
PLCStudio: SIMULATION BASED PLC CODE VERIFICATION

Sang C. Park, Chang Mok Park, and Gi-Nam Wang Jongeun Kwak, and Sungjoo Yeo

UDMTEk 113 Ho Sanhakwon, Ajou University, Dept. of Industrial and Information Systems

Suwon, 442-739, South Korea Engineering, Ajou University
 Suwon 442-739, South Korea

ABSTRACT
Proposed in this paper is the architecture of a PLC
programming environment that enables a visual
verification of PLC programs. The proposed architecture
integrates a PLC program with a corresponding plant
model, so that users can intuitively verify the PLC program
in a 3D graphic environment. The plant model includes all
manufacturing devices of a production system as well as
corresponding device programs to perform their tasks in
the production system, and a PLC program contains the
control logic for the plant model. For the implementation
of the proposed PLC programming environment, it is
essential to develop an efficient methodology to construct a
virtual device model as well as a virtual plant model. The
proposed PLC programming environment provides an
efficient construction method for a plant model based on
the DEVS (Discrete Event Systems Specifications)
formalism, which supports the specification of discrete
event models in a hierarchical, modular manner.

1 INTRODUCTION

Generally, industrial production lines are dynamic systems
whose states change according to the occurrence of various
events, thus exhibiting the characteristics of a discrete
event system. If manufacturers are to remain competitive
in a continuously changing marketplace, they must not
only continue to improve their products, but also strive to
improve production systems continuously [10]. Thus, an
efficient prototyping environment for production systems
is crucial. A modern production line is a highly integrated
system composed of automated workstations such as
robots with tool-changing capabilities, a hardware handling
system and storage system, and a computer control system
that controls the operations of the entire system. The
implementation of a production line requires much
investment, and decisions at the design stage have to be
made very carefully to ensure that a highly automated
manufacturing system will successfully achieve the
intended benefits.

 Simulation is an essential tool in the design and
analysis of complex systems that cannot be easily
described by analytical or mathematical models [5, 6]. It is
useful for calculating utilization statistics, finding
bottlenecks, pointing out scheduling errors and even for
creating manufacturing schedules. Traditionally, various
simulation languages, including ARENA® and AutoMod®,
are used for the simulation of manufacturing systems [14].
Those simulation languages have been widely accepted
both in industry and in academia; however, they remain as
analysis tools for the rough design stage of a production
line, because their simulation models are not realistic
enough to be utilized for a detailed design or for
implementation purposes. For example, real production
lines are usually controlled by PLC (Programmable Logic
Controller) programs [3], as shown in Fig. 1, but
conventional simulation languages roughly describe the
control logic with independent entity flows (job flows)
between processes.

Figure 1: Production system controlled by a PLC program

 For a detailed design (virtual prototyping) of a
production line, it is necessary to create a much more
detailed simulation model that can forecast not only the
production capability of the system but also the physical
validity and efficiency of co-working machines and control

222 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Park, Park, Wang, Kwak, and Yeo

programs. As shown in Fig. 1, various machines that
operate simultaneously in an industrial manufacturing
system are usually controlled by PLCs, currently the most
suitable and widely employed industrial control technology
[1-4]. A PLC (Programmable Logic Controller) emulates
the behavior of an electric ladder diagram. As they are
sequential machines, to emulate the workings of parallel
circuits that respond instantaneously, PLCs use an
input/output image table and a scanning cycle. When a
program is being run in a PLC it is continuously executing
a scanning cycle. The program scan solves the Boolean
logic related to the information in the input table with that
in output and internal relay tables. In addition, the
information in the output and internal relay tables is
updated during the program scan. In a PLC, this Boolean
logic is typically represented using a graphical language
known as a ladder diagram [3].
 Previous approaches on PLC programs can be
categorized into two groups; 1) Verification of a given
PLC program [18, 19], and 2) Generation of a dependable
PLC program [15-17]. In the first group, various software
tools have been developed for the verification of PLC-
based systems via the use of timed automata, such as
UPPAAL2k, KRONOS, Supremica and HyTech, mainly
for programs written in a statement list language also
termed Boolean [2]. Those software tools verify PLC
programs to a certain extent; however, they remain limited.
Since they are mainly focusing on the checking of
theoretical attributes (safety, liveness, and reachability), it
is not easy for users to determine whether the PLC
programs actually achieve the intended control objectives.
In the second group, many researchers have focused on the
automatic generation of PLC programs from various
formalisms including state diagrams, Petri nets and IDEF0.
Those formalisms can help the design process of control
logics, however, it is still difficult to find hidden errors
which are the most difficult part of the verification of a
control program. To cope with the problem, we need a
more transparent PLC programming environment helping
users to recognize hidden errors.
 The objective of this paper is to propose the
architecture of a PLC programming environment that
enables the visual validation of a PLC program. The
proposed PLC programming environment employs a
virtual plant model consisting of virtual devices, so that
users can easily verify the PLC program. The overall
structure of the paper is as follows. Section 2 illustrates the
architecture of the proposed PLC programming
environment, while Section3 describes an efficient
construction methodology for a plant model, which can be
synchronized with a PLC program. Section 4 shows an
example and illustrations. Finally, concluding remarks are
given in Section 5.

