
+++ Mult i -Aspect Model ing in Equation-Based Languages +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

54

Multi-Aspect Modeling in Equation-Based Languages

Dirk Zimmer, Inst. of Computational Science, ETH Zürich, Switzerland, dzimmer@inf.ethz.ch

Current equation-based modeling languages are often confronted with tasks that partly diverge from the
original intended application area. This results out of an increasing diversity of modeling aspects. This paper
briefly describes the needs and the current handling of multi-aspect modeling in different modeling lan-
guages with a strong emphasis on Modelica. Furthermore a small number of language constructs is sug-
gested that enable a better integration of multiple aspects into the main-language. An exemplary implementa-
tion of these improvements is provided within the framework of Sol, a derivative language of Modelica.

Motivation
Contemporary equation-based modeling languages
are mostly embedded in graphical modeling environ-
ments and simulators that feature various types of
datarepresentation. Let that be for instance a 3D-
visualization or a sound module. Consequently the
corresponding models are accompanied by a lot of
information that describes abundantly more than the
actual physical model. This information belongs to
other aspects, such as the modeling of the icono-
graphic representation in the schematic editor or the
preference of certain numerical simulation tech-
niques. Hence, a contemporary modeler has to cope
with many multiple aspects.

In many modeling languages such kind of informa-
tion is stored outside the actual modeling files, often
in proprietary form that is not part of any standard.
But in Modelica [6], one of the most important and
powerful EOO-languages, the situation has developed
in a different way. Although the language has been
designed primarily on the basis of equations, the
model-files may also contain information that is not
directly related to the algebraic part. Within the
framework of Modelica, the most important aspects
could be categorized as follows:

Physical modeling: The modeling of the physical
processes that are based on differential-algebraic
equations (DAEs). This modeling-aspect is also
denoted as the primary aspect.
System hints: The supply of hints or information
for the simulation-system. This concerns for ex-
ample hints for the selection of state-variables or
start values for the initialization problem.
3D Visualization: Description of corresponding
3Dentities that enable a visualization of the mod-
els

GUI-Representation: Description of an icono-
graphic representation for the graphical user-
interface (GUI) of the modeling environment.
Documentation: Additional documentation that
addresses to potential users or developers.

We will use this classification for further analysis,
since it covers most of the typical applications fairly
well. Nevertheless, this classification of modeling
aspects is of course arbitrary, like any other would be.

Let us analyze the distribution of these aspects with
respect to the amount of code that is needed for them.
Figure 1 presents the corresponding pie-charts of
three exemplary models of the Modelica standard
library. These are the “FixedTranslation” component
for the MultiBodylibrary, the PMOS model of the
electrical package and the “Pump and Valve” model
in the Thermal library. The first two of them represent
single components; the latter one is a closed example
system.

In the first step of data-retrieval, all unnecessary
formatting has been removed from the textual model-
files. For each of these models, the remaining content
has then been manually categorized according to the
classification presented above. The ratio of each as-
pect is determined by counting the number of charac-
ters that have been used to model the corresponding
aspect.

The results reveal that the weight of the primary as-
pect cannot be stated to be generally predominant.
The distribution varies drastically from model to
model. It varies from only 14% to 53% for these
examples.

Yet one shall be careful by doing an interpretation of
the pie-charts in figure 1. The weight of an aspect just
expresses the amount of modeling code with respect
to the complete model. This does not necessarily

+++ Mult i -Aspect Model ing in Equation-Based Languages +++ t

55

N
SN

E 18/2, A
ugust 2008

correlate with the invested effort of the modeler and
even less it does correlate with the overall importance
of an aspect. It needs to be considered that code for
the GUIrepresentation is mostly computer-generated
code that naturally tends to be lengthy. On the other
hand side, the code that belongs to the primary aspect
of equation-based modeling is often surprisingly
short. This is due to the fact that this represents the
primary strength of Modelica. The language is opti-
mized to those concerns and enables convenient and
precise formulations. Unfortunately, this can hardly
be said about the other aspects in our classification.

