
+++ Class ical/Statechart-based Model ing of  State Events  and Structural  Changes +++  t

17

N
SN

E 18/2, A
ugust 2008

Classical and Statechart-based Modeling of State Events and of 
Structural Changes in the Modelica Simulator Mosilab 

Günther Zauner, dieDrahtwarenhandlung Simulation Services Vienna, Austria 
Florian Judex, Vienna University of Technology, Austria 

Peter Schwarz, Fraunhofer Institute for Integrated Circuits Dresden, Germany 

Mosilab (MOdelling and SImulation LABoratory) a new simulation system developed by Fraunhofer under-
stands Modelica, offers different modeling approaches, and supports structural dynamic systems. This will 
be discussed on the basis of a main example, the classical constrained pendulum. We show how the solution 
can be done using only standard Modelica components, where the benefits are and which kind of switching 
the states can be done. As we will see there is no possibility to define separate submodels with different state 
space dimensions and switch between these systems during one simulation run. 

The next point of view lies on an extension of the Modelica framework. The most important new feature of 
this model description language is the definition of a statechart framework. With this construction the next 
three solutions of the constrained pendulum are done. The first approach is mathematically similar to the 
Modelica solution and defines poor parameter events within the statechart construct. This approach cannot 
handle events of higher order. The second approach for the model is done with two different submodels, one 
for the case that the rope of the pendulum is short and one for the case it is long. In the statechart the two 
models are then connected and disconnected to the main program and thereby switched between active and 
off. A third approaches with only one submodel but two instances of the system will conclude our model in-
spection. 

We focus on how the numerical approaches are done in general and where are the benefits comparing to the 
other solutions. A final step is to look at the numerical quality of the output of the different approaches. This 
is done by validation with another example for which an analytical solution exists. 

General
In the last decade a broad amount of knowledge in 
model description theory and modeling and simula-
tion techniques, which could not be solved with the 
older systems, have their renaissance. Increasing 
power of computers and better algorithms lead to 
advanced modeling environments. One benefit are the 
customer friendly interfaces.  

Nevertheless, these advanced modeling environments 
ask for well educated experts in the field of simula-
tion. In nowadays definition of a project it is very 
often important to model a part of a system in detail, 
but when the system switches to another state the 
description is done imprecisely. Another often needed 
approach is that a state event makes restrictions to the 
actual model which leads to a change in the degree of 
freedom. Both here explained cases result in a change 
in the state space dimension or even a parameter 
change for the given system.  

The new generation of simulation systems handles 
this challenge with different methods. One approach 

is to define a discrete class, where state event han-
dling is done (e.g. ACSL), others restrict their system. 
They allow only parameter changing state events (e.g. 
Dymola/Modelica) or to blow up the whole system. A 
third class, which we will focus on in a selected ex-
ample, is simulators with an implemented state ma-
chine. This group of simulators can handle state 
events of both sorts: the classical ones where the 
dimension of the state space remains the same and the 
hybrid switch between separate models. 

1 The simulation environment 
MOSILAB (MOdeling and SImulation LABoratory) 
[1] is a simulator developed by Fraunhofer-Instituts 
FIRST, IIS/EAS, ISE, IBP, IWU and IPK within the 
research project GENSIM [2]. It is a generic simula-
tion tool for modeling and simulation of complex 
multidisciplinary technical systems. The simulation 
environment supports the procedures modeling, simu-
lation and post processing. The model description in 
MOSILAB is done in the Modelica [3] standard. 
Additional features are implemented to assure high 



+++ Class ical/Statechart-based Model ing of  State Events  and Structural  Changes +++  
SN

E 
18

/2
, A

ug
us

t 
20

08
 

tN

18

flexibility during modeling the concept of structural 
dynamics. This is done by extending the Modelica 
standard with state charts to control dynamic models. 

