
+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

24

Numerical Simulation of Continuous Systems
with Structural Dynamics

Olaf Enge-Rosenblatt, Jens Bastian, Christoph Clauß, Peter Schwarz
Fraunhofer Institute for Integrated Circuits, Germany, olaf.enge@eas.iis.fraunhofer.de

In this paper, “continuous systems with structural dynamics” shall be understood as dynamical systems con-
sisting of components with continuous and/or discrete behaviour. (This notation should not be confused with
the term “structural dynamics” in the context of Finite Element simulation). Continuous systems with struc-
tural dynamics—or so-called “hybrid systems”—can often be investigated only by a so-called “hybrid simu-
lation” which means a simultaneous simulation of continuous-time dynamics (modelled by differential equa-
tions or differential-algebraic equations (DAE)) and discrete-event dynamics (modelled e.g. by Boolean
equations, finite state machines, or statecharts). To this end, an algorithm for numerical simulation of hybrid
systems must be able to both solve a DAE system within a “continuous” time progression as well as to deal
with event-driven phenomena.

In the paper, the point of view is emphasized that the structure of a continuous system is closely combined to
the structure of the DAE system which describes the continuous system’s dynamical behaviour. In this con-
text, discrete-time events are considered as phenomena which may cause a change of the DAE system’s
structure. Furthermore, a distinction between systems with variable structure and models with variable struc-
ture is explained. The main part of the paper deals in detail with a simulation algorithm suitable for hybrid
systems. This algorithm consists of a “continuous phase” (for numerical integration of the DAE system) and
a “discrete phase” (for interpreting the event, establishing the new valid DAE system, calculating the new
initial values). Some simulation results dealing with selected models and using the multi-physics language
Modelica will complete the paper.

1 System structure—what is it?
This paper deals with changes of the “structure” of a
dynamic system during a simulation process. But
what is the structure of a dynamic system? Many
properties could be considered to possibly belong to
the structural description of such a system. In me-
chanical domain, the number of interacting bodies
and the number of joints between them belong to the
structural information as well as the fact which two
bodies are connected by which kind of joint. A body’s
geometrical shape is of no importance in this context.
In electrical domain, the number and types of electri-
cal components and their galvanic connections among
each other belong to the structural information. It
does not care whether, e.g., a voltage source has a
constant value or a sinusoidal time behavior. Similar
descriptions can be found for other physical domains
(hydraulic, pneumatic, thermodynamic, etc.).
To sum up all these different properties, we assume in
this paper that the structure of a system can be inter-
preted as the structure of its mathematical model, i.e.
the number, types and structure of differential and/or
algebraic equations belonging to the model. Finally,
this structure manifests itself within the fill-in struc-
ture of the equation system’s Jacobian.

In this paper, a mathematical model which possesses
the possibility to change its structure because of some
kind of “events” will be denoted to as a model with
structural dynamics.

2 Why structural dynamics?
Many physical or technical systems change their
properties during operation. Variation of model pa-
rameters is a common situation in simulating dy-
namic systems. But very often, changes of properties
occur depending on events which may appear at cer-
tain points in time (time-discrete phenomena). In
these cases, the complete system shows both time-
continuous and time-discrete behavior. Such systems
are often called hybrid systems. They arise in many
fields including robotics, embedded systems, trans-
portation systems, process control, biological and
chemical systems, mixed signal (analogue-digital)
integrated circuits, etc. Events occurring in hybrid
systems can be distinguished into

events depending only on time (i.e. they can be
collected within a time queue) and
events depending on other physical quantities of
the system (i.e. they happen if a variable crosses
the zero border value).

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++ t

25

N
SN

E 18/2, A
ugust 2008

Investigation of hybrid systems has a long-lasting
history (see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15]). Their dynamic simulation is supported by
some simulators (see [8]), e.g. Matlab/Simulink, As-
pen, gPROMS, Dymola, Saber, Mosilab, and various
VHDL-AMS simulators. But most of them only sup-
port very simple model variations. A fundamental
change of model structure—such as adding or remov-
ing differential and/or algebraic equations (which we
call “structural dynamics”)—is not possible in most
simulators. Such behaviour leads to complicated
mathematical problems. Mainly, it has to be guaran-
teed after a structural change that, first, the correct
differential-algebraic equations are chosen and, sec-
ond, a set of consistent initial values of the state vari-
ables can be calculated.