The discussion about the Modelica and other
EOOlanguage is often constrained to its primary
aspect of physical modeling. But in typical models of
the Modelica standard-library this primary aspect
often covers less than 25% of the complete modeling
code. Any meaningful interpretation of figure 1 re-
veals that the disregard on other modeling aspects is
most likely inappropriate especially when we are
concerned with language design. For any modeling
language that owns the ambition to offer a compre-
hensive modeling-tool, the ability to cope with multi-
ple aspects has become a definite prerequisite.

It is the aim of this paper to improve modeling lan-
guages with respect to these concerns. To this end, we
will suggest certain language constructs that we have
implemented in our own modeling language: Sol. The
application of these constructs will be demonstrated
by a small set of examples. But first of all, let us take
a look at the current language constructs in Modelica
and other modeling languages.

1 Current handling of multiple aspects

1.1 Situation in VHDL-AMS, Spice, gPROMS,
Chi

The need for multiple aspects originates primarily
from industrial applications. Hence this topic is often
not concerned for languages that have a strong aca-
demic appeal. One example for such a language is
Chi [3]. For the sake of simplicity and clarity, this
language is very formal and maintains its focus on the
primary modeling aspect.

In contrast, languages like SPICE3 [9] or VHDL-
AMS [1,10] and Verilog-AMS[12] are widely used in
industry. Unlike Modelica, these languages do typi-
cally not integrate graphical information into their
models. The associated information that describes the
schematic diagram and the model icons is often sepa-

rately stored, often in a proprietary format. For in-
stance, the commercial product Simplorer [11] gener-
ates its own proprietary files for the model-icons. The
corresponding VHDL-code does not relate to these
files.
However, different solutions are possible: both AM-
Slanguages contain a syntax-definition for attributes.
These can be used to store arbitrary information that
relate to certain model-items. Since there is only a
small-number of predefined attributes (as unit de-
scriptors, for instance), most of the attributes will
have to be specified by the corresponding processing
tools.
Furthermore these two languages and SPICE3 own an
extensive set of predefined keywords. This way it is
possible to define output variables or to configure
simulation parameters. The situation is similar in
ABACUSS II [5], which is the predecessor to
gPROMS [2]. This language offers a set of predefined
sections that address certain aspects of typical simula-
tion run like initialization or output.

1.2 Multiple aspects in Modelica
The Modelica language definition contains also a
number of keywords that enable the modeler to de-
scribe certain aspects of his model. For instance, the
attributes stateSelect or fixed represent system-
hints for the simulator. In contrast to other modeling
languages, Modelica introduced the concept of anno-
tations. These items are placed within the definitions
of models or the declarations of members and contain
content that directly relates on them. Annotations are
widely used within the framework of Modelica. The
example below presents an annotation that describes
the position, size and orientation of the capacitor icon
in a graphic diagram window.

1 Capacitor C1(C=c1) “Main capacitor”
2 annotation (extent =[50, -30; 70, -10],
3 rotation=270);

Listing 1. Use of an annotation in Modelica

Since annotations are placed alongside the main
modeling code, they inflate the textual description
and tend to spoil the overall clarity and beauty. A lot
of annotations contain also computer-generated code
that hardly will be interesting for a human reader.
Thus, typical Modelica editors mostly hide annota-
tions and make them only visible at specific demand
of the user. However, this selection of code-visibility
comes with a price. First it reduces the convenience
of textual editing, since cut, copy and paste opera-

+++ Mult i -Aspect Model ing in Equation-Based Languages +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

56

tions may involve hidden annotations. Second, the
selection of visibility happens on a syntactical level
not on a semantic level.
Storing data for GUI-representation or other specific
hints and information has been initially a minor topic
in the design process of Modelica. Still, there was a
compelling need for it. To meet these urgent require-
ments, the Modelica community decided to introduce
the concept of annotations into the modeling lan-
guage. Already the first language definition of Mode-
lica contained the concept of annotations and also
presented some applications for GUI-representation
and documentation. The corresponding annotations
have been used as a quasi-standard despite the fact
that they only have been weakly documented. Anno-
tations served also as an official back-door entrance
to non-official, proprietary functionalities. Since it
happens frequently in software engineering that cer-
tain things just grow unexpectedly, many further
annotations have been introduced meanwhile. Nowa-
days, annotations contain a lot of crucial content that
revealed to be almost indispensable for the generation
of effective portable code. Therefore it is no surprise
that just recently a large set of annotations had to be
officially included in version 3 of the Modelica lan-
guage definition [8]. This way, what started out as a
small, local and semi-proprietary solution, became
now a large part in the official Modelica standard.

