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Selection of Variables in Initialization of Modelica Models 

Mosoud Najafi, INRIA-Rocquencourt, Domaine de Voluceau, masoud.najafi@inria.fr

In Scicos, a graphical user interface (GUI) has been developed for the initialization of Modelica models. The 
GUI allows the user to fix/relax variables and parameters of the model as well as change their initial/guess 
values. The output of the initialization GUI is a pure algebraic system of equations which is solved by a nu-
merical solver. Once the algebraic equations solved, the initial values of the variables are used for the simu-
lation of the Modelica model. When the number of variables of the model is relatively small, the user can i-
dentify the variables that can be fixed and can provide the guess values of the variables. But, this task is not 
straightforward as the number of variables increases. In this paper, we present the way the incidence matrix 
associated with the equations of the system can be exploited to help the user to select variables to be fixed 
and to set guess values of the variables during the initialization phase. 

Introduction 
Scicos (www.scicos.org) is a free and open source 
simulation software used for modeling and simulation 
of hybrid dynamical systems [3, 4]. Scicos is a tool-
box of SciLab (www.scilab.org) which is also free 
and open-source and used for scientific computing. 
For many applications, the SciLab/Scicos environ-
ment provides an open-source alternative to Mat-
Lab/Simulink. Scicos includes a graphical editor for 
constructing models by interconnecting blocks, repre-
senting predefined or user defined functions, a com-
piler, a simulator, and code generation facilities. A 
Scicos diagram is composed of blocks and connection 
links. A block corresponds to an operation and by 
interconnecting blocks through links, we can con-
struct a model, or an algorithm. The Scicos blocks 
represent elementary systems that can be used as 
building blocks. They can have several inputs and 

outputs, continuous-time states, discrete-time states, 
zero-crossing functions, etc. New custom blocks can 
be constructed by the user in C and Scilab languages. 
In order to get an idea of what a simple Scicos hybrid 
models looks like, a model of a control system has 
been implemented in Scicos and shown in Figure 1.  

Besides causal or standard blocks, Scicos supports a 
subset of the Modelica (www.modelica.org) language 
[7]. The diagram in Figure 2 shows the way a simple 
DC-DC Buck converter has been modeled in Scicos. 
The electrical components are modeled with Mode-
lica while the blocks that are used to control the 
On/Off switch are modeled in standard Scicos. The 
Modelica compiler used in Scicos has been developed 
in the SIMPA (Simulation pour le Procédé et 
l’Automatique) project. Recently the ANR/RNTL 
SIMPA2 project has been launched to develop a more 
complete Modelica compiler. The main objectives of 
this project are to extend the Modelica compiler re-
sulted from the SIMPA project to fully support inheri-
tance and hybrid systems, to give the possibility to 
solve inverse problems by model inversion for static 
and dynamic systems, and to improve initialization of 
Modelica models. 

Figure 2. Model of a DC-DC Buck converter in Scicos 
using Modelica components. Figure 1. Model of a control system in Scicos 
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An important difficulty when simulating a large 
Modelica model is the initialization of the model. In 
fact, a model can be simulated only if it is initialized 
correctly. The reason lies in the fact that a DAE (Dif-
ferential-Algebraic Equation) resulting from a Mode-
lica program can be simulated only if the initial val-
ues of all the variables as well as their derivatives are 
known and are consistent. 

A DAE associated with a Modelica model can be 
expressed as 

0 ( , , , )F x x y p  (1) 

where , , ,x x y p  are the vector of differential vari-
ables of size dN , derivative of differential variables 
of size dN , algebraic variables of size aN , and model 
parameters of size pN , respectively. ( )F  is a nonlin-
ear vector function of size ( d aN N ). Since, the 
Modelica compiler of Scicos supports index-1 DAEs 
[1, 2], in this paper we limit ourselves to this class of 
DAEs. 