From the application point of view, it is important to
distinguish between systems with a varying structure
and models with varying structure (but the system
itself is not varying). A system having a varying struc-
ture is characterized either by existence of so-called
unilateral constraints (see e.g. [16, 17, 18, 19]) or by
appearance of switches for activating or deactivating
parts of the system. Such a system does really change
its structure or at least its structural information in the
behavioural equations during operation. Examples
may be found in different application areas:

mechanics: clutches, collision of masses, Cou-
lomb friction, “maximum distance” phenomena
(see Fig. 1),
electronics: parts of the system are suspended for
a certain time period (e.g. for saving electrical
power in mobile communication devices),

power electronics: switches and relays as well as
diodes and thyristors (if they are considered as
ideal switches, see Fig. 2),
adaptive manufacturing machines and roboters:
they have to handle different objects and have to
adjust themselves to changing situations.

Other reasons may lead to varying models of the
same system because system’s behaviour shall be
investigated under different circumstances. Examples
of such reasons may be:

accuracy shall be adjustable to a more or less de-
tailed model during simulation (to be able to
“simulate as accurate as necessary”, see Fig. 3),
usage of different model designs for “dynamic
mode” (transient investigation) and “steady-state
mode” with the intention to switch between them
during simulation (see e.g. [20]).

From our point of view, investigation of hybrid mod-
els is much more than a simultaneous simulation of
continuous-time dynamics (modelled by differential
equations or differential-algebraic equations (DAE))
and discrete-event dynamics (modelled e.g. by Boo-
lean equations, finite state machines, or state charts).
A hybrid model should rather be considered as a
model which, beyond its continuous time and dis-
crete-event properties, possesses the possibility to
change the structure of behavioural equations at cer-

Figure 3. Three levels of wind generator modeling

Figure 1. String pendulum

Figure 2. Switched diode circuit

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

26

tain points in time (also called events) because of
various reasons. Hence, a simulator for hybrid models
has not only to be able to handle continuous and dis-
crete parts with appropriate numerical solvers but,
furthermore, should provide concepts and statements
for the definition of models with variable structure.
This includes a practical solution of the expected
numerical issues coming up with a change from one
set of differential-algebraic equations to another. The
next section gives an overview what types of struc-
tural changes may occur with dynamic systems.

3 Types of structural changes
Investigating practical simulation problems, structural
changes may arise in different ways. A summary is
shown in Fig. 4. The most important issue is “change
model behavior” in the first row. This issue includes

simple substitution of one differential equation
by another one,
exchange of a system of differential equations for
another one but with the same order,
replacement of behavioral or structural descrip-
tion of a component by a totally other one (e.g. a
drastic variation of model order, change between
continuous and discrete behavior, substitution of
a model description by coupling with another
simulator).

But also the interconnections between components
and, therefore, the structure of the system may change
(see rows two to five of Fig. 4). Adding and deleting
of certain blocks to/from the complete model (issue
“Additional blocks”, second row) requires a correct
handling of these connectors which are sometimes
“opened” (i.e. not connected). In the “open”-case, an

additional equation has to be added automatically to
the model that enforces the vanishing of the flow
variable of the concerning connector. The issue
“Change connections” (third row) yields a simple
change of parts of some algebraic equations. “Addi-
tional blocks and connections” (row four) combines
the issues above. The “Change number of ports”-
issue may be a consequence of changing the block
content from a simple model to a very detailed one or
vice versa.

4 A hybrid simulation algorithm

4.1 Algorithm principle
The simulation of continuous-discrete systems is
supported by many powerful tools. But in handling
varying model structures, most simulators have
strong restrictions. The Modelica simulator Dymola,
e.g., allows that equations may change in an if-
then-else clause, but the number of equations in
both branches must be the same. Similar restrictions
exist in many other simulators which allow the usage
of hybrid models.