To store the information that belongs to certain as-
pects, different approaches are used in Modelica and
often more than one language-tool is involved. The
following list provides a brief overview on the current
mixture of data representation:

The physics of a model is described by DAEs
and is naturally placed in the main Modelica
model.

Hints or information for the simulation-system
are mostly also part of the main Modelica lan-
guage but some of them have to be included in
special annotations.
Information that is used by the GUI is mostly in-
cluded in annotations. But the GUI uses also uses
information from textual descriptions that are
part of the main-language.
The description of 3D-visualization is done by
dummy-models within main-Modelica code.
Documentation may be extracted from the tex-
tual descriptions that accompany declarations
and definitions, but further documentation shall
be provided by integrating HTML-code as a text-
string into a special annotation. Other annota-
tions store information about the author and the
library version.

1.3 Downfalls of the current situation
Obviously, this fuzzy mixture of writings and lan-
guage constructs reveals the lack of a clear, concep-
tual approach. As nice as the idea of annotations ap-
pears in the first moment, it also incorporates a num-
ber of problematic insufficiencies.

The major drawback is that only pre-thought func-
tionalities are applicable. The modeler has no means
to define annotation by its own or to adapt given
constructs to his personal demands. Furthermore,
syntax and semantics of each annotation needs to be
defined in the language definition. Since there is
always a demand for new functionalities, the number
of annotations will continue to increase. This leads to
a foreseeable inflation of the Modelica language
definition.

Figure 1. Code distribution of aspects in Modelica models.

+++ Mult i -Aspect Model ing in Equation-Based Languages +++ t

57

N
SN

E 18/2, A
ugust 2008

1.4 Lack of expressiveness
These downfalls originate from a lack of expressive-
ness in the original Modelica language. Whenever
one is concerned with language design [7], it is im-
portant to repetitively ask some fundamental ques-
tions. How can it be that a language so powerful to
state highly complicated DAE-systems is unable to
describe a rectangle belonging to an iconographic
representation? Why do we need annotations at all?

These questions are clearly justified and point to the
fact that the development scope of the Modelica lan-
guage might have been too narrowly focused on the
equation based part. Therefore, extension that would
have been of great help in other domains, have been
left out:

There is no suitable language construct that en-
ables the declaration of an interface to an envi-
ronment that corresponds to a certain aspect.
Instances of objects cannot be declared anony-
mously within a model.
The language provides no tool for the user that
enables him or her to group statements into se-
mantic entities.
The language offers no means to refer on other
(named) objects, neither statically nor dynami-
cally.

By removing these four lacks, we will demonstrate
that the use of annotations can be completely avoided
and that the declarative modeling of multiple aspects
can be handled in a conceptually clear and concise
manner. The following section will discuss this in
more detail and provide corresponding examples.

2 Multi-aspect modeling in Sol
Sol is a language primarily conceived for research
purposes. It owns a relatively simple grammar (see
appendix) that is similar to Modelica. Its major aim is
to enable the future handling of variable-structure
systems. To this end, a number of fundamental con-
cepts had to be revised and new tools had to be intro-
duced into the language. The methods that finally
have become available suit also a better modeling of
multiple aspects. These methods and their application
shall now be presented.