In Scicos, in order to facilitate the model initializa-
tion, the initialization phase and the simulation phase 
have been separated and two different codes are gen-
erated for each phase: The initialization code (an 
algebraic equation) and the simulation code (a DAE). 
In the Initialization phase, x  is considered as an 
algebraic variable (i.e., dx ) and then an algebraic 
equation is solved. Modelica parameters p  are con-
sidered as constants unless they are relaxed by the 
user. There are ( d aN N ) equations and (2 dN aN

pN ) variables and parameters that can be considered 
as unknowns. In order to have a square problemsolv-
able by the numerical solver, ( p dN N ) vari-
ables/parameters must be fixed. The values of x  and 
p  are often fixed and given by the user and the val-
ues of dx  and y  are computed. But the user is free to 
fix or relax any of variables and parameters. For ex-
ample, in order to initialize a model at the equilibrium 
state, dx  is fixed and set to zero whereas x  is relaxed 
to be computed. Another example is parameter sizing 
where the value of a parameter is computed as a func-
tion of a fixed variable. 

In this case, the parameter p  is relaxed and the vari-
able x  is fixed. In the simulation phase, the values 
obtained for x , dx , y , p  are used for starting the 
simulation. During the simulation, the value of p
(model parameters) does not change. 

In Modelica, the start keyword can be used to set 
the start values of the variables. The start values of 

derivatives of the variables can be given within the 
initial equation section. For small programs, this 
method can easily be used but as the program size 
grows, it becomes difficult to set start values and 
change the fixed attribute of variables or parameters 
directly in the Modelica program; initialization via 
modifying the Modelica model is specially difficult 
for models with multiple levels of inheritance; the 
visualization and fixing and relaxing of the variables 
and the parameters are not easy. Furthermore, the user 
often needs to have a model with several initialization 
scenarios. For each scenario a copy of the model 
should be saved. 

In Scicos, a GUI has been developed to help the user 
to initialize the Modelica models. In this GUI, the 
user can easily change the attributes of the variables 
and the parameters such as initial/guess value,
max, min, nominal, etc. Furthermore, it is possible to 
indicate whether a variable, the derivative of a vari-
able, and a parameter must be fixed or relaxed in the 
initialization phase. 

In the following sections, the initialization methodol-
ogy for Modelica models and the initialization GUI 
features will be presented. 

1 Initialization and simulation of 
Modelica models 

The flowchart in Figure 3 shows how initialization 
and simulation of Modelica models are carried out in 
Scicos. The first step in both tasks is removing inheri-
tances. This provides access to all variables and gen-
erates a flat model. The flat model is used to generate 
the initialization and the simulation codes. Note that 
the initialization data used for starting the simulation 
is passed to the simulation part by means of an XML 
file containing all initial values. 

In Scicos, three external applications are used in 
initialization and simulation: Translator,
XML2Modelica, and ModelicaC.

Translator is used for three purposes: 

Modelica Front-end compiler for the simulation: 
when called with appropriate options, Transla-
tor generates a flat Modelica program. For that, 
Translator verifies the syntax and semantics of 
the Modelica program, applies inheritance rules, 
generates equations for connect expressions, 
expands for loops, handles predefined functions 
and operators, performs the implicit type conver-
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sion, etc. The generated flat model contains all 
the variables, the derivatives of differential vari-
ables, and the parameters defined with attribute 
fixed=false. Constants and parameters with the 
attribute fixed=true are replaced by their nu-
merical values. 
Modelica Front-end for initialization: when 
called with appropriate options, Translator 
generates a flat Modelica program containing the 
variables and the parameters defined with attrib-
ute fixed=false. The derivatives of the variables 
are replaced by algebraic variables. Furthermore, 
the flat code contains the equations defined in the 
initial equation section in the Modelica pro-
grams. Constants and parameters with the attrib-
ute fixed=true are replaced by their numerical 
values. 

XML generator: when called with -xml option, 
Translator generates an XML file from a flat 
Modelica model. The generated XML file con-
tains all the information in the flat model. 

Once the XML file generated, the user can change 
variable and parameter attributes in the XML file with 
the help of the GUI. The modified XML file have to 
be reconverted into a Modelica program to be com-
piled and initialized. This is done by XML2Modelica.

