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In this paper, “continuous systems with structural dynamics” shall be understood as dynamical systems con-
sisting of components with continuous and/or discrete behaviour. (This notation should not be confused with 
the term “structural dynamics” in the context of Finite Element simulation). Continuous systems with struc-
tural dynamics—or so-called “hybrid systems”—can often be investigated only by a so-called “hybrid simu-
lation” which means a simultaneous simulation of continuous-time dynamics (modelled by differential equa-
tions or differential-algebraic equations (DAE)) and discrete-event dynamics (modelled e.g. by Boolean 
equations, finite state machines, or statecharts). To this end, an algorithm for numerical simulation of hybrid 
systems must be able to both solve a DAE system within a “continuous” time progression as well as to deal 
with event-driven phenomena. 

In the paper, the point of view is emphasized that the structure of a continuous system is closely combined to 
the structure of the DAE system which describes the continuous system’s dynamical behaviour. In this con-
text, discrete-time events are considered as phenomena which may cause a change of the DAE system’s 
structure. Furthermore, a distinction between systems with variable structure and models with variable struc-
ture is explained. The main part of the paper deals in detail with a simulation algorithm suitable for hybrid 
systems. This algorithm consists of a “continuous phase” (for numerical integration of the DAE system) and 
a “discrete phase” (for interpreting the event, establishing the new valid DAE system, calculating the new 
initial values). Some simulation results dealing with selected models and using the multi-physics language 
Modelica will complete the paper. 

1 System structure—what is it? 
This paper deals with changes of the “structure” of a 
dynamic system during a simulation process. But 
what is the structure of a dynamic system? Many 
properties could be considered to possibly belong to 
the structural description of such a system. In me-
chanical domain, the number of interacting bodies 
and the number of joints between them belong to the 
structural information as well as the fact which two 
bodies are connected by which kind of joint. A body’s 
geometrical shape is of no importance in this context. 
In electrical domain, the number and types of electri-
cal components and their galvanic connections among 
each other belong to the structural information. It 
does not care whether, e.g., a voltage source has a 
constant value or a sinusoidal time behavior. Similar 
descriptions can be found for other physical domains 
(hydraulic, pneumatic, thermodynamic, etc.).  
To sum up all these different properties, we assume in 
this paper that the structure of a system can be inter-
preted as the structure of its mathematical model, i.e. 
the number, types and structure of differential and/or 
algebraic equations belonging to the model. Finally, 
this structure manifests itself within the fill-in struc-
ture of the equation system’s Jacobian. 

In this paper, a mathematical model which possesses 
the possibility to change its structure because of some 
kind of “events” will be denoted to as a model with 
structural dynamics. 

2 Why structural dynamics? 
Many physical or technical systems change their 
properties during operation. Variation of model pa-
rameters is a common situation in simulating dy-
namic systems. But very often, changes of properties 
occur depending on events which may appear at cer-
tain points in time (time-discrete phenomena). In 
these cases, the complete system shows both time-
continuous and time-discrete behavior. Such systems 
are often called hybrid systems. They arise in many 
fields including robotics, embedded systems, trans-
portation systems, process control, biological and 
chemical systems, mixed signal (analogue-digital) 
integrated circuits, etc. Events occurring in hybrid 
systems can be distinguished into 

events depending only on time (i.e. they can be 
collected within a time queue) and 
events depending on other physical quantities of 
the system (i.e. they happen if a variable crosses 
the zero border value). 
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Investigation of hybrid systems has a long-lasting 
history (see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15]). Their dynamic simulation is supported by 
some simulators (see [8]), e.g. Matlab/Simulink, As-
pen, gPROMS, Dymola, Saber, Mosilab, and various 
VHDL-AMS simulators. But most of them only sup-
port very simple model variations. A fundamental 
change of model structure—such as adding or remov-
ing differential and/or algebraic equations (which we 
call “structural dynamics”)—is not possible in most 
simulators. Such behaviour leads to complicated 
mathematical problems. Mainly, it has to be guaran-
teed after a structural change that, first, the correct 
differential-algebraic equations are chosen and, sec-
ond, a set of consistent initial values of the state vari-
ables can be calculated. 