2.1 Starting from an example
In prior publications on Sol [13,14] the “Machine”
model has been introduced as standard example. It
contains a simple structural change and consists of an

engine that drives a flywheel. In the middle there is a
simple gear box. Two versions of an engine are avail-
able: The first model Engine1 applies a constant
torque. In the second model Engine2, the torque is
dependent on the positional state, roughly emulating a
piston-engine. Our intention is to use the latter, more
detailed model at the machine’s start and to switch to
the simpler, former model as soon as the wheel’s
inertia starts to flatten out the fluctuation of the
torque. This exchange of the engine model represents
a simple structural change on run-time.

1 model Machine
2 implementation:
3 static Mechanics.FlyWheel F{inertia<<1};
4 static Mechanics.Gear G{ratio<<1.8};
5 dynamic Mechanics.Engine2 E {meanT<<10};
6
7 connection c1(a << G.f2, b << F.f);
8 connection c2(a << E.f, b << G.f1);
9 when F.w > 40 then

10 E <- Mechanics.Engine1{meanT << 10};
11 end;
12 end Machine;

Listing 2. Simple machine model in Sol.

The first three lines of the implementation declare the
three components of the machine: fly-wheel, gear-box
and the engine. The code for the corresponding con-
nections immediately follows. The third component
that represents the engine is declared dynamically.
This means that the binding of the corresponding
identifier to its instance is not fixed and a new in-
stance can be assigned at an event. This is exactly
what happens in the following declaration of the
when-clause. A new engine of compatible type is
declared and transmitted to the identifier E. The old
engine-model is thereby implicitly removed and the
corresponding equations are automatically updated.
This model contains the physics part only. We now
want to add other aspects to the model. We would like
to add a small documentation and to specify the simu-
lation parameters. Furthermore we want to add in-
formation about model’s graphical representation in a
potential, graphical user-interface. The following sub-
sections will present the necessary means and their
step by step application.

2.2 Environment packages and models
Many modeling aspects refer to an external environ-
ment that is supposed to process the exposed informa-
tion. This environment may be the GUI of the model-
ing environment or a simulator program. Therefore it
needs to be specified how a model can address a

+++ Mult i -Aspect Model ing in Equation-Based Languages +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

58

potential environment. To this end, Sol features envi-
ronment packages and models that enable to define an
appropriate interface. Let’s take a look at an example:

1 environment package Documentation
2 model Author
3 interface:
4 parameter string name;
5 end Author;
6 model Version
7 interface:
8 parameter string v;
9 end Version;

10 model ExternalDoc
11 interface:
12 parameter string fname;
13 end ExternalDoc;
14 end Documentation

Listing 3. Environment package.

This example consists in a package that contains
models which can be used to store relevant informa-
tion for the documentation of arbitrary models. The
keyword environment does specify that the models
of the corresponding package address the environ-
ment and are therefore not self-contained. They
merely offer an interface instead. The actual imple-
mentation and semantics of the package remains to be
specified by the environment itself.

It is important to see that stipulating the semantics
would be a misleading and even futile approach.
Different environments will inevitable have to feature
different interpretations of the data. For instance, a
pure simulator will complete ignore the “Documen-
tion” models whereas a modeling editor may choose
to generate an HTML-code out of it. Nevertheless it
is very meaningful to specify a uniform interface
within the language. This provides the modeler with
an overview of the available functionalities. Further-
more the modeler may choose to customize the inter-
face for its personal demands using the available
object-oriented means of the Sol-language.

2.3 Anonymous declaration
The language Sol enables the modeler to anony-
mously declare models anywhere in the implementa-
tion. The parameters can be accessed by curly brack-
ets whereas certain variable members of the model’s
interface are accessible by round brackets. This way,
the modeler can address its environment in a conven-
ient way just by declaring anonymous models of the
corresponding package. An application of this meth-
odology is presented below in listing 4 for the Ma-
chine model.

Anonymous declarations are an important element of
Sol, since they enable the modeler to create new in-
stances on the fly, for example at the execution of an
event. This is very helpful for variable-structure sys-
tems. However, within the context of multi-aspect
modeling, anonymous declarations serve primarily
convenience. It is of course possible to assign names
to each of the documentation items. They can be
declared with an identifier like any other model, but
this is mostly superfluous and would lead to bulky
formulations.