ModelicaC, which is a compiler for the subset of the 
Modelica language, compiles a flat Modelica model 
and generates a C program for the Scicos target. The 
main features of the compiler are the simplification of 
the Modelica models and the generation of the C 
program ready for simulation. It supports zero-
crossing and discontinuity handling and provides the 
analytical Jacobian of the model. It does not support 
DAEs with index greater than one. Another important 
feature of the Modelica compiler is the possibility of 
setting the maximum number of simplification carried 
out during the code generation phase. Thus, the com-
piler can be called to generate a C code with no sim-
plification or a C code with as much simplification as 
possible. This is an important feature for the debug-
ging of the model. 

A new feature of ModelicaC is generating the inci-
dence matrix. When a C code is generated, the corre-
sponding incidence matrix is generated in an XML 
file. The incidence matrix is used by the initialization 
GUI to help the user. 
As shown in Figure 3, once the user requests the 
initialization of the Modelica model, the Modelica 

front-end generates a flat Modelica model as well as 
its corresponding XML file. The XML file is then 
used in the initialization GUI. In the GUI, the user 
can change the variable and parameter attributes 
defined in the XML file. The modified XML file is 
then translated back to a Modelica program. The 
Modelica program is compiled with the Modelica 
compiler and a C program is generated. The C pro-
gram is used by the Scicos simulator to compute the 
value of unknowns. Once the initialization finished, 
whether succeeded or failed, the XML file is updated 
with the most recent results. The GUI automatically 
reloads and displays the results. The user can then 
decide whether the simulation can be started or not. 

In order to simulate the Modelica model, similar to 
the model initialization, a flat model is generated. 
Then, the Modelica compiler simplifies the model 
and generates the simulation code. The generated 
code is simulated by a numerical solver. The initial 

Figure 3. Initialization flowchart in Scicos 
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values, needed to start the simulation, are read di-
rectly from the XML file. The end result of the simu-
lation can also be saved in another XML file to be 
used as a starting point for another simulation. 

2 Initialization GUI 
In Scicos, a GUI can be used for the initialization of 
the Modelica models. Figure 4 illustrates a screen 
shot of the GUI corresponding to the Modelica parts 
of the Scicos diagram of Figure 2. In this GUI, the 
Modelica model is displayed in the hierarchical from, 
as shown in Figure 4. Main branches of the tree rep-
resent components in the Modelica model. Sub-
branches are connectors, partial models, etc. If the 
user clicks on a branch, the variables and parameters 
defined in that branch are displayed and the user can 
modify their attributes. In the following subsections, 
some main features of the GUI will be presented. 

2.1 Variable/parameter attributes 
Any variable/parameter has several attributes which 
are either imported directly from the Modelica model 
such as name, type, fixed etc. or defined and used by 
the GUI i.e., id and selection.

name is the name of the variable/parameter used 
in the Modelica program. The user cannot 
change this attribute in the GUI. 
id is an identification of the variable/parameter 
in the flat Modelica program. The user cannot 
change this attribute in the GUI. 
type indicates whether the original type has 
been parameter or variable in the Modelica 
program. The user cannot change this attribute in 
the GUI. 
fixed represents the value of the ’fixed’ at-
tribute of the variable/parameter in the Modelica 
program. The user cannot change this attribute in 
the GUI. 
weight is the confidence factor. In the current 
version of Scicos, it takes either values 0 or 1. 
weight=0 corresponds to the fixed=false in 
Modelica whereas weight=1 corresponds to 
fixed=true. The default value of weight for the 
parameters and differential variables is one, 
whereas for the algebraic variables and the de-
rivatives of differential variables (converted to 
variables) is zero. 
value is the value of the variable/parameter. If 
the weight=1, the given value is considered as 

the final value and it does not change in the ini-
tialization. If weight=0, the given value is con-
sidered as a guess value. If the user does not pro-
vide any value, it is automatically set to zero. 
The user can modify this value in the GUI. 

selection is used to mark the variables and parame-
ters. This information will be used by the GUI for 
selective display of variables/parameters and to influ-
ence the Modelica compiler in the model simplifica-
tion phase. 