From the application point of view, it is important to 
distinguish between systems with a varying structure 
and models with varying structure (but the system 
itself is not varying). A system having a varying struc-
ture is characterized either by existence of so-called 
unilateral constraints (see e.g. [16, 17, 18, 19]) or by 
appearance of switches for activating or deactivating 
parts of the system. Such a system does really change 
its structure or at least its structural information in the 
behavioural equations during operation. Examples 
may be found in different application areas: 

mechanics: clutches, collision of masses, Cou-
lomb friction, “maximum distance” phenomena 
(see Fig. 1), 
electronics: parts of the system are suspended for 
a certain time period (e.g. for saving electrical 
power in mobile communication devices), 

power electronics: switches and relays as well as 
diodes and thyristors (if they are considered as 
ideal switches, see Fig. 2), 
adaptive manufacturing machines and roboters:
they have to handle different objects and have to 
adjust themselves to changing situations. 

Other reasons may lead to varying models of the 
same system because system’s behaviour shall be 
investigated under different circumstances. Examples 
of such reasons may be: 

accuracy shall be adjustable to a more or less de-
tailed model during simulation (to be able to 
“simulate as accurate as necessary”, see Fig. 3), 
usage of different model designs for “dynamic 
mode” (transient investigation) and “steady-state 
mode” with the intention to switch between them 
during simulation (see e.g. [20]). 

From our point of view, investigation of hybrid mod-
els is much more than a simultaneous simulation of 
continuous-time dynamics (modelled by differential 
equations or differential-algebraic equations (DAE)) 
and discrete-event dynamics (modelled e.g. by Boo-
lean equations, finite state machines, or state charts). 
A hybrid model should rather be considered as a 
model which, beyond its continuous time and dis-
crete-event properties, possesses the possibility to 
change the structure of behavioural equations at cer-

Figure 3. Three levels of wind generator modeling 

Figure 1. String pendulum 

Figure 2. Switched diode circuit 
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tain points in time (also called events) because of 
various reasons. Hence, a simulator for hybrid models 
has not only to be able to handle continuous and dis-
crete parts with appropriate numerical solvers but, 
furthermore, should provide concepts and statements 
for the definition of models with variable structure. 
This includes a practical solution of the expected 
numerical issues coming up with a change from one 
set of differential-algebraic equations to another. The 
next section gives an overview what types of struc-
tural changes may occur with dynamic systems. 

3 Types of structural changes 
Investigating practical simulation problems, structural 
changes may arise in different ways. A summary is 
shown in Fig. 4. The most important issue is “change 
model behavior” in the first row. This issue includes 

simple substitution of one differential equation 
by another one, 
exchange of a system of differential equations for 
another one but with the same order, 
replacement of behavioral or structural descrip-
tion of a component by a totally other one (e.g. a 
drastic variation of model order, change between 
continuous and discrete behavior, substitution of 
a model description by coupling with another 
simulator). 

But also the interconnections between components 
and, therefore, the structure of the system may change 
(see rows two to five of Fig. 4). Adding and deleting 
of certain blocks to/from the complete model (issue 
“Additional blocks”, second row) requires a correct 
handling of these connectors which are sometimes 
“opened” (i.e. not connected). In the “open”-case, an 

additional equation has to be added automatically to 
the model that enforces the vanishing of the flow 
variable of the concerning connector. The issue 
“Change connections” (third row) yields a simple 
change of parts of some algebraic equations. “Addi-
tional blocks and connections” (row four) combines 
the issues above. The “Change number of ports”-
issue may be a consequence of changing the block 
content from a simple model to a very detailed one or 
vice versa. 

4 A hybrid simulation algorithm 

4.1 Algorithm principle 
The simulation of continuous-discrete systems is 
supported by many powerful tools. But in handling 
varying model structures, most simulators have 
strong restrictions. The Modelica simulator Dymola, 
e.g., allows that equations may change in an if-
then-else clause, but the number of equations in 
both branches must be the same. Similar restrictions 
exist in many other simulators which allow the usage 
of hybrid models. 