1 model Machine
2 implementation:
3 […]
4 when F.w > 40 then
5 E <- Mechanics.Engine1{meanT << 10 };
6 end;
7 Documentation.Author{name<<"DirkZimmer"};
8 Documentation.Version{v << "1.0");
9 Documentation.ExternalDoc

 {fname<<"MachineDoc.html"};
10 end Machine;

Listing 4. Use of anonymous declarations.

2.4 Model sections
Sol has been extended by the option for the modeler
to define sections using an arbitrary package name.
Sections incorporate three advantages: One, code can
be structured into semantic entities. Two, sections add
convenience, since the sub-models of the correspond-
ing package can now be directly accessed. Three,
section enable an intuitive control of visibility. A
modern text editor may now hide uninteresting sec-
tions. The user may then be enabled to toggle the
visibility according to its current interests. This way,
the visibility is controlled by semantic criteria and not
by syntactical or technical terms.

1 model Machine
2 implementation:
3 […]
4 when F.w > 40 then
5 E <- Mechanics.Engine1{meanT << 10 };
6 end;
7 section Documentation:
8 Author{name << "Dirk Zimmer"};
9 Version{v << "1.0"};

10 ExternalDoc{fname<<"MachineDoc.html"};
11 end;
12 section Simulator:
13 IntegrationTime{t << 10.0};
14 IntegrationMethod{method<<"euler",
15 step << "fixed", value << 0.01};
16 end;
17 end Machine;

Listing 5. Sections

+++ Mult i -Aspect Model ing in Equation-Based Languages +++ t

59

N
SN

E 18/2, A
ugust 2008

The documentation part of the machine model has
now been wrapped within a section. A second section
addresses another environment called “Simulator”
and shows an exemplary specification of some simu-
lation parameters. Both sections could be hidden by
an editor if the user has no interest in their content.

2.5 Referencing of model instances
The provided methods so far, are fully sufficient for
simple application cases. The proper implementation
of a GUI-representation is yet a more complex task
that demands a more elaborate solution. In the classic
GUI-framework for object-oriented modeling, each
model owns an icon and has a diagram window that
depicts its composition from sub-models. Figure 2
displays the aspired diagram of the exemplary ma-
chine-model that contains the icons of its three sub-
models. The connections are represented by single
lines. The following paragraphs outline one possible
solution in Sol.

The problem is that many models will own GUI in-
formation but only the information of certain model
instances shall be acquired. This originates in the
need for language constructs that enable hierarchical
or even mutual referencing between model-instances.
Sol meets these requirements by giving model-
instances a first-class status [4]. This means that
model-instances cannot only be declared anony-
mously but also these instances can be transmitted to
other members or even to parameters.

This capability had already been applied in listing 2
to model the structural change of the engine. The
statement

E <- Mechanics.Engine1(meanT << 10)

declares anonymously an instance of the model “En-
gine1” and then transmits this instance to the dynamic
member E. Hence the binding of the identifier to its
instance gets re-determined which causes a structural
change.

A similar pattern will occur in our solution for the
GUI-design. Let us take a look at the corresponding
environment-package.

environment package Graphics
o model Line
o model Rectangle
o model Ellipse
o model Canvas

model Line
model Rectangle
model Ellipse

o model GraphicModel
Figure 3. Structure of the Graphics package.

Figure 3 gives a structural overview of the environ-
ment package Graphics. This package provides ru-
dimentary tools for the design of model-icons and
diagrams. These are represented by models for rec-
tangles, ellipses and lines. The package contains also
a Canvas model that enables drawings on a local
canvas. Furthermore the package contains a partial
model GraphicModel that serves as template for all
models that support a graphical GUI-representation.
It defines two sub-models: one for the icon-
representation and one for the diagram representation.
Models that own a graphical representation are then
supposed to inherit this template model. Please note
that the icon has a canvas model as parameter.

1 model GraphicModel
2 interface:
3 model Icon
4 interface:
5 parameter Canvas c;
6 end Icon;
7 model Diagram
8 end Diagram;
9 end GraphicModel;

Listing 6. A template for graphical models.