Note that if the user sets the weight attribute of a 
variable to one, it will be considered as a constant and 
in the initialization phase it will be replaced by its 
numerical value. On the other hand, if the user sets 
the weight attribute of a parameter to zero, the pa-
rameter will be considered as an unknown and its 
value will be computed in the initialization phase. 
This is in particular useful when the user tries to find 
a parameter value as a function of a variable in the 
Modelica model. 

2.2 Display modes 
Accessing to variables and parameters of the model 
becomes easier, if different display modes of the GUI 
are used: 

Normal mode is the default display mode. Click-
ing on each branch of the model tree, the user 
can visualize/ modify the variables/parameters 
defined in that part of the Modelica model. 
Reduced mode is used to display the variables of 
the simplified model. When the user pushes the 
initialization button, the flat Modelica model is 
compiled and a simplified model is generated. In 
this display mode, only the remaining variables 
are displayed. This display mode is in particular 
useful when the numerical solver cannot con-

Figure 4. Screenshot of the initialization GUI in Scicos for 
the electrical circuit of figure 2. 
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verge and the user should help the solver either 
by influencing the compiler to eliminate the un-
desirable variables or by giving more accurate 
guess values. 
Selected mode is used to display only the 
marked variables and parameters of the active 
branch. A variable or parameter can be marked 
by putting ’y’ in its selection field in the GUI. 
By default, all parameters, all differential vari-
ables and all algebraic variables whose start val-
ues are given are marked. Marking is useful in 
particular when a branch has many vari-
ables/parameters whereas the user is interested in 
a few ones. In this display mode, unmarked vari-
ables/parameters are not shown. 
Selected (all) mode is used to display all marked 
variables and parameters of the Modelica model. 
Changed mode is used to display the variables 
and the parameters whose weight attributes have 
been changed, such as the relaxed parameters. 

2.3 Initialization methods 
Once the user modified the attributes of the variables 
and the parameters, the initialization process can be 
started by clicking on the "Initialize" button. The 
initialization consists of calling a numerical solver to 
solve the final algebraic equation. There are several 
algebraic solvers available in Scicos such as Sundi-
als and Fsolve [8, 9, 10]. 

Once the solver finished the initialization, the ob-
tained results, either successful or not, are put back 
into the XML file and new values are displayed in the 
GUI. If the result is not satisfactory, the user can 
either select another initialization method or help the 
solver by giving initial values more accurately. This 
try and error can be continued until satisfactory ini-
tialization results are obtained. Then, the simulation 
can be started.  

3 Problems in variable fixing and 
variable selection 

The initialization of DAE (1) can be formulated as 
the following algebraic problem 

0 0 0 00 ( , , , )F dx x y p  (2) 

where 0x , 0dx , and 0y  are solutions or the initial 
values of differential variables, derivative of differen-
tial variables, algebraic variables, and parameter 
values, respectively. The degree of freedom of the 
equation (2) is d pN N , therefore the user should fix 

d pN N  variables or parameters and let the solver 
find the values of the remaining d aN N  unknowns.  

Fixing the variables/parameters and giving the start 
values of the relaxed variables/parameters are essen-
tial in the initialization of models. But they are not 
easy and straightforward for large models. In the next 
subsections the way these problems are handled in 
Scicos will be explained. 

3.1 Fixing the variables 
Consider the following equation set, composed of two 
equations and three unknowns. 

0 ( )
:

0 ( , , )
f x

F
g x y z

 (3) 

Since the degree of freedom is one, the user should 
provide and fix the value of a variable. But, it is clear 
that x  cannot be fixed, because its value is imposed 
by the first equation. In this case, the GUI should 
prevent the user from fixing x .

Consider the next set of equations composed of three 
equations and five unknowns. 

0 ( , )
: 0 ( , )

0 ( , , , )

f x u
F g x z

h x y z v
 (4) 

Although the degree of freedom is two, the user can-
not fix ( , )u z , ( , )x z , or ( , )x u  at the same time. In 
general, it is not easy to identify the set of variables 
that can be fixed. This is in particular important when 
the number of equations increases. In this case, if the 
user tries to fix an inadmissible variable, the GUI 
should raise an error message and prevent the user 
from fixing the variable. 