In this section, an approach for simulating hybrid
models is proposed which is able to deal with struc-
tural variability. This approach was implemented
within the experimental simulator Mosilab (see [21,
22, 23]). This simulator was developed within the
German applied research project GENSIM by some
Fraunhofer Institutes. Within Mosilab, an extension
of the language Modelica by a concept for dealing
with structural dynamics has been intended. For this
purpose, a description of state charts in graphical and
textual way was implemented.

In the following, the structural variability of a model
is characterized using state charts. Roughly speaking,
every state stands for a certain set of differentialalge-
braic equations and every transition realizes a change
between different model structures.

The basic algorithm is shown in Fig. 5. It consists of
two phases, a discrete phase and a continuous phase.
The main issue in the discrete phase is to update all
state machines of the hybrid model (one state ma-
chine is described by one state chart) and to establish
the new set of differential-algebraic equations if nec-
essary. Hence, all structural changes of a hybrid
model are carried out within the discrete phase. In
this context, it is assumed that structural changes
occur at discrete points in time, i.e. they shall not be Figure 4. Structural dynamics

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++ t

27

N
SN

E 18/2, A
ugust 2008

executed within a certain time interval (zero time
assumption). Between two successive discrete points
in time, only analogue simulation is performed. This
analogue simulation is carried out by a numerical
DAE solver and must continue for a minimum time
interval which is greater than zero. The length of such
a simulation interval may, a priori, either be known or
be unknown. If the next discrete-time event happens
at a determined (time-fixed) moment then the inter-
val’s length is known. Otherwise, e.g. if the next
event being expected is triggered by a zero crossing
of a variable, the length of the simulation interval is
unknown. In the latter case, the relevant quantity has
to be monitored in an appropriate way.

4.2 Discrete phase
Fig. 6 shows a more detailed outline (compared to
Fig. 5) of the discrete phase of the hybrid simulation
algorithm. Please note that simulation time keeps
constant during the complete discrete phase. The
algorithms of the discrete phase influence only the
discrete parts of the hybrid model. Hence, states and
transitions of the state chart diagram are under special
focus. But the model structure of the continuous sub-
model (including the DAE set belonging to) and the
discrete variables may be affected, too.

At start of numerical simulation, all state machines
must be initialized by evaluating the initial states and
their associated transitions. The main loop of the
discrete phase consists of one or more updating proc-
esses of the state machines and, after every updating

process, the question for new events which may be
raised within the last update. During every updating
process, two sets of events are to be distinguished: the
set of active events and that of waiting events. One
updating process handles all active events and fires
the associated transitions successively. New events,
which may be raised by fired transitions or by exit
actions or entry actions of the associated states, are
collected in the set of waiting states. If no more active
events are available, one updating process is finished.
If now the set of waiting events is empty then the
main loop can be closed. Otherwise, another updating
process is necessary. For this purpose, all waiting
events are transferred into the set of active events and
the next update is started.

After leaving the main loop, it has to be proved
whether the model structure has changed. This can be
done in a very simple way assuming that different
activation configurations of the state machines before
and after the current discrete phase refer to a change
of the structure of the continuous submodel. If the
structure is unchanged, the discrete phase can be
finished and the following continuous phase is ready
to go. In case of structural changes, the set of behav-
ioral equations has to be changed, too. The new set of
differential-algebraic equations has to be chosen
according to the currently active states in all state
machines. At start of the following continuous phase,
consistent initial conditions have to be found. To
simplify this task—or even perhaps to enable a solu-
tion—it may be necessary for the user to define a
mathematical algorithm how some initial values of

Figure 6. Discrete phase of hybrid simulation algorithm.

Figure 5. A hybrid simulation algorithm

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

28

the new model structure are to be calculated from the
values of the old one. Such an algorithm would have
to be specified within the transitions which are re-
sponsible for the appropriate structural change.

