed to 
start-up the simulation by scheduling the initial actions. 
In the following it is assumed that a RePast agent 
perceives only a part of its environment identifiable as 
its neighbourhood (or “sphere of influence” (Logan & 
Theodoropoulos, 2001)). Environmental region 
boundaries introduce shared variables for the agents 
belonging to adjacent LPs. A detailed look at region 
boundaries is exposed in Figures 4 and 5 where the 
border of two neighbouring LPs is shown. More 
complex boundary scenarios can occur in practice. In 
particular, Fig. 5) clarifies that the border region of an 
LP is in reality composed of two parts: a local border of 
the LP and a mirror border of the local border of the 
adjacent LP. The mirror parts are replicas of boundary 
space cells. A first problem raised by boundary regions 
is the requirement of keeping consistent local and 
mirrored parts. An update to a boundary local cell must 
be reflected also in the mirror part. A second problem 
concerns conflict resolution during concurrent accesses 
to shared space cells by agents executing in the two 
LPs. In the approach described in this paper, conflicts 
are resolved by harnessing mechanisms of the 
distributed simulation engine (see later in this paper). 

Mapping Design Rationale 
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Figure 3: Architecture of a networked RePast model 

Mapping design was guided by the goal of maintaining 
a distributed model almost transparent with respect to 
the sequential model. In the proposed mapping, local 
action executions behave exactly as in the non 
distributed version of the RePast model. However, 
remote action requests, i.e. when the target agent is 
located on a remote LP, are captured in actor messages 
and sent across the network. To achieve this effect, 
agents and model object of a RePast system are turned 
into actors. Since agents have no special constraints in 
RePast, a (minimal) requirement was added to develop 
agent classes and model classes respectively as heir of 
base classes ACTOR_AGENT and ACTOR_MODEL, 
which derive from Actor and provide relevant common 
behaviour. Action objects are transformed into 
messages and scheduled in the theatre’s control 
machine of the LP. A key point of ACTOR_REPAST is 
a transfer of control responsibilities from RePast to 
theatre control machine. Basically, RePast controller 
remains in charge of interactive events only. Simulation 
and time management services are instead provided by 
theatre control machines. 
To figure out common behaviour of actor-agents, the 
handler(incoming_message) method of 
ACTOR_AGENT is actually responsible of invoking a 
specific method (whose name is stored in the incoming 
message) of the corresponding RePast agent, with the 
help of Java reflection. As another example, when a 
message is up to be dispatched to a forwarder, i.e. a 
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proxy of a moved actor, the behaviour in 
ACTOR_AGENT manages to route the message to the 
corresponding remote actor. Similar behaviour is 
provided by ACTOR_MODEL. It is worth noting that a 
model object does not require migration. 
A more general task is accomplished by interceptors,
i.e. entities which intercept method calls and 
superimpose to them suitable behaviour, with the goal 
of minimizing “code intrusion” in the original RePast 
model. Interceptors are realized as cross-cutting
concerns or aspects (Kiczales et al., 2001) of AspectJ 
(AspectJ, on-line).
An aspect controls the execution of the chain of method 
calls triggered by dispatching an action. When the target 
agent of a method invocation is local, the aspect lets the 
agent to execute the method call in the normal way. In 
the case the receiver is remote, the aspect replaces the 
standard behaviour of method call by building a 
message, filling it with information about the requested 
method, and sending the message over the network. A 
second aspect is concerned specifically with capturing 
action scheduling requests in the RePast model and 
redirecting them to the theatre control machine. A third 
aspect is used during the start-up phase of a model to 
inhibit initial action scheduling in non master LPs. 
Therefore, the Model object really executes only in the 
master LP. 
An important actor in every LP, created at start-up time, 
is the “environment actor” (EnvActor) which knows 
about configuration information (taken from a 
configuration file) of the entire RePast model, and 
offers a common interface to the model for accessing 
spaces and environments. For example, the idea that 
every node/LP is an instantiation of the “entire” model 
implies that into each sub-model assigned to an LP be 
present the “global view” to the environment. The 
transformation of positional coordinates for a situated 
agent from the global-view to the local-view 
corresponding to the portion of the environment 
effectively managed by the LP is accomplished by the 
EnvActor. A second responsibility of EnvActor is that 
of propagating to its peer(s) in neighbouring LP(s) the 
updates of agents in the local border of the belonging 
LP. Similarly, when an agent moves to the border 
region, the EnvActor is in charge to migrate the agent, if 
required, to a neighbour LP. EnvActor is also a key for 
the diffuse/update/redraw processes. In particular, when 
the model in the master node raises a 
diffuse/update/redraw operation, the request is 
intercepted and a corresponding message is created and 
sent to all the LPs, which is heard by the EnvActors. An 
EnvActor then acts so as to actuate the 
diffuse/update/redraw operation in the local 
environment.  