This problem can be solved using the incidence ma-
trix of the Modelica model. For example, this is the 
incidence matrix of (3): 

1 0 0 0 1
1 0 1 0 0
1 1 1 1 0

Fixing u  and z  means removing u  and z  from the 
equations which results in the following equation set 
and the incidence matrix. 

0

0

0

0 ( , ) 1 0 0
: 0 ( , ) 1 0 0

0 ( , , , ) 1 1 1

f x u
F g x z

h x y z v
 (5) 



+++ Selection of  Variables  in  Ini t ia l izat ion of  Model ica Models  +++  
SN

E 
18

/2
, A

ug
us

t 
20

08
 

tN

38

Although, there are three unknowns and three equa-
tions, the incidence matrix is not structurally full 
rank. This means that u  and z  cannot be fixed at the 
same time. Computing the structurally rank of the 
incidence matrix is a straightforward way to deter-
mine if the user is allowed to fix variables or parame-
ters of the model. Since the incidence matrix is very 
often large and sparse in practical models, we should 
use special methods for sparse matrices. In the GUI, a 
maximum matching method (also called a maximum 
transversal method) is used to compute the structural 
rank of the incidence matrix. The maximum matching 
method is a permutation of the matrix so that its kth

diagonal is zero-free and | |k  is uniquely minimized. 
With this method, the structural rank of the matrix is 
the number of non-zero elements of the matrix diago-
nal [6]. When the user tries to fix a variable or a pa-
rameter, the initialization GUI computes the new 
structural rank of the incidence matrix. If the fixing 
operation lowers the rank, an error message will 
raised and the modification will be inhibited. 

3.2 Selection of variables to be eliminated 
Another recurrent problem in solving algebraic equa-
tions is the convergence failure of the solver. Newton 
methods are convergent if the initial guess values of 
unknowns are not too far from the solution. So, the 
user should provide reasonable initial guess values. If 
the problem size is small and the user knows the 
nominal values of the unknowns, the user can provide 
the guess values. But in large models, it is nearly 
impossible to give all guess values. In medium size 
Modelica models, we usually end up with models 
with many variables whose start values are not speci-
fied by the user. In this case, their initial guess values 
are automatically set to zero which is not often a good 
choice. Furthermore, many variables of a model are 
redundant and the user does not know for which ones 
the initial guess should be given. This often happens 
with variables linked by the connect operator in 
Modelica. Suppose that two Modelica components 
are connected via a connector, e.g.,

connect(Block1.x, Block2.y); 

During the model simplification, the compiler may 
eliminate either Block1.x or Block1.y. Even if the 
user knows the guess values of both, it is not reason-
able to ask the user to provide them. Since the user 
has no influence on the compiler’s variable selection, 
this may cause a problem in solving the initialization 
equation. Consider, e.g., the following situation. 

2

30 0.1
( 3) 1:

0

x
xF

x y
 (6) 

Here, if the user sets the initial guess of y  to 10 and 
leaves the guess value of x  unspecified i.e., 0x ,
although 10y  is close to the solution, the Newton’s 
method will likely fail. The reason is that the solver 
ignores the initial value of y  and uses that of x . In 
fact, there is no way to tell the solver the guess value 
which is "more" correct than the others. 

The solution is to formally simplify the equations by 
eliminating the variables whose guess-values are not 
given, by replacing them with the variables having 
given guess values. For that, in the initialization GUI, 
variables with known guess-values are marked and 
the Modelica compiler is told to eliminate the un-
marked variables. The user, of course, can modify the 
list of these marked variables. 

The compiler tries to eliminate the variables as much 
as possible, but a problem may arise when the com-
piler fails to eliminate all of unmarked variables. 
Since, the simulator sets their guess-value to zero, the 
original problem still persists. In this case, the user 
should be asked to provide the guess-value of the 
remaining variables. But, usually the user has no idea 
about the nominal values of the remaining variables 
or even does not know the physical interpretation of 
them. As an example, consider the following set of 
equations for which no guess-values are given. 

0 ( )
:

0
f x

F
x y

 (7) 

Suppose that the compiler eliminates y , but the user 
does not know the start value of x  while y  has a 
physical interpretation and its nominal value can be 
given. In this case, the initialization GUI should pro-
pose the user all variables that can replace x , i.e., y .