2 VISUAL VALIDATION OF PLC PROGRAMS

To design the architecture of the PLC programming
environment, it is important to understand the basic
procedure used to construct a PLC program (ladder
diagram). Chuang et al. [1] proposed a procedure for the
development of an industrial automated production system
that consists of nine steps. They are: 1) Define the process
to be controlled; 2) Make a sketch of the process operation;
3) Create a written sequence listing of the process step by
step; 4) On the sketch, add the sensors needed to carry out
the control sequence; 5) Add the manual controls needed
for the process-setup or for operational checks; 6) Consider
the safety of the operating personnel and make additions
and adjustments as needed; 7) Add the master stop
switches required for a safe shutdown; 8) Create a ladder
logic diagram that will be used as a basis for the PLC
program; and 9) Consider the possible points where the
process-sequence may go astray. The most time-
consuming task for the control logic designers is the 8-th
step, which is usually done by the repetitive method of
‘Code writing, testing and debugging’ until the control
objectives are achieved [2]. The bottleneck of the 8-th step
is that the conventional PLC programming environments
are not especially intuitive, particularly for the testing and
debugging of a PLC program, as they show only the status
of a PLC without providing any links to the target system
(production line).
 For the validation of a PLC program, engineers need
to imagine the state changes of a production line from the
input and output ports of a PLC. That is the reason
conventional PLC programming environments are often
inefficient and prone to human error. As the configurations
of production lines and their control programs become
more complicated, there is a strong need for a more
intuitive PLC programming environment. It is hoped that
this paper will take positive steps in this direction.

Figure 2: The proposed PLC programming environment

223

Park, Park, Wang, Kwak, and Yeo

 Fig. 2 shows the architecture of the proposed PLC
programming environment. It consists of two layers, a
model layer and an application layer. The model layer has
three models, a plant model (virtual factory model), a PLC
program (control model) and an I/O mapping model. The
plant model includes all manufacturing devices of the
production system as well as the corresponding device
programs to perform their tasks in the production system,
and the PLC program contains the control logic for the
plant model. For the integration of the plant model and the
PLC program, it is necessary to define the mapping
between the plant model and the PLC program, which is
described by the I/O mapping model. The application layer
simultaneously provides two interfaces to users. The ‘PLC
simulator’ performs the simulation of the control program,
and the ‘plant model visualizer’ shows the corresponding
plant model (3D graphic models) reflecting the changing
states of the production system during the PLC simulation.
Thus, it becomes much easier for users to verify the PLC
program through the plant model visualizer.
 Among the three models of the model layer, the plant
model plays a key role in the proposed PLC programming
environment. As mentioned earlier, the plant model should
contain all devices as well as the device control programs.
Thus, it can be considered as a ‘virtual factory model’, a
model executing manufacturing processes in computers as
well as the real world [11-13]. To implement a virtual
factory, it is necessary to construct digital models for all
the physical and logical elements (entities and activities) of
a real factory.
 The plant model consists of manufacturing devices
with their positions in the layout. To represent such a
manufacturing device, this paper employs the concept of a
virtual device: a digital model imitating the physical and
logical aspects of a real device. A virtual device needs to
maintain its relationships with other devices or PLC
programs as well as the inherent attributes of the device,
such as the kinematics and geometric shape. To do so, a
virtual device is split into two parts; a shell and a core. The
shell part can adapt to the different configurations of
production systems, and the core part undertakes the
inherent properties of the device. The concept of a virtual
device is shown in Fig. 3.