4.3 Continuous phase
A more detailed outline (compared to Fig. 5) of the
continuous phase of the hybrid simulation algorithm
is shown in Fig. 7. Please note that within this phase,
the structure of the complete hybrid model keeps
unchanged. The algorithms of the continuous phase
only affect the continuous parts of the hybrid model.
Hence, finding consistent initial values (see e.g. [24,
25, 26]) as well as solving the present set of differen-
tial-algebraic equations is the main issue of this
phase. But the recognition of possibly occurring
events is also important.

The continuous phase begins with an initialization
process. In case of carrying out this step for the first
time (0t), the user-given initial values for physical
quantities of the continuous model are accepted. Oth-
erwise, the values of the physical quantities calcu-
lated within the last discrete phase are used as initial
values. Using these values as a start configuration,
consistent initial values—i.e. values, which fulfill the
constraints of the DAE—have to be found in the next
step.

The main task of the continuous phase is to solve
numerically an initial value problem of the form

0 0 0 0

(, ,) 0
() , ()

F t y y
y t y y t y

 (1)

where 0y and 0y are consistent initial values, i.e. they
fulfil the residuum (, ,) 0F t y y . The vector y con-
sists of both differential variables (the relevant y -
element appears in the DAE) and algebraic variables
(no relevant y -element appears in the DAE). An
appropriate numeric solver can be used to solve the
problem (1) with advancing time. (In Mosilab, the
numeric solver IDA [27] is used.) The numerical
integration process may possibly be continued until
the end time of simulation endt is reached. However,
there are some reasons for stopping the numerical
integration at an earlier point in time.

The first reason is the possible appearance of a struc-
tural change. In such a case, the numeric solver
would have to be stopped at a point in time which lies
as near as possible to the moment of event. In order to
recognize structural changes, so-called “event vari-
ables” are defined. These variables are differential or

algebraic variables which may cause an event in the
sense of structural dynamics. The event variables are
monitored during the numerical integration process.

After each time step of the solver, all event variables
are compared to their values before the last integra-
tion step. If a change of an event variable is detected
then the first moment of changing this variable within
the current integration interval must be determined.
This can be done e.g. by a root finding algorithm. In
this context, it is important to use only numerical
solutions at points in time before the event occurs.
Otherwise, the accuracy of the calculated moment of
event may be affected negatively. After determination
of event point in time, the continuous phase is fin-
ished and the next discrete phase is started.

The second reason for stopping the numerical integra-
tion before reaching endt is the possible jump of a so-
called “non event”-variable. Such variables are dif-
ferential or algebraic variables which are not associ-
ated to any event of structural changes. In case of
jumping of such a variable, the IDA’s integration
interval becomes smaller and smaller. If the integra-
tion interval drops below a certain border value (de-
noted by mint), the solver is reinitialized at the point
in time 1 mini it t t and new consistent initial val-
ues are computed. After that, a new numerical inte-
gration process is started.

4.4 Special aspects
The necessary calculation of consistent initial values
at each beginning of a continuous phase or after a

Figure 7. Continuous phase of hybrid simulation algorithm

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++ t

29

N
SN

E 18/2, A
ugust 2008

jump of a non event variable is sometimes a crucial
task. Therefore, the finding procedure may fail. Some
helping methods were implemented into hybrid simu-
lation algorithm of Mosilab to overcome this prob-
lem. One of them, the homotopy method, shall be
mentioned here.

The homotopy method is a procedure to calculate the
solution of the problem

() 0H z (2)

starting from a known solution 0z . For this purpose,
the original problem (2) is substituted by the follow-
ing problem

0(,) () (1) () 0H z H z H z (3)

If 0 , this equation is trivial. By increasing
stepwise, new problems of the form (3) are estab-
lished. Generally, the solution 1kz of the preceding
problem (3) is used to find a solution kz of the cur-
rent problem (3). In case of convergence, this solution
is used in the next step (with furthermore increased

). If no solution kz can be found then is de-
creased and a new trial is started using 1kz . The com-
plete algorithm as used in Mosilab is shown in Fig. 8.

5 Simulation experiment
In order to show the function of the presented algo-
rithm, some simulation results of a simple 2D string

pendulum are given. A detailed sketch of the example
is shown in Fig. 9.