Proposing alternative variables for formal simplifica-
tion is done in the initialization GUI. In the next sec-
tions, it will be shown the way these problems can be 
handled by the use of the incidence matrix of the 
model. This is done using the maximum flow algo-
rithms. 

4 Maximum flow problem 
The maximum flow problem is to find the maximum 
feasible flow through a single-source, single-sink 
flow network [5]. The maximum flow problem can be 



+++ Selection of  Variables  in  Ini t ia l izat ion of  Model ica Models  +++  t

39

N
SN

E 18/2, A
ugust 2008

seen as a special case of more complex network flow 
problems. A directed graph or digraph G  is an or-
dered pair : ( , )G V A  with 

V  is the set of vertices or nodes, 
A  is the set of ordered pairs of vertices, called 
directed edges or arcs. 

An edge ( , )e u v  is considered to be directed from 
u  to v ; v  is called the head and u  is called the tail of 
the edge; v  is said to be a direct successor of u , and 
u  is said to be a direct predecessor of v . The edge 
( , )v u  is called the inverted edge of ( , )u v .

Given a directed graph ( , )G V E , where each edge u ,
v  has a capacity ( , )c u v , the maximal flow f  from 
the source s  to the sink t  should be found. There are 
many ways of solving this problem, such as linear 
programming, Ford-Fulkerson algorithm, Dinitz 
blocking flow algorithm, etc [12, 11]. 

4.1 Ford-Fulkerson algorithm 
The Ford-Fulkerson algorithm computes the maxi-
mum flow in a flow network. The name "Ford-
Fulkerson" is often also used for the Edmonds-Karp 
algorithm, which is a specialization of Ford-
Fulkerson. The idea behind the algorithm is very 
simple: as long as there is a path from the source to 
the sink, with available capacity on all edges in the 
path, we send flow along one of these paths. Then we 
find another path, and so on. A path with available 
capacity is called an augmenting path. 

Algorithm:   Consider a graph ( , )G E V , with capac-
ity ( , )c u v  and flow ( , ) 0f u v  for the edge from u
to v . We want to find the maximum flow from the 
source s  to the sink t . After every step in the algo-
rithm the following is maintained: 

( , ) ( , )f u v c u v . The flow from u  to v  does not 
exceed the capacity. 

( , ) ( , )f u v f v u . Maintain the net flow be-
tween u  and v . If in reality a  units are going 
from u  to v , and b  units from v  to u , maintain 

( , )f u v a b  and ( , )f v u b a .
( , ) 0 ( ) ( )in outv

f u v f u f u  for all nodes 
u , except s  and t . The amount of flow into a 
node equals the flow out of the node. 

This means that the flow through the network is a 
legal flow after each round of the algorithm. We de-
fine the residual network ( , )f fG V E  to be the network 
with capacity ( , ) ( , ) ( , )fc u v c u v f u v  and no flow. 

Notice that it is not certain that fE E , as sending 
flow on ,u v  might close ,u v  (it is saturated), but 
open a new edge ,v u  in the residual network. 

1. ( , ) 0f u v  for all edges ( , )u v
2. While there is a path p  from s  to t  in fG , such 

that ( , ) 0fc u v  for all edges ( , )u v p :

a. Find ( , )( ) min ( , )f u v p fc p c u v

b. For each edge ( , )u v p
i. ( , ) ( , ) ( )ff u v f u v c p

ii. ( , ) ( , ) ( )ff v u f v u c p

The path p  can be found with, e.g., a breadth-first 
search or a depth-first search in ( , )f fG V E . The for-
mer which is called the Edmonds-Karp algorithm has 
been implemented in Scicos. 

By adding the flow augmenting path to the flow al-
ready established in the graph, the maximum flow 
will be reached when no more flow augmenting paths 
can be found in the graph. When the capacities are 
integers, the runtime of Ford-Fulkerson is bounded by 

max( )O E f , where E  is the number of edges in the 
graph and maxf  is the maximum flow in the graph. 
This is because each augmenting path can be found in 

( )O E  time and increases the flow by an integer 
amount which is at least 1. The Edmonds-Karp algo-
rithm that has a guaranteed termination and a runtime 
independent of the maximum flow value runs in 

2( )O V E  time. 