Distributed Simulation Engine and Conflict 
Management

An HLA distributed RePast model is governed by an 
adaptation of the conservative simulation engine 

previously reported in this paper. The adaptation 
concerns a particular use of both the generation and 
step fields of the time notion presented to RTI, with the 
goal of controlling contemporary messages occurring at 
a given simulation time. More precisely, the generation 
field is used to resolve conflicts on shared environment 
border objects by constraining adjacent LPs to make 
requests to conflicting objects at different real times. All 
of this is achieved by assigning to conflicting agents a 
different occurrence generation. The step field, instead, 
is devoted, at each generation of current time or to next 
simulation time, to ensure that update operations to 
border cells are definitely propagated to adjacent LPs 
before such updates are visible to the model. Toward 
this, all updates to border cells are captured by an 
EnvActor and collected into a bag message, one for 
each distinct adjacent LP. Each bag message is sent 
across the network to be processed at step=1 of current 
generation. Therefore, when bags are eventually 
received and processed by corresponding EnvActors, 
their effect will only be heard at the next generation or 
next tick. Also at step=1 are realized agent migrations. 
At the beginning of any simulation time, a method of 
the EnvAct is launched which analyzes the border area 
and assigns to potentially conflicting agents different 
generation numbers. These numbers are stored and will 
be used for scheduling, at current simulation time, 
action messages or method invocation messages 
triggered by an action, directed to border agents. It is 
worth noting that agent population of the border regions 
of two adjacent LPs is identical. Moreover, the 
algorithm is run at both sides of the adjacent LPs and 
makes an identical assignment to the same agents of the 
border area. In the following, the operation of the 
algorithm will be sketched in the hypothesis of having 
agents which can move to a next position with unit 
distance. Fig. 6) shows an example of border 
(potentially) conflicting agents. Recall that a border 
region (see also Figg. 4 and 5) is composed of two sub 
regions, one corresponding to a local area of the LP, the 
other to a mirror of the local area of adjacent LP. In 
addition, in the hypothesis of unit-step movements, the 
two sub-regions are concretely two columns wide. Fig. 
7) depicts a worst case situation of conflicts where 7 

Figure 6: Example of (potentially) conflicting agents 



generation numbers are sufficient for resolving 
conflicts.  
The algorithm proceeds by scanning the complete 
border area of the LP starting from the upper left corner 
down to (in row order) the right corner in last row. For 
each agent (denoted ? in Fig 7)), its relevant 
neighbourhood is examined. For the agent ? in Fig. 7) 
the relevant neighbourhood is represented by the dashed 
rectangle. In fact, the lower part of the neighbourhood is 
still not assigned, and the upper right part is composed 
of agents belonging to the same adjacent LP. In the 
worst case scenario all previously assigned agents in the 
relevant neighbourhood have received distinct 
generation numbers. Generations of assigned agents in 
the relevant neighbourhood are marked as unavailable 
for the current agent. Then a generation, randomly 
chosen in the set of available generations, is assigned to 
current agent. The algorithm naturally reuses 
generations and this is important both to keep low the 
number of exploited generations but also to increase the 
concurrency degree of border agents. Determinacy of 
the algorithm (at both sides of adjacent LPs) relies on a 
pseudo-random generator whose seed, at each choice, is 
defined in terms of current simulation time and the 
agent environmental position. Moreover, determinacy is 
also ensured by the scanning order of the border area. 
It should be noted that border agents without conflicts 
are always assigned the first generation (numbered 0) of 
a simulation time. In addition, both local agents and 
border local agents without conflicts are handled 
exactly in the same way. 