Figure 3: Virtual device model

 The reusability of a virtual device is very important, as
a virtual device can be used for many different
configurations of production systems. Without the
effective reusability characteristic of a virtual device, it is
more common to create new components from scratch than
to search for useful elements in other systems. For the
reusability of a virtual device, it is essential for the shell
part of a virtual device to be flexible enough to be
compatible with any configuration of a production system.
To build such a shell part, this paper employs Zeigler’s
DEVS (Discrete Event Systems Specifications) formalism
[7, 8], which supports the specification of discrete event
models in a hierarchical, modular manner. The semantics
of the formalism are highly compatible with object-
oriented specifications for simulation models. Within the
DEVS formalism, one must specify two types of sub-
models: 1) the atomic model, the basic models from which
larger models are built, and 2) the coupled model, how
atomic models are connected in a hierarchical manner.
Formally, an atomic model M is specified by a 7-tuple:

>=< aext tYSXM ,,,,,, int λδδ
X: input events set;
S: sequential states set ;
Y: output events set;

intδ : S S: internal transition function;

extδ : Q * X S: external transition function

Q = {(s,e)| s ∈ S, 0 ≤e≤ at (s)}: total state of M;

λ : S Y: output function;

at : S Real: time advance function.

The four elements in the 7-tuple, namely λδδ ,,int ext

and at , are called the characteristic functions of an atomic
model. The second form of the model, termed a coupled
model, shows a method for coupling several component

224

Park, Park, Wang, Kwak, and Yeo

models together to form a new model. Formally, a couple
model DN is defined as:

>=< SELECTICEOCEICMYXDN ,,,,,,
X: input events set;
Y: output events set;
M: set of all component models in DEVS;
EIC ⊆ DN.IN * M.IN: external input coupling relation;

EOC ⊆ M.OUT * DN.OUT: external output coupling
relation;
IC ⊆ M.OUT * M.IN: internal coupling relation;
SELECT: 2M −Ø M: tie-breaking selector,

where the extensions .IN and .OUT represent the input port
set and the output port set of the respective DEVS models.
For the implementation of the plant model, the shell part of
a virtual device is represented as an atomic model, and the
entire plant model is represented as a coupled model,
including the atomic models (virtual devices) and the
coupling relationships between them. The detail
specifications for the plant model are addressed in the
following section.

3 PLANT MODEL CONSTRUCTION

The objective of the proposed PLC programming
environment is to provide an intuitive PLC programming
and verification environment by connecting the plant
model to the PLC program. To achieve this objective, it is
essential to develop an efficient construction procedure of
a plant model. Fig. 4 shows the interactions among three
models of the PLC programming environment. The three
models are a plant model, an I/O mapping model, and a
PLC program. The plant model is controlled by the PLC
program through the I/O mapping model.

Figure 4: Interactions among three models of the PLC
programming environment

 Given that a plant model consists of virtual devices,
the construction method of a virtual device is described
before explaining the construction method of a plant model.
As explained earlier, a virtual device consists of a shell
part and a core part. The core part of a virtual device
includes the inherent properties of the device, such as
kinematics, geometric shape and the execution of device-
level commands. For the modeling of the core part of a
virtual device, the CSG (constructive solid geometry)
modeling scheme was employed, as shown in Fig. 5. In the
CSG modeling scheme, a user can interactively construct a
solid model by combining various primitives, such as
cylinders, spheres, boxes and cones. To imitate the
kinematics of a real device, it is necessary to define the
moving joints and the attributes of each joint. Our final
goal is to provide a library containing all standard
manufacturing devices, such as machining stations, AGVs,
and robots. Therefore, users can easily instantiate virtual
devices, without making efforts for modeling virtual
devices.

Figure 5: Core part modeling of a virtual device

 The shell part, enclosing the core part, should allow a
virtual device model to adapt to different plant
configurations. This part is modeled as an atomic model of
the DEVS formalism, which is a timed-FSA (finite state
automata). To define the shell part of a virtual device, first
it is necessary to identify the set of tasks that are assigned
to the device. The activation of each task is normally
triggered by an external signal from either the PLC
program or other virtual devices. Once the set of tasks is
identified for a virtual device, it is then possible to extract
the state transition diagram, which defines an atomic
model of the DEVS formalism. Fig. 6-(a) shows a simple
example of an AGV (Automatic Guided Vehicle) with two
tasks, T1 (movement from p1 to p2) and T2 (movement
from p2 to p1). As the two tasks should be triggered by
external events, the shell part of the AGV must have two

225

Park, Park, Wang, Kwak, and Yeo

input ports, termed here as Signal_1 and Signal_2, as
shown in Fig. 6-(b). From the set of tasks, it is possible to
instantiate the state transition diagram automatically. For
this example, there are four states, P1, DoT1, P2 and DoT2.
While P1 and P2 take external events from the input ports
(Signal_1, Signla_2) for state transitions, DoT1 and DoT2
take internal events that are the end events of the two tasks
(T1 and T2). The DEVS atomic model of the virtual device,
corresponding to the AGV, can be described as follows:

Shell of a virtual device:

>=< aext tYSXM ,,,,,, int λδδ
X = {Signal_1, Signal_2}
S= {P1, DoT1, P2, DoT2}
Y= {T1Done, T2Done}

intδ (DoT1) = P2

intδ (DoT2) = P1

extδ (P1, Signal_1) = DoT1

extδ (P2, Signal_2) = DoT2

λ (DoT1) = T1Done
λ (DoT2) = T2Done

at (DoT1) = Time_1.

at (DoT2) = Time_2.