In this section, an approach for simulating hybrid 
models is proposed which is able to deal with struc-
tural variability. This approach was implemented 
within the experimental simulator Mosilab (see [21, 
22, 23]). This simulator was developed within the 
German applied research project GENSIM by some 
Fraunhofer Institutes. Within Mosilab, an extension 
of the language Modelica by a concept for dealing 
with structural dynamics has been intended. For this 
purpose, a description of state charts in graphical and 
textual way was implemented. 

In the following, the structural variability of a model 
is characterized using state charts. Roughly speaking, 
every state stands for a certain set of differentialalge-
braic equations and every transition realizes a change 
between different model structures. 

The basic algorithm is shown in Fig. 5. It consists of 
two phases, a discrete phase and a continuous phase.
The main issue in the discrete phase is to update all 
state machines of the hybrid model (one state ma-
chine is described by one state chart) and to establish 
the new set of differential-algebraic equations if nec-
essary. Hence, all structural changes of a hybrid 
model are carried out within the discrete phase. In 
this context, it is assumed that structural changes 
occur at discrete points in time, i.e. they shall not be Figure 4. Structural dynamics 
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executed within a certain time interval (zero time 
assumption). Between two successive discrete points 
in time, only analogue simulation is performed. This 
analogue simulation is carried out by a numerical 
DAE solver and must continue for a minimum time 
interval which is greater than zero. The length of such 
a simulation interval may, a priori, either be known or 
be unknown. If the next discrete-time event happens 
at a determined (time-fixed) moment then the inter-
val’s length is known. Otherwise, e.g. if the next 
event being expected is triggered by a zero crossing 
of a variable, the length of the simulation interval is 
unknown. In the latter case, the relevant quantity has 
to be monitored in an appropriate way. 

4.2 Discrete phase 
Fig. 6 shows a more detailed outline (compared to 
Fig. 5) of the discrete phase of the hybrid simulation 
algorithm. Please note that simulation time keeps 
constant during the complete discrete phase. The 
algorithms of the discrete phase influence only the 
discrete parts of the hybrid model. Hence, states and 
transitions of the state chart diagram are under special 
focus. But the model structure of the continuous sub-
model (including the DAE set belonging to) and the 
discrete variables may be affected, too. 

At start of numerical simulation, all state machines 
must be initialized by evaluating the initial states and 
their associated transitions. The main loop of the 
discrete phase consists of one or more updating proc-
esses of the state machines and, after every updating 

process, the question for new events which may be 
raised within the last update. During every updating 
process, two sets of events are to be distinguished: the 
set of active events and that of waiting events. One 
updating process handles all active events and fires 
the associated transitions successively. New events, 
which may be raised by fired transitions or by exit 
actions or entry actions of the associated states, are 
collected in the set of waiting states. If no more active 
events are available, one updating process is finished. 
If now the set of waiting events is empty then the 
main loop can be closed. Otherwise, another updating 
process is necessary. For this purpose, all waiting 
events are transferred into the set of active events and 
the next update is started. 

After leaving the main loop, it has to be proved 
whether the model structure has changed. This can be 
done in a very simple way assuming that different 
activation configurations of the state machines before 
and after the current discrete phase refer to a change 
of the structure of the continuous submodel. If the 
structure is unchanged, the discrete phase can be 
finished and the following continuous phase is ready 
to go. In case of structural changes, the set of behav-
ioral equations has to be changed, too. The new set of 
differential-algebraic equations has to be chosen 
according to the currently active states in all state 
machines. At start of the following continuous phase, 
consistent initial conditions have to be found. To 
simplify this task—or even perhaps to enable a solu-
tion—it may be necessary for the user to define a 
mathematical algorithm how some initial values of 

Figure 6. Discrete phase of hybrid simulation algorithm. 

Figure 5. A hybrid simulation algorithm 
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the new model structure are to be calculated from the 
values of the old one. Such an algorithm would have 
to be specified within the transitions which are re-
sponsible for the appropriate structural change. 

4.3 Continuous phase 
A more detailed outline (compared to Fig. 5) of the 
continuous phase of the hybrid simulation algorithm 
is shown in Fig. 7. Please note that within this phase, 
the structure of the complete hybrid model keeps 
unchanged. The algorithms of the continuous phase 
only affect the continuous parts of the hybrid model. 
Hence, finding consistent initial values (see e.g. [24, 
25, 26]) as well as solving the present set of differen-
tial-algebraic equations is the main issue of this 
phase. But the recognition of possibly occurring 
events is also important. 