The resulting model description language is called 
MOSILA [4]. The textual editor in which the model 
setup is done is expanded by the component diagram 
as in other Modelica simulators. But there exits an-
other graphical layer which supports state chart defi-
nition by using UML diagrams (Unified Markup 
Language). This is one main benefit compared to 
some other tools, because the event handling can be 
done intuitively and the thereby defined program 
code can be modified and extended in the textual 
layer as well. Moreover, simulator coupling with 
standard tools (e.g. MATLAB/Simulink, FEMLAB) 
is realized. Features for coupling a new simulator 
with MATLAB are in general used for optimization. 
The included MATLAB algorithms can be used and 
so, the system runs in co-simulation, whereby the 
model is defined intuitively in Modelica standard 
with additional states and the optimization routine is 
started in MATLAB/Simulink.  

Mosilab offers a list of explicit and implicit integra-
tion methods for solving the defined system of DAEs 
(Differential Algebraic Equations). The default 
method is the IDA Dassl routine. This method is 
capable to handle stiff systems. The other imple-
mented methods are Explicit Euler, Implicit Euler, 
Implicit Trapeze and Explicit Trapeze. 

2 Modeling
In this section three different models will be ex-
plained in detail. The first one, the constrained pendu-
lum, is used to show the high flexibility of Mosilab 
and to represent the different ways of implementing a 
state event. The second is a linear model [6] for 
which an analytical solution exists and which is used 
to show the mathematical correctness of the imple-
mented solution algorithms.  

The third one gives an overview about advanced 
modeling and simulation with Mosilab/Modelica, it is 
a model of the free pendulum. Out of the given model 
definition we will see that a pure Modelica solution is 
not possible any more, because the dimension of the 
state space changes. This happens when a statechart is 
inevitable in Mosilab. 

2.1 Constrained pendulum 
The constrained pendulum is a classical nonlinear 
model in simulation techniques. To make the problem 

easier than it is in real life, we assume the mass m is 
large enough so that, as an approximation, we state 
that all the mass is contained at the bob of the pendu-
lum (that is the mass of the rigid shaft of the pendu-
lum is assumed negligible). This model has been 
presented in the definition of ARGESIM comparison 
C7 [5]. There is no exact analytical solution to this 
problem. Therefore, the results have to be obtained by 
numerical methods. In this section a description of 
the model will be given. 

sin( )ml mg d l  (1) 

Hereby  denotes the angle in radiant measured in 
counter clockwise direction from the vertical posi-
tion. The parameters in the model are the mass m  and 
the length of the rope l . The damping is realized with 
the constant d . In Mosilab it is an important differ-
ence, if the modeler is using constant or parameter!

As it is a constrained pendulum a pin is fixed at a 
certain position. This position is given by the angle 
angle p  and the length pl . Every time when the rope 
of the pendulum hits the pin the length of the pendu-
lum has to be shortened. In this case the pendulum 
swings on with the position of the pin as the point of 
rotation and the shortened length 

s pl l l  (2) 

We will focus on the first example defined in the 
ARGESIM comparison C7, where the following 
parameters, constants, and initial values are defined: 

start start

1.02, 1, 0.7, 9.81

/ 6, 0, 0.2, /12
p

p

m l l g
d

 (3) 

2.2 Two state model 
The here defined model is based on the definition of 
the ARGESIM comparison C5 [6]. This is a system 
with two coupled differential equations with a classi-
cal parameter state event. The reason why we chose 
this more or less simple example is, that in contrast to 
the system defined in 2.1 this system can be solved 
analytically and therefore we can compare the solu-
tion generated in Mosilab with the original analytical 
solution. Furthermore the different model approaches 
can be compared pertaining to the solution quality. 

This example tests the ability of the simulator to 
handle discontinuities of the aforementioned type in a 
satisfactory way. The problem is as follows: 

1 1 2 2 1

2 3 4 2

( )
( )

y c y c y
y c c y

 (4) 



+++ Class ical/Statechart-based Model ing of  State Events  and Structural  Changes +++  t

19

N
SN

E 18/2, A
ugust 2008

This ordinary differential equation (ODE) system is 
essentially a simple linear stiff problem with expo-
nential decays as analytical solution. One of these is a 
very rapid transient, and the stationary solution of the 
slow decay varies from the two states of the model. 
This actually ‘drives’ the model (and the discontinu-
ity).

The parameter 1c  and 3c  stay unchanged during simu-
lation. The parameter 2c  is 0.4 and 4c  is 5.5 when the 
model is in state 1 (also the initial state). The initial 
values are 1(0) 4.2y  and 2 (0) 0.3y . The model 
remains in state 1 as long as 1 5.8y . The choice of 

2c  and 4c  ensures that 1y  will grow past 5.8.  