Figure 6: Shell modeling of a virtual device

 Once virtual device models are constructed, a plant
model can be defined by combining the virtual devices.
While virtual devices are described as atomic models, the
entire plant model is modeled as a coupled model,
including those atomic models and coupling relationships
between them. Fig. 4-(a) shows a simple example of a
plant model including two virtual devices, VDI and VDJ.
The DEVS couple model of the plant model, shown in Fig.

4-(a), can be described as follows:

Plant Model:

>=< SELECTICEOCEICMYXDN ,,,,,, X =
{input1, input2}, Y = {output1, output2}
M: = {VDI, VDJ}
EIC = {(DN.input1* VDJ.input2), (DN.input2*

VDI.input1)}
EOC = {(VDI.output1, DN.output1),

(VDJ.output1*DN.output2)}
IC= {(VDI.output2* VDJ.input1)}
SELECT: 2M −Ø M: tie-breaking selector.

 The final objective of the plant model is the visual
validation of a PLC program. To do so, it is necessary to
define the communicating links between the plant model
and the PLC program, which is described by the I/O
mapping model. Fig. 7 shows the I/O mapping model for
the AGV example shown in Fig. 6. Once the I/O mapping
relations are established, the PLC program can control the
plant model through the I/O mapping model.

Figure 7: I/O mapping model between a plant model and a
PLC program

 The proposed methodology for the construction of a
plant model has two major benefits. The first is the
reusability of a virtual device model, signifying that the
structure of a virtual device model achieves independence
from the configurations of a production system. The
second benefit is the intuitiveness in defining the state
transition diagram of the virtual device model. Users with
only a passing knowledge of discrete event system
modeling can easily define a virtual device model simply
by identifying the set of tasks.

226

Park, Park, Wang, Kwak, and Yeo

4 EXAMPLES & ILLUSTRATIONS

Figure 8: 3D graphic model of a welding Cell

Figure 9: Plant model of a welding cell

Figure 10: Gantt chart for checking simulation result

5 DISCUSSION AND CONCLUSIONS

This paper proposes the architecture of a PLC
programming environment that enables a visual
verification of a PLC program by synchronizing a PLC
program with a corresponding virtual plant model. The
model layer of the proposed architecture consists of three

models: a plant model (virtual factory model), a PLC
program (control model) and an I/O mapping model. The
plant model includes all manufacturing devices of the
production system, and the PLC program contains the
control logic for the plant model. The I/O mapping model
functions as a communication link between these two
models. As the plant model plays a key role in the
proposed PLC programming environment, it is essential to
develop a practical methodology in the construction of a
virtual device model as well as a virtual plant model. To do
so, this paper addresses an efficient construction method of
a plant model based on the DEVS (Discrete Event Systems
Specifications) formalism, which supports the specification
of discrete event models in a hierarchical, modular manner.
The proposed methodology for the construction of a plant
model has two major benefits. The first is the reusability of
a virtual device model, signifying that the structure of the
virtual device model achieves independence from the
configurations of a production system. The second benefit
is that we can intuitively define the state transition diagram
of a virtual device model. It is not necessary for users to
have in-depth knowledge of discrete event system
modeling, as they simply have to identify a set of tasks in
order to define a virtual device model.

REFERENCES

C. P. Chuang, X. Lan, J. C. Chen, A systematic procedure
for designing state combination circuits in PLCs,
Journal of Industrial Technology, 1999;15(3):2-5.

S. Manesis, K. Akantziotis, Automated synthesis of ladder
automation circuits based on state-diagrams, Advances
in Engineering Software, 2005;36:225-233.

A. Rullan, Programmable logic controllers versus personal
computers for process control, Computers and Industrial
Engineering, 1997;33:421-424.

J. Jang, P. H. Koo, S. Y. Nof, Application of design and
control tools in a multirobot cell, Computers and
Industrial Engineering, 1997;32:89-100.

P. Klingstam, P. Gullander, Overview of simulation tools
for computer-aided production engineering, Computers
in Industry, 1999;38:173-186.

A. M. A. Al-Ahmari, K. Ridgway, An integrated modeling
method to support manufacturing system analysis and
design, Computers in Industry, 1999;38:225-238.