An Example 

ACTOR_REPAST was preliminary tested by using 
some sequential models available in the software 
distribution of RePast version 3. The following 
demonstrates ACTOR_REPAST operation by 
distributing the Swarm-based HeatBug multi-agent 
model, which is representative of a class of models 

where the environment component admits both 
diffusive and agent object spaces. The system model 
logically consists of two parallel grids: the first one is 
populated by heat bug agents. The other grid is 
employed for diffusing from cell to cell the heat owned 
by bugs. The diffusion logic is already available in the 
implementation of RePast diffusive spaces. Heat bugs 
are simple agents which absorb and expel heat. Heat 
bugs have an ideal temperature and will move in an 
attempt to achieve this temperature.  

?

?

?

generation already assigned

generation not yet assigned

current agent considered

potential conflicts with

Figure 7: A worst case conflict situation 

Figure 8: A screenshot from sequential RePast 
simulation of the HeatBug model 

Fig. 8 shows a screenshot taken from RePast sequential 
model execution. As one can see, bugs tends definitely 
to group so as to reach their ideal temperature. 

For demonstration purposes, the sequential HeatBug 
model was partitioned into two LPs and executed, under 
ACTOR_REPAST, on two theatres/federates on top of 
HLA pRTI 1516 (Pitch, on-line). The two federate are 
allocated to two distinct physical processors consisting 
of WinXP platforms, Pentium IV 3.4GHz, 1GB RAM, 

Figure 9: A screenshot of the two display taken from 
ACTOR_REPAST



interconnected by a 1Gb Ethernet switch. The 
distributed system naturally exhibits agent migration 
from an LP to the other. The system was configured (in 
an XML configuration file, one per LP) with such 
information as: (a) the list of LPs, each one specified by 
<IP address, port>, (b) the master LP identification, (c) 
the topology of the distributed model, with definition of 
LP adjacency and size of the border regions. Fig. 9 
shows the display produced by the two LPs, which 
confirm the basic behaviour of the bug agents. 

Other architectural scenarios are possible specifically 
for the visualization purposes. For example, as in (Low 
et al., 2007) one single federate (time constrained but 
not time regulating) could be dedicated only to 
visualization. 

Conclusions

This paper describes an approach and prototype 
implementation to distributing RePast (Collier, on-line) 
simulations. The realization, ACTOR_REPAST, owes 
to a lean and lightweight actor framework in Java which 
allows customization of the simulation control engine. 
Preliminary experiments are being carried out using the 
HLA/RTI 1516 IEEE standard (Kuhl et al., 2000)(Pitch, 
on-line). Other distributed and transport layers, though, 
are possible. 

Prosecution work is geared at: 

improving the transformation from sequential 
RePast models to corresponding distributed 
versions through a systematic exploitation of Java 
text annotations which would help tagging source 
classes and methods and hiding behind annotation 
management the necessary yet transparent code 
changes
optimizing the algorithm which assigns generations 
to conflicting agents on border regions. More in 
general, a fundamental open issue concerns the 
evaluation of different organizations of the 
environment component of multi-agent systems 
(Logan & Theodoropoulos, 2001) 
using ACTOR_REPAST in very complex agent-
based models with the goal of quantifying 
specifically the simulation performance towards a 
comparison with the implementation described in 
(Minson & Theodoropoulos, 2008). 
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