When the model switches to state 2, parameters 2c
and 4c  change to 2 0.3c  and 4 2.73c . The model 
remains in state 2 as long as 1 2.5y . When passing 
this instance the model switches back to state 1; the 
choice of 2c  and 4c  ensures that this will happen.  

Analytical solution values can be found. We are fo-
cusing on a simulation period starting at time point 0 
and ending at time point 5. For comparison we state 
that the last discontinuity occurs at time 4.999999646 
and the 1(5.0)y  value should be approximately 5.369. 

2.3 Free pendulum on a string 
Until now the definitions of systems of interest have 
been looking on models where the state space dimen-
sion does not change during simulation. The state 
events can all be interpreted as simple parameter 
events. Now a system is given where the state space 
dimension has to be changed for real.  

This example is a little bit more complicated. Let us 
again consider a pendulum. The massive bob of the 
pendulum is fixed on a string. The general structure 
of the system is depicted in Fig. 1 [5]. 

In case of a rollover of the pendulum it can start to 
fall freely until the constraints of the string apply 
again. This can happen if the pendulum swings higher 
than / 2  and the centrifugal force is smaller than 
the gravitational force. 

Accordingly, this model has two different states: 

The normal pendulum movement, and 
the free fall case. 

The movement of the pendulum is given in equation 
(1). We have to define the equations for the free fall 
case. They are given by 

0
y

x

v g
v  (5) 

For our model we have an additional constraint, 
which is based on the fixed length l  of the pendulum: 

2 2x y l  (6) 

This model cannot be solved using simple parameter 
state events and is defined to give an example that 
problems in simulation of technical systems as well 
as in biology, genetics, etc. occur not only in very 
sophisticated systems. As seen here the need for state 
space switching in nowadays modeling and simula-
tion techniques is quite common.  

After the definition of the main tasks and the extra 
example we will have a closer look on the implemen-
tation approaches of the constrained pendulum and 
test the simulator by solving different solution of the 
two state model and comparing them with the ana-
lytical solution. 

3 Solutions of the constrained pendulum 
In this chapter the most important different solution 
approaches in Modelica of the classical constrained 
pendulum are discussed. Benefits and restrictions of 
the different implementations are listed. In the im-
plementations of the constrained pendulum the tan-
gential velocity is used instead of angular velocity. 
This has the benefit that only the length of the pendu-
lum has a discrete change in case of hitting or leaving 
the pin. 

3.1 Standard Modelica approach 
In this approach only standard Modelica code is used. 
It is defined in the Mosilab equation layer, which is 

Figure 1. Force diagram of the model. 



+++ Class ical/Statechart-based Model ing of  State Events  and Structural  Changes +++  
SN

E 
18

/2
, A

ug
us

t 
20

08
 

tN

20

part of the model editor. The model can be formulated 
as implicit law, which means that it is not necessary 
to transform the equations to an explicit form: 

1 equation
2   v = l1*der(phi);  vdot = der(v);
3   mass*vdot/l1 + mass*g*sin(phi) + damping*v=0 

The state event, which appears every time when the 
rope of the pendulum hits the pin or looses the con-
nection to it, is modeled in an algorithm section with 
if (or when) – conditions: 

4 algorithm
5 if (phi<=phipin) then length := ls; end if;
6 if (phi>phipin) then length := l1; end if;

This section defines the length of the rope depending 
on the actual state of the constrained pendulum. 
Mosilab handles the if-command by means of a state 
event finder. This is important to find the time point 
of the state event in a given time slice. The solution 
of the so defined system is depicted in Fig. 2. 

In compare with the solutions done in another Mode-
lica simulator (Dymola, in SNE [6]) and the reference 
solution, this outcome seems reasonable. 

3.2 Mosilab state chart approaches 
These approaches make use of an additional feature 
of Mosilab, namely modeling of discrete elements by 
state charts. 