B. P. Zeigler, Multifacetted modeling and discrete event
simulation, Academic Press, Orland, 1984.

T. G. Kim, DEVSIM++ User’s Manual, Department of
Electrical Engineering, KAIST, Korea, 1994.

227

Park, Park, Wang, Kwak, and Yeo

M. P. Groover, Fundamentals of modern manufacturing,
Wiley, 2006.

B.K. Choi, B.H. Kim, New trends in CIM: Virtual
manufacturing systems for next generation
manufacturing, Current Advances in Mechanical Design
and Production Seventh Cairo University Int. MDP
Conf., Cairo, February 15-17, 2000, 425-436

M. Onosato, K. Iwata, Development of a virtual
manufacturing system by integrating product models
and factory models, CIRP, 1993;42(1):475-478.

K. Iwata, M. Onosato, K. Teramoto, S. Osaki, A modeling
and simulation architecture for virtual manufacturing
systems, CIRP, 1995;44(1):399-402.

L. Ye, F. Lin, Virtual system simulation – A step beyond
the conventional simulation, 22nd Int. Conf. on
Computer and Industrial Engineering, 1997/12/20, 304-
306

Anglani A, Grieco A, Pacella M, Tolio T. Object-oriented
modeling and simulation of flexible manufacturing
system: a rule-based procedure, Simulation Modeling
Practice and Theory, 2002;10:209-234.

G. Fray, Automatic implementation of Petri net based
control algorithms on PLCs, Proceedings of the
American control conference ACC 2000, Chicago; 2000,
2819-23.

J. S. Lee, P. L. Hsu, A PLC-based design for the sequence
controller in discrete event systems, Proceedings of the
2000 IEEE International conference on Control
Applications, Anchorage; 2000, 929-34.

M. A. Jafari, T. O. Boucher, A rule-based system for
generating a ladder logic control program from a high
level system model, Journal of Intelligent
Manufacturing Systems, 1994 ;5 :103-120.

D. Alexandre, B. Gerd, G. L. Kim, Y. Wang, A tool
architecture for the next generation of UPPAAL,
http://www.uppaal.com/ ; 2003

G. L. Kim, P. Paul, Y. Wang, UPPAAL in a nutshell,
International Journal on Software Tools for Technology
Transfer, 1997;1(1+2):134-152.

AUTHOR BIOGRAPHIES

S.C. PARK is an assistant professor in the Department of
Industrial & Information Systems Engineering at Ajou
University. Before joining Ajou, he worked for
DaimlerChrysler Corp. and CubickTek Co., developing
commercial and in-house CAD/CAM/CAPP/simulation
software systems. He received his BS, MS, and PhD de-

grees from KAIST in 1994, 1996, and 2000, respectively,
all in industrial engineering. His research interests include
geometric algorithms in CAD/CAM, process planning,
engineering knowledge management, and discrete event
system simulation. He can be reached via email at
<mailto:scpark@ajou.ac.kr>.

Gi-NAM WANG is a department head and professor in
the Department of Industrial & Information Systems
Engineering at AJOU University, South Korea. He has
completed his PhD in 1992 from Texas A&M University,
in Industrial Engineering. He has worked as visiting
professor at University of Texas at Austin during 2000-
2001. His area of research is related to Intelligent
Information & manufacturing system, system integration
& automation, e-Business solutions and image processing.
He can be reached via email at
<mailto:gnwang@ajou.ac.kr>.

CHANG MOK PARK is a research professor in the
Department of Industrial & Information Systems
Engineering at AJOU University. He has completed his
PhD in 2002 from AJOU University, in Industrial
Engineering. His research interest is related to Intelligent
Information & manufacturing system, and image
processing. He can be reached via email at
<mailto:cmpark@ajou.ac.kr>.

JONGEUN KWAK is PHD student in Industrial and
Information Systems Engineering at Ajou University. He
did his BS and MS in Computer Science Department in
year 1994 and 1996 respectively, from POSTECH, Korea.
Before joining PHD, he worked in LG Cooperative
Institute of Technology as a senior researcher for 5 years,
he also worked in Unisoft Ltd, and at Freelancer until 2007.
He can be reached vial email at
<mailto:jkwak@ajou.ac.kr>.

SUNGJOO YEO is PHD student in the Department of
Industrial and Information Systems Engineering at Ajou
University. He completed his BS, MS in year 1999 and
2001 respectively in Ajou University, IISE Department.
Before joining PHD, he worked in FUJITSU LIMITED as
a senior IT consultant for 7 years. His research area
includes simulation and data mining. He can be contacted
via <mailto:oriheap@ajou.ac.kr>.

228

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