A point mass (having the mass parameter m) is at-
tached to a fixed point by a non-elastic thread. The
maximum length of the thread shall be denoted to as
L . The mass can perform two kinds of movements: a
circular movement in case of a fully stretched thread
(Fig. 9, left hand side) and a free movement in case of
a non-stretched thread (Fig. 9, right hand side). An
appropriate state chart is depicted in Fig. 10. The
model has two states called bound and free. Within
the circular movement, one differential equation of
second order is valid (having the state quantities
and , where g means the gravity constant and k
denotes a damping coefficient). Within the free
movement, however, two differential equations of
second order are needed (having the positions in x -
and y -direction and their time derivatives as state
quantities, where k means a damping coefficient and
r denotes the current distance between point mass
and fixed point).

The system remains in the bound state as long as the
centrifugal force of the mass holds the thread at its

Figure 10. State chart of string pendulum

Figure 9. Sketch of string pendulum

Figure 8. Homotopy method algorithm

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

30

full length. If the sum of forces acting on the mass
drops below zero (0F), this state will be leaved
and the free state will become active. The relevant
transition is called unstretch. Within this transition,
the current position and velocities have to be calcu-
lated from the last valid values of the physical quanti-
ties of the bound state. On the other hand, the free
state is valid as long as the distance between point
mass and fixed point is less than the full length of the
thread. If the full length is reached or exceeded
(r L), the system will change from the free state
into the bound state. The relevant transition is called
stretch. Within this transition, the current angle and
angular velocity have to be calculated from the last
valid values of the physical quantities of the free
state. Please note that the energy conservation law
may not be fulfilled during this structural change.

Fig. 11 shows an x - y -plot of the string pendulum
under the assumption that the mass is located near its
rest position at start of simulation and an initial veloc-
ity in positive x -direction is given. The pendulum
performs two cycles followed by a decreasing oscilla-
tion. In the first cycle, two structural changes occur
(denoted by no. 1 and 2). The first one switches from
circular to free movement, the second one changes
contrarily. The same appears within the second cycle
(structural changes no. 3 and 4). After the fourth
switch, the thread remains stretched to its full length
during the decreasing oscillations.

The following figures show time histories of some
interesting physical quantities. Fig. 12 depicts the
time association to the x - y -plot in Fig. 11. In case of
free movement, x and y are differential variables of
the DAE, while in case of circular movement, both

variables have to be computed from the current angle.
Contrary to this, Fig. 13 shows the angle which is
known during the circular movement and has to be
calculated within the free movement. The structural
changes can be determined best in the curves of the
two monitoring variables: the force within the thread
(see Fig. 14) and the distance between the mass and
the fixed point (see Fig. 15).

6 Conclusion
The numerical simulation of continuous systems with
structural dynamics requires simultaneous handling
of continuous-time dynamics and discrete-event dy-
namics. Hence, a tool suitable for simulating such
systems must offer facilities to describe both phe-
nomena. In particular, the interactions between both
worlds, i.e. triggering events by the continuous model
as well as changing the continuous model’s structure
by events, have to be taken into account.

In the paper, different types of structural changes are
listed. The full variety of these cases is hardly sup-
ported by well-known simulation tools. Hence, the
paper presents a hybrid simulation algorithm consist-
ing of a discrete phase and a continuous phase. The
simulator switches between these two phases at cer-
tain points in time in an appropriate way. The discrete
phase influences only the discrete parts of the hybrid

Figure 13. Simulation result: angle

Figure 12. Simulation result: x - and y -coordinates

Figure 11. Simulation result: x - y -plot

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++ t

31

N
SN

E 18/2, A
ugust 2008

model while the simulation time keeps constant. Exe-
cution of events and their consequences on changes
of the model structure are under focus. The continu-
ous phase affects only the continuous parts of the
hybrid model while the model structure keeps un-
changed. The main issue is to find consistent initial
values and to carry out numerical integration of the
DAE while monitoring relevant variables for recogni-
tion of possibly occurring events.

Beyond that, a homotopy method for supporting the
overcome of the consistent initial values finding
problem is presented. Finally, some simulation results
of a string pendulum are given.