A graphical modeling environment may now elect to
instantiate one of these sub-models. This will cause
further instantiations of models belonging to the
“Graphics”-package that provide the graphical envi-
ronment with the necessary information. Below we
present an exemplary icon model for our engine that
corresponds to the icon in Figure 2.
10 model Engine2 extends Interfaces.OneFlange;
11 // that extends GraphicalModel
12 interface:
13 parameter Real meanT;
14 redefine model Icon
15 implementation:
16 c.Ellipse(sx<<0.0, sy<<0.2,

 dx<<0.6, dy<<0.8);
17 c.Rectangle(sx<<0.9, sy<<0.45,

 dx<<1.0, dy<<0.55);
18 c.Line(sx<<0.3, sy<<0.3,

 dx<<0.9, dy<<0.5);

Figure 2. Diagram representation

+++ Mult i -Aspect Model ing in Equation-Based Languages +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

60

19 end Icon;
20 implementation:
21 […]
22 end Engine2;

Listing 7. An implementation of an icon

The icon of listing 7 “paints” on a local canvas that is
specified by the corresponding parameter c. The
transmission of this parameter is demonstrated in
Listing 8 that represents the whole diagram of figure
2. This model declares the icons of its sub-models
and creates a local canvas for each of them by an
anonymous declaration. The two connections c1 and
c2 also own a Line-model for their graphical repre-
sentation.

1 model Machine extends Graphics.GraphicalModel;
2 interface:
3 redefine model Diagram
4 implementation:
5 section Graphics:
6 F.Icon{c<<Canvas{x<<10, y<<10,

 w<<10, h<<10}};
7 G.Icon{c<<Canvas{x<<30, y<<10,

 w<<10, h<<10}};
8 E.Icon{c<<Canvas{x<<50, y<<10,

 w<<10, h<<10}};
9 c1.Line(sx<<20, sy<<15,

 dx<<30, dy<<15);
10 c2.Line(sx<<40, sy<<15,

 dx<<50, dy<<15);
11 c.Rectangle(0,0,70,30);
12 end;
13 end Diagram;
14 implementation:
15 […]
16 section Documentation:
17 […]
18 section Simulator:
19 […]
20 end Machine;

Listing 8. An implementation of a diagram

The “GraphicalModel” involves another key-concept
of Sol. The language enables the modeler to define
models also as member-models in the interface sec-
tion. When instantiated, these models belong to their
corresponding instance and are therefore not inde-
pendent. This means that the Diagram or Icon model
always refer to their corresponding super-instance.
Consequently, they also have access to all the relevant
parameters and can adapt.

Please note that the resulting GUI-models are poten-
tially much more powerful than their annotation-
based counterparts in Modelica. All the modeling
power of Sol is now also available for the graphical

models. For instance, only a minimal effort is needed
to make the look of an icon adapt to the values of a
model-parameter. No further language construct
would be required. A model could even feature “ac-
tive” icons that display the current system-state and
hence enable a partial animation of the system within
the diagram-window. Even the structural change of
the machine-model could be made visible in the dia-
gram during the simulation. Such extensions (if de-
sired or not) become now feasible and demonstrate
the flexibility of this approach.

However, the provided examples are merely a sugges-
tion and represent just one possible and convenient
solution within the framework of Sol. There are also
many other language constructs that would lead to
feasible or even more general solutions. Many of
them could easily be integrated into equation-based
languages. Some of them are featured in Sol. With
respect to Modelica, this is unfortunately not the case
yet.

3 Conclusion
Handling complexity in a convenient manner and
organizing modeling knowledge in a proper form
have always been primary motivations for the design
of modeling languages. The introduction of object-
oriented mechanism has yield to a remarkable success
and drastically simplified the modeling of complex
systems. Object-orientation essentially enabled the
modeler to break models into different levels of ab-
straction. Hence, the knowledge could be organized
with respect to depth.