Parameter event solution 
The state chart is used instead of the algorithm sec-
tion and therefore instead of the if- or when-
construct. This has the benefit of much higher flexi-
bility and readability in case of complex conditions. 
Boolean variables define the status of the system and 
are managed by the state chart. This can be solved as 
follows:

1 event Boolean lengthen(start=false),
              shorten(start=false);

2 equation
3    lengthen = (phi>phipin); 
4    shorten  = (phi<=phipin); 
5 statechart
6 state LengthSwitch extends State;
7 State Short, Long, Initial(isInitial=true);
8 transition Initial->Long end transition;
9 transition Long->Short event shorten 

action length := ls; 
10 end transition;
11 transition Short->Long event lengthen 

action length := l1; 
12 end transition;
13 end LengthSwitch 

From the modeling point of view, this is equivalent to 
the description with if-clauses. The Mosilab transla-
tor generates an implementation with different inter-
nal equations. Mosilab performs a simulation by 
handling the state event within the integration over 
the simulation period. 

Mosilab switching solution 
As already explained Mosilab’s state chart engine is 
not only an alternative to the Modelica if- or when-
construct, it is much more powerful. 

This system allows any kind of hybrid model compo-
sition with models of different state spaces and also 
of different types. For the constrained pendulum we 
decompose the system into two different models: 

SHORT, for the case that the rope has contact to 
the pin, and 
LONG, for the standard damped pendulum. 

These two models are than controlled by a state chart, 
defined in a similar way as shown in the UML-
diagram in Fig. 3. 

As seen, the new model description comprehends 
now three parts, the main program which also con-
sists of the state chart and two submodels. These two 
submodels can be defined separately, or because of 
the special structure, can be instances of one defined 
class.

The following source code is using the first method 
for implementation and first defines the two separate 
models and afterwards the main program. 

1 model ConstrainedPendulum
2 model Long
3 equation
4      mass*vdot/l1 + mass*g*sin(phi) +

        damping*v = 0;
5 end Long;

Figure 2. Solution of the task defined in section 3.1, the red 
(inner) curve represents the angle, the blue curve depicts 

the angular velocity. 



+++ Class ical/Statechart-based Model ing of  State Events  and Structural  Changes +++  t

21

N
SN

E 18/2, A
ugust 2008

6 model Short
7 equation
8      mass*vdot/ls + mass*g*sin(phi) +

        damping*v = 0;

9 end Short;
10 event discrete Boolean lengthen(start=true),

                       shorten(start=false);
11 equation
12      lengthen = (phi>phipin); 
13      shorten  = (phi<=phinpin); 
14 statechart
15 state ChangePendulum extends State;
16 State Short,Long,startState(isInitial=true);
17 transition startState -> Long 
18 action
19        L := new Long(); K := new Short(); 
20 add(L);
21 end transition;
22 transition Long -> Short event shorten 
23 action
24        disconnect ...; remove(L);
25 add(K); connect ...; 
26 end transition;
27 transition Short -> Long event lengthen 
28 action
29        disconnect ...; remove(K);
30 add(L); connect ...; 
31 end transition;

32 end ChangePendulum; 
33 end ConstrainedPendulum; // end of model 

The transitions organize the switching between the 
pendulums (remove, add). The connect statements 
are used for mapping local states to global state vari-
ables.

Summing up the results 
In center of interest is also the difference in time 
behavior of the different solution methods. As this is 
a nonlinear model we can only calculate the numeri-
cal solutions and compare, for example, the time 
points where the last state event appears. This is the 
moment when the rope of the pendulum looses the 

connection to the pin the last time. In the model under 
investigation, this happens after the fourth time short-
ening the pendulum, which means after eight state 
events all together.  

The solutions are calculated with the default simula-
tion method, if possible. With this approach we try to 
test the simulation environments from the user’s point 
of view. Many programmers and modelers do not care 
a lot about the implemented integration methods. For 
this reason the standard method has to produce reli-
able results in an appropriate calculation time. 

As depicted in Tab. 1, the solutions are quite close but 
not identically the same. An explanation therefore is 
that the standard Modelica solution cannot be done 
with the standard integration method. This could be 
examined making further tests with different choice 
of the minimal and maximal step size in each solution 
method. 

4 Two state model 
As this is another model where only parameters are 
changed in the case of the arrival of a state event, this 
model can be solved in four different ways as ex-
plained for the constrained pendulum in chapter 4.  