The continuous phase begins with an initialization 
process. In case of carrying out this step for the first 
time ( 0t ), the user-given initial values for physical 
quantities of the continuous model are accepted. Oth-
erwise, the values of the physical quantities calcu-
lated within the last discrete phase are used as initial 
values. Using these values as a start configuration, 
consistent initial values—i.e. values, which fulfill the 
constraints of the DAE—have to be found in the next 
step.

The main task of the continuous phase is to solve 
numerically an initial value problem of the form 

0 0 0 0

( , , ) 0
( ) , ( )

F t y y
y t y y t y

 (1) 

where 0y  and 0y  are consistent initial values, i.e. they 
fulfil the residuum ( , , ) 0F t y y . The vector y  con-
sists of both differential variables (the relevant y -
element appears in the DAE) and algebraic variables 
(no relevant y -element appears in the DAE). An 
appropriate numeric solver can be used to solve the 
problem (1) with advancing time. (In Mosilab, the 
numeric solver IDA [27] is used.) The numerical 
integration process may possibly be continued until 
the end time of simulation endt  is reached. However, 
there are some reasons for stopping the numerical 
integration at an earlier point in time. 

The first reason is the possible appearance of a struc-
tural change. In such a case, the numeric solver 
would have to be stopped at a point in time which lies 
as near as possible to the moment of event. In order to 
recognize structural changes, so-called “event vari-
ables” are defined. These variables are differential or 

algebraic variables which may cause an event in the 
sense of structural dynamics. The event variables are 
monitored during the numerical integration process. 

After each time step of the solver, all event variables 
are compared to their values before the last integra-
tion step. If a change of an event variable is detected 
then the first moment of changing this variable within 
the current integration interval must be determined. 
This can be done e.g. by a root finding algorithm. In 
this context, it is important to use only numerical 
solutions at points in time before the event occurs. 
Otherwise, the accuracy of the calculated moment of 
event may be affected negatively. After determination 
of event point in time, the continuous phase is fin-
ished and the next discrete phase is started. 

The second reason for stopping the numerical integra-
tion before reaching endt  is the possible jump of a so-
called “non event”-variable. Such variables are dif-
ferential or algebraic variables which are not associ-
ated to any event of structural changes. In case of 
jumping of such a variable, the IDA’s integration 
interval becomes smaller and smaller. If the integra-
tion interval drops below a certain border value (de-
noted by mint ), the solver is reinitialized at the point 
in time 1 mini it t t  and new consistent initial val-
ues are computed. After that, a new numerical inte-
gration process is started. 

4.4 Special aspects 
The necessary calculation of consistent initial values 
at each beginning of a continuous phase or after a 

Figure 7. Continuous phase of hybrid simulation algorithm
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jump of a non event variable is sometimes a crucial 
task. Therefore, the finding procedure may fail. Some 
helping methods were implemented into hybrid simu-
lation algorithm of Mosilab to overcome this prob-
lem. One of them, the homotopy method, shall be 
mentioned here. 

The homotopy method is a procedure to calculate the 
solution of the problem 

( ) 0H z  (2) 

starting from a known solution 0z . For this purpose, 
the original problem (2) is substituted by the follow-
ing problem 

0( , ) ( ) (1 ) ( ) 0H z H z H z  (3) 

If 0 , this equation is trivial. By increasing 
stepwise, new problems of the form (3) are estab-
lished. Generally, the solution 1kz  of the preceding 
problem (3) is used to find a solution kz  of the cur-
rent problem (3). In case of convergence, this solution 
is used in the next step (with furthermore increased 

). If no solution kz  can be found then  is de-
creased and a new trial is started using 1kz . The com-
plete algorithm as used in Mosilab is shown in Fig. 8. 

5 Simulation experiment 
In order to show the function of the presented algo-
rithm, some simulation results of a simple 2D string 

pendulum are given. A detailed sketch of the example 
is shown in Fig. 9. 