However, certain models combine many different
aspects that have to be linked together at a top level.
Here the knowledge needs to be organized with re-
spect to breadth. For those tasks, current mechanisms
in EOOlanguages are underdeveloped.

This paper focuses on four conceptual language con-
structs for EOO-languages that in combination drasti-
cally increase the ability to deal with multiple as-
pects. These are:

1. Environment-packages that enable the as-
pectspecific declaration of interfaces.

2. Anonymous declarations of model instances.
3. Sections can be used to form semantic entities

and control visibility.
4. Referencing mechanisms between model-

instances. (In Sol, these mechanisms are pro-

+++ Mult i -Aspect Model ing in Equation-Based Languages +++ t

61

N
SN

E 18/2, A
ugust 2008

vided by giving model-instances a first class
status and enabling socalled member-models.)

The proposed constructs have been implemented in
our experimental language Sol and their application is
demonstrated by a set of corresponding examples.
The resulting advantages of this approach are mani-
fold:

The methods how to address a potential envi-
ronment are made available within the language.
The modeler may browse through the provided
functionalities like she or he is used to do it for
standard libraries.
The existing object-oriented mechanisms can be
applied on these environment-models. Hence the
modeler can customize the interface for its per-
sonal demands and is not constrained to a prede-
fined solution.
Anonymous declarations enable a convenient us-
age of these models, anywhere in the implemen-
tation. The resulting statements are naturally
readable and integrate nicely into the primary,
equation-based part.
User-defined sections help to organize the model
and offer an excellent way to filter for certain
modeling aspects. Uninteresting information may
consequently be hidden without hindering the ed-
iting of the code. The filtering criteria are not
based on syntax anymore, there are based on se-
mantic entities that have been formed by the
modelers themselves. Furthermore sections en-
able a clear separation of computer generated
modeling code.
The embedment into an existing object-oriented
framework enables a uniform approach for a
wider range of modeling aspects. Furthermore, it
increases the interoperability between these as-
pects.

However, the most important conclusion is that the
ability of the language to help and to extend itself by
its own means has been drastically improved with
respect to other languages like Modelica. Further
development is now possible within the language
does not require a constant update and growth of the
language definition.

4 Appendix
The following listing of rules in extended Backus-
Naur form (EBNF) presents an updated version of the
core grammar for the Sol modeling language. The
rules are ordered in a top-down manner listing the

high-level constructs first and breaking them down
into simpler ones. Non-terminal symbols start with a
capital letter and are written in bold. Terminal sym-
bols are written in small letters. Special terminal
operator signs are marked by quotation-marks. Rules
may wrap over several lines.
The inserted modifications concern solely the model-
ing of multiple aspects. With respect to a prior ver-
sion of the grammar [13], the changes are minor and
concern only 3 rules: ModelSpec, Statement and
Section.

Model = ModelSpec Id Header
[Interface] [Implemen] end Id ";"

ModelSpec = [redefine | partial | environment]
 (model | package | connector | record)

Header = {Extension} {Define} {Model}
Extension = extends Designator ";"
Define = define (Const | Designator) as Id ";"
Interface = interface ":" {(IDecl | ParDecl) ";"} {Model}
ParDecl = parameter Decl
IDecl = [redelcare] LinkSpec [IOSpec] [CSpec] Decl
ConSpec = potential | flow
IOSpec = in | out

Implemen = implementation ":" StmtList
StmtList = [Statement {";" Statement }]
Statement = [Section | Condition | Event |
 Declaration | Relation]

Section = section Designator ":" StmtList end [section]
Condition = if Expression then StmtList ElseCond
ElseCond = (else Condition)|([else then StmtList]
 end [if])
Event = when Expression then StmtList ElseEvent
ElseEvent = (else Event)|([else then StmtList]
 end [when]
Declaration = [redeclare] LinkSpec Decl
LinkSpec = static | dynamic
Decl = Designator Id [ParList]

Relation = Expression Rhs
Rhs = ("=" | "<<" | "<-") Expression

ParList = "{" [Designator Rhs {"," Designator Rhs }] "}"
InList = "(" [Designator Rhs {"," Designator Rhs }] ")"