The main differences in compare to the pendulum 
model are: 

An analytical solution exists for the model.  
Only the first derivative has to be calculated.  
The system is stiff.  

The first solution is done again in standard Modelica 
notation. The most interesting part of the source code 
is implemented as follows: 

1 algorithm
2 when (y1 >= 5.8) then
3       c2 := -0.3; c4 := 2.73;
4 end when;
5 when (y1 <= 2.5) then
6       c2 := 0.4; c4 := 5.5;
7 end when;

Simulation
method

Time of last 
event 

Solution method 

Pure Modelica 6.7199 Impl. Trapez 
Min. step 1E-6 
Max. step 1E-4 

Switch models 6.7204 IDA Dassl 
Min step 1E-6 
Max step 0.08 

Table 1. Comparison of the results. 

Figure 3. UML-diagram of the statechart solution of the 
constrained pendulum. The main model controls the two 

submodels. In this example, the LONG mode is the initial 
state. 



+++ Class ical/Statechart-based Model ing of  State Events  and Structural  Changes +++  
SN

E 
18

/2
, A

ug
us

t 
20

08
 

tN

22

8 equation
9 der(y1) =c1*(y2+c2-y1);

10 der(y2) =c3*(c4-y2); 

The second way of solving this stiff system is to de-
fine a state chart in which only the parameters c2 and 
c4 are changed when an event occurs. We have two 
cases for this parameter state event. The one when the 
value of the variable y1 gets higher than 5.8 and the 
second when this value falls below 2.5. For this 
model approach we only need one model in which the 
parameter rules are defined on a higher level. 

11 event Boolean e(start = false),
              f(start = false); 

12 equation
13    ... 
14 statechart
15 state SCSol extends State;
16 State ax, bx, ix(isInitial=true);
17 transition ix -> ax end transition;
18 transition ax -> bx event e
19 action c2:=-0.3; // -1.25;

            c4:=2.73; // 4.33;  
20 end transition;
21 transition bx -> ax event f

action c2:=0.4; c4:=5.5;
22 end transition;
23 end SCSol; 

The source code above shows the easy way of im-
plementation of this task.  

The third way of implementation we will focus on 
concerning this example is to define two separate 
models which will then toggle between the states. 
This is the safest way for general implementation of 
systems with different states. On the one hand this 
cannot be done with the main part of simulators, on 
the other hand Mosilab is able to use this structure in 
different ways: the first approach is to define a sub-
model and switch between different instances of one 
and the same class (this would be enough in our 
case). The second solution is the general switching of 
active submodels to solve the system. This is done in 
the implemented solution. 

1 model Zustand1 when (y1>=5.8) then
2 constant Real c1 = 2.7*10^6; 
3 constant Real c3 = 3.5651205; 
4 constant Real c2 = 0.4; 
5 constant Real c4 = 5.5;
6 Real y1; Real y2;
7 equation
8 der(y1) = c1*(y2 + c2 - y1); 
9 der(y2) = c3*(c4 - y2); 

10 end Zustand1; 
11 model Zustand2 ... end Zustand2 
12 event Boolean e(start = false),

              f(start = false);

13 Real y1(start = 4.2); 
14 Real y2(start = 0.3); 
15 dynamic Zustand1 Z1;
16 dynamic Zustand2 Z2; 
17 equation
18    e = (y1 > 5.8) or (y1 == 5.8); 
19    f = (y1 < 2.5) or (y1 == 2.5); 
20 statechart
21 state Zustandswechsel extends ANDState;
22 State ax, bx, ix(isInitial=true);
23 transition ix -> ax action
24      Z1:= new Zustand1();
25      Z2:= new Zustand2(); 
26      add (Z1); Z1.y1:=y1; 
27      Z1.y2:=y2; 
28      connect(Z1.y1,y1); 
29      connect(Z1.y2,y2); 
30 end transition;
31 transition ax -> bx event e action
32      disconnect(Z1.y1,y1); 
33      disconnect(Z1.y2,y2); 
34      remove(Z1); 
35      Z2.y1:=y1; 
36      Z2.y2:=y2; add(Z2); 
37      connect(Z2.y1,y1); 
38      connect(Z2.y2,y2); 
39 end transition;
40 transition bx -> ax event f action
41      disconnect(Z2.y1,y1); 
42      disconnect(Z2.y2,y2); 
43      remove(Z2); 
44      Z1.y1:=y1; 
45      Z1.y2:=y2; add(Z1); 
46      connect(Z1.y1,y1); 
47      connect(Z1.y2,y2); 
48 end transition;
49 end Zustandswechsel; 

The compendium of the code above shows the basic 
structure of the problem solution. The next part repre-
sents the output part of the system. 