A point mass (having the mass parameter m ) is at-
tached to a fixed point by a non-elastic thread. The 
maximum length of the thread shall be denoted to as 
L . The mass can perform two kinds of movements: a 
circular movement in case of a fully stretched thread 
(Fig. 9, left hand side) and a free movement in case of 
a non-stretched thread (Fig. 9, right hand side). An 
appropriate state chart is depicted in Fig. 10. The 
model has two states called bound and free. Within 
the circular movement, one differential equation of 
second order is valid (having the state quantities 
and , where g  means the gravity constant and k
denotes a damping coefficient). Within the free 
movement, however, two differential equations of 
second order are needed (having the positions in x -
and y -direction and their time derivatives as state 
quantities, where k  means a damping coefficient and 
r  denotes the current distance between point mass 
and fixed point). 

The system remains in the bound state as long as the 
centrifugal force of the mass holds the thread at its 

Figure 10. State chart of string pendulum 

Figure 9. Sketch of string pendulum 

Figure 8. Homotopy method algorithm 
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full length. If the sum of forces acting on the mass 
drops below zero ( 0F ), this state will be leaved 
and the free state will become active. The relevant 
transition is called unstretch. Within this transition, 
the current position and velocities have to be calcu-
lated from the last valid values of the physical quanti-
ties of the bound state. On the other hand, the free 
state is valid as long as the distance between point 
mass and fixed point is less than the full length of the 
thread. If the full length is reached or exceeded 
( r L ), the system will change from the free state 
into the bound state. The relevant transition is called 
stretch. Within this transition, the current angle and 
angular velocity have to be calculated from the last 
valid values of the physical quantities of the free
state. Please note that the energy conservation law 
may not be fulfilled during this structural change. 

Fig. 11 shows an x - y -plot of the string pendulum 
under the assumption that the mass is located near its 
rest position at start of simulation and an initial veloc-
ity in positive x -direction is given. The pendulum 
performs two cycles followed by a decreasing oscilla-
tion. In the first cycle, two structural changes occur 
(denoted by no. 1 and 2). The first one switches from 
circular to free movement, the second one changes 
contrarily. The same appears within the second cycle 
(structural changes no. 3 and 4). After the fourth 
switch, the thread remains stretched to its full length 
during the decreasing oscillations. 

The following figures show time histories of some 
interesting physical quantities. Fig. 12 depicts the 
time association to the x - y -plot in Fig. 11. In case of 
free movement, x  and y  are differential variables of 
the DAE, while in case of circular movement, both 

variables have to be computed from the current angle. 
Contrary to this, Fig. 13 shows the angle  which is 
known during the circular movement and has to be 
calculated within the free movement. The structural 
changes can be determined best in the curves of the 
two monitoring variables: the force within the thread 
(see Fig. 14) and the distance between the mass and 
the fixed point (see Fig. 15). 

6 Conclusion
The numerical simulation of continuous systems with 
structural dynamics requires simultaneous handling 
of continuous-time dynamics and discrete-event dy-
namics. Hence, a tool suitable for simulating such 
systems must offer facilities to describe both phe-
nomena. In particular, the interactions between both 
worlds, i.e. triggering events by the continuous model 
as well as changing the continuous model’s structure 
by events, have to be taken into account. 

In the paper, different types of structural changes are 
listed. The full variety of these cases is hardly sup-
ported by well-known simulation tools. Hence, the 
paper presents a hybrid simulation algorithm consist-
ing of a discrete phase and a continuous phase. The 
simulator switches between these two phases at cer-
tain points in time in an appropriate way. The discrete 
phase influences only the discrete parts of the hybrid 

Figure 13. Simulation result: angle 

Figure 12. Simulation result: x - and y -coordinates

Figure 11. Simulation result: x - y -plot
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model while the simulation time keeps constant. Exe-
cution of events and their consequences on changes 
of the model structure are under focus. The continu-
ous phase affects only the continuous parts of the 
hybrid model while the model structure keeps un-
changed. The main issue is to find consistent initial 
values and to carry out numerical integration of the 
DAE while monitoring relevant variables for recogni-
tion of possibly occurring events. 

Beyond that, a homotopy method for supporting the 
overcome of the consistent initial values finding 
problem is presented. Finally, some simulation results 
of a string pendulum are given. 
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