Expression = Comparis {(and|or) Comparis }
Comparis = Term [("<"|"<="|"=="|"<>"|">="|">")Term]
Term = Product {("+" | "-") Product }
Product = Power { ("*" | "/") Power }
Power = SElement {"^" SElement }
SElement = ["+" | "-" | not] Element
Element = Const | Designator [InList] [ParList]
 | "(" Expression ")"
Designator = Id {"." Id }
Id = Letter {Digit | Letter}
Const = Number | Text | true | false
Number = ["+"|"-"] Digit { Digit }
 ["." {Digit }] [e ["+"|"-"] Digit { Digit }]
Text = "\"" {any character} "\""
Letter = "a" | ... | "z" | "A" | ... | "Z" | "_"
Digit = "0" | ... | "9"

Listing 9. EBNF grammar of Sol

+++ Mult i -Aspect Model ing in Equation-Based Languages +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

62

Acknowledgements
I would like to thank Prof. Dr. François E. Cellier for
his helpful advice and support. This research project
is sponsored by the Swiss National Science Founda-
tion (SNF Project No. 200021-117619/1).

References
[1] P.J. Ashenden, G.D. Peterson, D.A. Teegarden. The

System Designer’s Guide to VHDL-AMS Morgan
Kaufmann Publishers. 2002.

[2] P.I. Barton and C.C. Pantelides. Modeling of Com-
bined Discrete/Continuous Processes. American Insti-
tute of Chemical Engineers Journal. 40, pp.966-979,
1994.

[3] D. A. van Beek, J.E. Rooda. Languages and Applica-
tions in Hybrid Modelling and Simulation: Position-
ing of Chi. Control Engineering Practice, 8(1), pp.81-
91, 2000

[4] R. Burstall. Christopher Strachey – Understanding
Programming Languages. Higher-Order and Sym-
bolic Computation 13:52, 2000.

[5] J.A. Clabaugh, ABACUSS II Syntax Manual, Techni-
cal Report. Massachusetts Institute of Technology.
http://yoric.mit.edu/abacuss2/syntax.html. 2001.

[6] P. Fritzson. Principles of Object-oriented Modeling
and Simulation with Modelica 2.1, John Wiley &
Sons, 897p. 2004.

[7] C.A.R. Hoare. Hints on Programming Language De-
sign and Implementation. Stanford Artificial Intelli-
gence Memo, Stanford, California, AIM-224, 1973.

[8] Modelica® - A Unified Object-Oriented Language for
Physical Systems Modeling Language Specification
Version 3.0. Available at www.modelica.org .

[9] T.L. Quarles. Analysis of Performance and Conver-
gence Issues for Circuit Simulation. PhDDissertation.
EECS Department University of California, Berkeley
Technical Report No. UCB/ERL M89/42, 1989.

[10] P. Schwarz, C. Clauß, J. Haase, A. Schneider. VHDL-
AMS und Modelica - ein Vergleich zweier Model-
lierungssprachen. Symposium Simulationstechnik
ASIM2001, Paderborn 85-94, 2001.

[11] Ansoft Corporation: Simplorer Avaiable at:
http://www.simplorer.com .

[12] Verilog-AMS Language Reference Manual Version
2.2 Available at http://www.designers-
guide.org/VerilogAMS/.

[13] D. Zimmer. Introducing Sol: A General Methodology
for Equation-Based Modeling of Variable-Structure
Systems. Proc. 6th International Modelica Conference,
Bielefeld, Germany, Vol.1 47-56, 2008.

[14] D. Zimmer. Enhancing Modelica towards variable
structure systems. Proc. 1st International Workshop
on Equation-Based Object-Oriented Languages and
Tools, Berlin, Germany, 61-70, 2007.

Corresponding author: Dirk Zimmer
Institute of Computational Science
ETH Zürich, Switzerland,
dzimmer@inf.ethz.ch

Accepted EOOLT 2008, June 2008
Received: July 30, 2008
Accepted: August 10, 2007