References
[1] P. Antsaklis, X. Koutsoukos, J. Zaytoon. On hybrid

control of complex systems: a survey. J. Européen des
Systèmes Automatisés, 32:1023-1045, 1998.

[2] P.I. Barton, C.K. Lee. Modeling, simulation, sensitiv-
ity analysis, and optimization of hybrid systems. ACM
Trans. Mod. Comp. Sim., 12:256-289, 2002.

[3] D.A. van Beek, J.E. Rooda. Languages and applica-
tions in hybrid modelling and simulation: Positioning
of Chi. Control Engineering Practice, 8:81-91, 2000.

[4] F. Breitenecker, I. Troch. Simulation software – de-
velopment and trends. In: H. Unbehauen, editor, Con-
trol Systems, Robotics and Automation, Theme in En-

cyclopedia of Life Support Systems, UNESCO /
EOLSS Publishers, Oxford/UK 2004, Article No.
6.43.7.7 [http://www.eolss.net].

[5] F.E. Cellier. Continuous System Modeling. Springer.
1991.

[6] F.E. Cellier, H. Elmqvist, M. Otter, J.H. Taylor.
Guidelines for modeling and simulation of hybrid sys-
tems. Proc. IFAC World Congress, Sydney, Australia,
1993, vol.8, 391-397.

[7] H. Gueguen, M.-A. Lefebvre. A comparison of mixed
specification formalisms. J. Européen des Systemès
Automatisés, 35:381-394, 2001.

[8] http://www.laas.fr/cacsd/hds

[9] Hybrid Systems: Computation and Control. Springer
Lecture Notes in Computer Science (LNCS), Proceed-
ings of the HSCC workshops.

[10] KONDISK: German research project on continuous-
discrete systems; see http://www.
ifra.ing.tu-bs.de/kondisk/

[11] E.A. Lee, H. Zheng. Operational semantics of hybrid
systems. Proc. HSCC 2005, Zurich, Switzerland,
Springer LNCS 3414, 25-53.

[12] P. Mosterman. An overview of hybrid simulation phe-
nomena and their support by simulation packages.
Proc. HSCC 1999, Berg en Dal, The Netherlands,
Springer LNCS 1569, 165-177.

[13] M. Otter. Objektorientierte Modellierung mechatroni-
scher Systeme am Beispiel geregelter Roboter. Disser-
tation, Fortschrittberichte VDI, Reihe 20, Nr. 147,
VDI-Verlag, 1995.

[14] M. Otter, M. Remelhe, S. Engell, P. Mostermann. Hy-
brid models of physical systems and digital control-
lers. J. Automatisierungstechnik, 48:426-437, 2000.

[15] R. Saleh, S.J. Jou, A.R. Newton. Mixed-Mode Simula-
tion and Analog Multilevel Simulation. Kluwer, 1994.

[16] O. Enge. Analyse und Synthese elektromechanischer
Systeme. Dissertation, Shaker, Aachen, 2005.

[17] O. Enge, P. Maißer. Modelling electromechanical sys-
tems with electrical switching components using the
linear complementarity problem. Journal Multibody
System Dynamics, 13:421-445, 2005.

[18] C. Glocker. Dynamik von Starrkörpersystemen mit
Reibung und Stößen. Dissertation, Fortschrittberichte
VDI, Reihe 18, Nr. 182, VDI-Verlag, 1995.

[19] F. Pfeifer, C. Glocker. Multibody dynamics with uni-
lateral contacts. John Wiley & Sons, 1996.

[20] O. Enge et al. Quasi-stationary AC analysis using
phasor description with Modelica. Proc. 5th Modelica
Conf., Vienna, Austria, 2006, 579-588.

[21] http://www.mosilab.de

[22] C. Nytsch-Geusen et al. Mosilab: Development of a
Modelica based generic simulation tool supporting
model structural dynamics. Proc. 4th Modelica Conf.,
Hamburg, Germany, 2005, 527-535.