4.2 Problem of proposition of alternative 
variables 

In order to handle this problem, we build the bipartite 
graph shown in Figure 5. The left-hand side vertices 
indicate unknowns, and each vertex at the right-hand 
side indicates an equation. The edges are bidirectional 
and their capacity is infinite. 

Figure 5. Bipartite graph of variables and equations. 
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Note that, at this stage of initialization, the number of 
unknowns and the number of equations are identical 
and the incidence matrix is full rank. 

For the problem of proposing alternative variables 
that can be initialized instead of a variable iV , based 
on the bipartite graph in Figure 5, we build another 
directed graph as shown in Figure 6. In this graph, a 
source vertex and a target (sink) vertex have been 
added to the graph. The edge connecting the source 
vertex to iV  has infinite capacity. All m  edges con-
necting the target vertex to the variable vertices have 
the capacity 1 (except the edge connected to the ver-
tex iV ). The edges are mono-directional. 

Now, the problem of finding all alternative variables 
for iV  is transformed into that of finding of all feasi-
ble paths from the source to the target. All predeces-
sors of the target are possible alternative variables 
that can be used instead of iV . In the initialization 
GUI, when the user double-clicks on a variable, its 
alternative variables are displayed. This is a useful 
help during the initialization. 

5 Initialization iterations 
The role of the GUI and the marking in the initializa-
tion loop (see the flowchart in the Figure 3) can be 
summarized in the following algorithm.  

1. The GUI automatically marks the model parame-
ters, the differential variables and the algebraic 
variables whose guess value are given. 

2. In the GUI, the user can 
a. visualize/modify the fixed attribute of the 

variables and the parameters. 
b. change the guess values of variables and pa-

rameters (final values if they are fixed). 
c. modify whether a variable or a parameter is 

marked or not. 
3. Initialization is invoked. 

a. If necessary, the model is compiled. The 
Modelica compiler tries to reduce the num-
ber of unknowns by performing several 
stages of substituting and elimination. In this 
phase the marked variables are more likely 
to be eliminated by the compiler. 

b. A numerical solver is used to find the solu-
tion of the reduced model. 

c. The obtained solution values are send back 
to the GUI to be displayed. 

4. If the obtained results are satisfactory, goto step 7. 
5. The user can readjust the guess values of the re-

maining unknowns. If there are still unmarked 
unknowns in the reduced model, either the user 
can provide more accurate guess values for them 
or can click on the variables to see their alterna-
tives variables. The alternative variables should 
be marked to be remained in the reduced model. 

6. Goto step 2 
7. Start the simulation 

6 Example
The model of a thermo-hydraulic system is shown in 
Figure 7. In this model, there are a pressure source, 
two pressure sinks, three pipes (pressure losses), a 
constant volume chamber, and two flow-meter sen-
sors linked to a Scicos scope. 

As shown in Figure 8, the initial non-simplified 
model is composed of 132 equations, 131 relaxed 
variables and 1 relaxed parameter (i.e., 132 un-
knowns). The number of fixed parameters and vari-
ables are 36 and 1, respectively. 

When the model is simplified, the model size is re-
duced to only 11 unknowns. In Figure 9, where the 
display mode is Reduced, the remaining variables as 
well as their solution values are shown. 

Figure 6. Directed graph for the problem of proposing all 
alternative variables for iV .

Figure 7. A thermo-hydraulic system. 
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7 Conclusion
In the Modelica models, initialization is an important 
stage of the simulation. At the initialization, variables 
and parameters can be fixed or relaxed and their start 
values can be changed by the user. In this paper, we 
presented a special GUI to facilitate the task of select-
ing fixed and relaxed variables. 
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Figure 8. The initialization GUI for the model in Figure 6 
(the display mod is normal and the variables and the 

parameters of the block Volume are shown) 

Figure 9. The remaining variables as well as their initial 
values after the model simplification. The display mode is 

reduced. 