4.1 The three solutions compared 
After defining the source code, the main interest of 
the user will focus on the quality of different imple-
mentations. From mathematical point of view the 
implemented solutions are equivalent.  

The solutions are all calculated with standard solution 
method IDADassl. Two different step sizes are de-
fined for the experiment. The first with  

 maxStep = 1e-6, minStep = 0.08,  

the second experiment with  

 maxStep = 1e-12, minStep = 0.0008.  

The other settings are all chosen by their default val-
ues. No changes are made. The results are all read out 
of the graphical interface. For more detailed output 
information the user can take a look at the generated 



+++ Class ical/Statechart-based Model ing of  State Events  and Structural  Changes +++  t

23

N
SN

E 18/2, A
ugust 2008

data files to get more digits in the representation. 
The results are depicted in table 2. As we can see, the 
values are exactly the same in all three approaches. 
This is very good for model reliability and necessary 
for further development. In compare with the exact 
solution of this problem (last event at time point 
4.999999646 and the value y1(5.0) should be ap-
proximately 5.369.), we see that our simulation 
method works in an acceptable quality range. The 
imprecision of the output occurs also because the user 
gets only four digits after semicolon for the calculated 
value. Of course this is normally enough for standard 
technical system solution, but in our case, namely, for 
comparing with the exact analytical solution, it is not 
good enough. The value of the function at the time 
point 5 is in the allowed range. 

5 Summary and outlook 
As pointed out in chapters 4 and 5 Mosilab is capable 
to handle as well nonlinear as linear stiff systems. The 
Modelica extension for state event handling is a 
strong tool for advanced modeling concepts. Never-
theless it is important to develop more features and 
work on the compatibility with the Modelica syntax, 
so that model exchange can be carried out.  

The state chart extension of the Modelica notation is 
a very useful feature for modeling complex hybrid 
systems. Because of the state space switching ability 
it can be used to minimize the simulation time. Fur-
thermore, the models get simpler and the number of 
equations, that have to be solved are the minimal 
number during computation.  

The possibility to couple the simulation environment 
with Matlab/Simulink is another important feature of 
Modelica. As Matlab is very wide spread, a combina-
tion of both tools, especially in combination with 
modern simulation system development and optimi-
zation can be done efficiently. 

6 References 
[1] http://mosilab.de/ 
[2] http://mosilab.de/forschungsprojekt-gensim 
[3] http://www.modelica.org/ 
[4] Thilo Ernst, André Nordwig, Christoph Nytsch-

Geusen, Christoph Claus, André Schneider: 
MOSILA Modellbeschreibungssprache, Spezifi-
kation, Version 2.0, from webpage: 
www.mosilab.de/downloads/dokumentation 

[5] http://www.sparknotes.com/physics/oscillations/
applicationsofharmonicmotion/section1.html  

[6] http://www.argesim.org/comparisons/index.html  
[7] F. Breitenecker, H .Ecker and I. Bausch-Gall. 

Simulation mit ACSL: eine Einführung in die 
Modellbildung, numerischen Methoden und 
Simulation. Braunschweig: Vieweg, 1993. - XI, 
399 S 

Corresponding author: Günther Zauner 
“die Drahtwarenhandlung” Simulation Services, 
Neustiftgasse 57-59, 1070 Wien 
guenther.zauner@drahtwarenhandlung.at 

Accepted EUROSIM 2007, June 2007 
Received: September 15, 2007 
Revised: May 5, 2008 
Revised: July 10, 2008 
Accepted: July 30, 2008 

 Settings 1 Settings 2 
Event 5.0169 5.0000 

Value at time 5.0 5.7935 5.8000 - 5.0998 

Table 2. Calculated values 