Figure 14. Simulation result: force

Figure 15. Simulation result: distance

+++ Numerical S imulation of Continuous Systems with Structural Dynamics +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

32

[23] C. Nytsch-Geusen et al. Advanced modeling and
simulation techniques in Mosilab: A system develop-
ment case study. Proc. 5th Modelica Conf., Vienna,
Austria, 2006, 63-71.

[24] P.N. Brown, A.C. Hindmarsh, L.R. Petzold. Consis-
tent initial condition calculation for differential-
algebraic systems. SIAM J. Sci. Comp., 19:1495-
1512, 1998.

[25] C. Pantelides. The consistent initialization of differen-
tial-algebraic systems. SIAM J. Sci. Stat. Comput.,
9:213-231, 1998.

[26] J. Unger, A. Kröner, W. Marquardt. Structural analy-
sis of differential-algebraic equation systems theory
and applications. Computers Chem. Engng., 19:867-
882, 1995.

[27] A.C. Hindmarsh, R. Serban, A. Collier. User Docu-
mentation for IDA v2.5.0, UCRL-SM- 208112,
www.llnl.gov/casc/sundials, 2006.

Corresponding author: Olaf Enge-Rosenblatt
Fraunhofer Institute for Integrated Circuits,
Design Automation Division,
Zeunerstraße 38, 01069 Dresden, Germany
olaf.enge@eas.iis.fraunhofer.de

Accepted EUROSIM 2007, June 2007
Received: June 5, 2008
Revised: July 10, 2008
Accepted: July 20, 2008

SNE Editorial board
Felix Breitenecker, Felix.Breitenecker@tuwien.ac.at

Vienna University of Technology, Editor-in-chief
Peter Breedveld, P.C.Breedveld@el.utwente.nl

University of Twenty, Div. Control Engineering
Agostino Bruzzone, agostino@itim.unige.it

Universita degli Studi di Genova
Francois Cellier, fcellier@inf.ethz.ch

ETH Zurich, Institute for Computational Science
Russell Cheng, rchc@maths.soton.ac.uk

University of Southampton, Fac. of Mathematics/OR Group
Rihard Karba, rihard.karba@fe.uni-lj.si

University of Ljubljana, Fac. Electrical Engineering
David Murray-Smith, d.murray-smith@elec.gla.ac.uk

Univ. of Glasgow, Fac. Electrical and Electronical Engineering
Horst Ecker, Horst.Ecker@tuwien.ac.at

Vienna University of Technology, Inst. f. Mechanics
Thomas Schriber, schriber@umich.edu

University of Michigan, Business School
Yuri Senichenkov, sneyb@dcn.infos.ru

St. Petersburg Technical University
Sigrid Wenzel, S.Wenzel@uni-kassel.de

University Kassel, Inst. f. Production Technique and Logistics

SNE - Editors /ARGESIM
c/o Inst. f. Analysis and Scientific Computation
Vienna University of Technology
Wiedner Hauptstrasse 8-10, 1040 Vienna, AUSTRIA
Tel + 43 - 1- 58801-10115 or 11455, Fax – 42098
sne@argesim.org; www.argesim.org

Editorial Info – Impressum

SNE Simulation News Europe ISSN 1015-8685 (0929-2268).
Scope: Technical Notes and Short Notes on developments in

modelling and simulation in various areas /application and the-
ory) and on bechmarks for modelling and simulation, member-
ship information for EUROSIM and Simulation Societies.

Editor-in-Chief: Felix Breitenecker, Inst. f. Analysis and Scien-
tific Computing, Vienna University of Technology,
Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria;
Felix.Breitenecker@tuwien.ac.at

Layout: Markus Wallerberger, ARGESIM TU Vienna;
markus.wallerberger@gmx.at

Printed by: Grafisches Zentrum, TU Vienna,
Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria

Publisher: ARGESIM/ASIM; ARGESIM, c/o Inst. for Scientific
Computation, TU Vienna, Wiedner Hauptstrasse 8-10,
1040 Vienna, Austria, and ASIM (German Simulation Society),
c/o Wohlfartstr. 21b, 80939 Munich

© ARGESIM/ASIM 2008

