
+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++ t

33

N
SN

E 18/2, A
ugust 2008

Selection of Variables in Initialization of Modelica Models

Mosoud Najafi, INRIA-Rocquencourt, Domaine de Voluceau, masoud.najafi@inria.fr

In Scicos, a graphical user interface (GUI) has been developed for the initialization of Modelica models. The
GUI allows the user to fix/relax variables and parameters of the model as well as change their initial/guess
values. The output of the initialization GUI is a pure algebraic system of equations which is solved by a nu-
merical solver. Once the algebraic equations solved, the initial values of the variables are used for the simu-
lation of the Modelica model. When the number of variables of the model is relatively small, the user can i-
dentify the variables that can be fixed and can provide the guess values of the variables. But, this task is not
straightforward as the number of variables increases. In this paper, we present the way the incidence matrix
associated with the equations of the system can be exploited to help the user to select variables to be fixed
and to set guess values of the variables during the initialization phase.

Introduction
Scicos (www.scicos.org) is a free and open source
simulation software used for modeling and simulation
of hybrid dynamical systems [3, 4]. Scicos is a tool-
box of SciLab (www.scilab.org) which is also free
and open-source and used for scientific computing.
For many applications, the SciLab/Scicos environ-
ment provides an open-source alternative to Mat-
Lab/Simulink. Scicos includes a graphical editor for
constructing models by interconnecting blocks, repre-
senting predefined or user defined functions, a com-
piler, a simulator, and code generation facilities. A
Scicos diagram is composed of blocks and connection
links. A block corresponds to an operation and by
interconnecting blocks through links, we can con-
struct a model, or an algorithm. The Scicos blocks
represent elementary systems that can be used as
building blocks. They can have several inputs and

outputs, continuous-time states, discrete-time states,
zero-crossing functions, etc. New custom blocks can
be constructed by the user in C and Scilab languages.
In order to get an idea of what a simple Scicos hybrid
models looks like, a model of a control system has
been implemented in Scicos and shown in Figure 1.

Besides causal or standard blocks, Scicos supports a
subset of the Modelica (www.modelica.org) language
[7]. The diagram in Figure 2 shows the way a simple
DC-DC Buck converter has been modeled in Scicos.
The electrical components are modeled with Mode-
lica while the blocks that are used to control the
On/Off switch are modeled in standard Scicos. The
Modelica compiler used in Scicos has been developed
in the SIMPA (Simulation pour le Procédé et
l’Automatique) project. Recently the ANR/RNTL
SIMPA2 project has been launched to develop a more
complete Modelica compiler. The main objectives of
this project are to extend the Modelica compiler re-
sulted from the SIMPA project to fully support inheri-
tance and hybrid systems, to give the possibility to
solve inverse problems by model inversion for static
and dynamic systems, and to improve initialization of
Modelica models.

Figure 2. Model of a DC-DC Buck converter in Scicos
using Modelica components. Figure 1. Model of a control system in Scicos

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

34

An important difficulty when simulating a large
Modelica model is the initialization of the model. In
fact, a model can be simulated only if it is initialized
correctly. The reason lies in the fact that a DAE (Dif-
ferential-Algebraic Equation) resulting from a Mode-
lica program can be simulated only if the initial val-
ues of all the variables as well as their derivatives are
known and are consistent.

A DAE associated with a Modelica model can be
expressed as

0 (, , ,)F x x y p (1)

where , , ,x x y p are the vector of differential vari-
ables of size dN , derivative of differential variables
of size dN , algebraic variables of size aN , and model
parameters of size pN , respectively. ()F is a nonlin-
ear vector function of size (d aN N). Since, the
Modelica compiler of Scicos supports index-1 DAEs
[1, 2], in this paper we limit ourselves to this class of
DAEs.

In Scicos, in order to facilitate the model initializa-
tion, the initialization phase and the simulation phase
have been separated and two different codes are gen-
erated for each phase: The initialization code (an
algebraic equation) and the simulation code (a DAE).
In the Initialization phase, x is considered as an
algebraic variable (i.e., dx) and then an algebraic
equation is solved. Modelica parameters p are con-
sidered as constants unless they are relaxed by the
user. There are (d aN N) equations and (2 dN aN

pN) variables and parameters that can be considered
as unknowns. In order to have a square problemsolv-
able by the numerical solver, (p dN N) vari-
ables/parameters must be fixed. The values of x and
p are often fixed and given by the user and the val-
ues of dx and y are computed. But the user is free to
fix or relax any of variables and parameters. For ex-
ample, in order to initialize a model at the equilibrium
state, dx is fixed and set to zero whereas x is relaxed
to be computed. Another example is parameter sizing
where the value of a parameter is computed as a func-
tion of a fixed variable.

In this case, the parameter p is relaxed and the vari-
able x is fixed. In the simulation phase, the values
obtained for x , dx , y , p are used for starting the
simulation. During the simulation, the value of p
(model parameters) does not change.

In Modelica, the start keyword can be used to set
the start values of the variables. The start values of

derivatives of the variables can be given within the
initial equation section. For small programs, this
method can easily be used but as the program size
grows, it becomes difficult to set start values and
change the fixed attribute of variables or parameters
directly in the Modelica program; initialization via
modifying the Modelica model is specially difficult
for models with multiple levels of inheritance; the
visualization and fixing and relaxing of the variables
and the parameters are not easy. Furthermore, the user
often needs to have a model with several initialization
scenarios. For each scenario a copy of the model
should be saved.

In Scicos, a GUI has been developed to help the user
to initialize the Modelica models. In this GUI, the
user can easily change the attributes of the variables
and the parameters such as initial/guess value,
max, min, nominal, etc. Furthermore, it is possible to
indicate whether a variable, the derivative of a vari-
able, and a parameter must be fixed or relaxed in the
initialization phase.

In the following sections, the initialization methodol-
ogy for Modelica models and the initialization GUI
features will be presented.

1 Initialization and simulation of
Modelica models

The flowchart in Figure 3 shows how initialization
and simulation of Modelica models are carried out in
Scicos. The first step in both tasks is removing inheri-
tances. This provides access to all variables and gen-
erates a flat model. The flat model is used to generate
the initialization and the simulation codes. Note that
the initialization data used for starting the simulation
is passed to the simulation part by means of an XML
file containing all initial values.

In Scicos, three external applications are used in
initialization and simulation: Translator,
XML2Modelica, and ModelicaC.

Translator is used for three purposes:

Modelica Front-end compiler for the simulation:
when called with appropriate options, Transla-
tor generates a flat Modelica program. For that,
Translator verifies the syntax and semantics of
the Modelica program, applies inheritance rules,
generates equations for connect expressions,
expands for loops, handles predefined functions
and operators, performs the implicit type conver-

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++ t

35

N
SN

E 18/2, A
ugust 2008

sion, etc. The generated flat model contains all
the variables, the derivatives of differential vari-
ables, and the parameters defined with attribute
fixed=false. Constants and parameters with the
attribute fixed=true are replaced by their nu-
merical values.
Modelica Front-end for initialization: when
called with appropriate options, Translator
generates a flat Modelica program containing the
variables and the parameters defined with attrib-
ute fixed=false. The derivatives of the variables
are replaced by algebraic variables. Furthermore,
the flat code contains the equations defined in the
initial equation section in the Modelica pro-
grams. Constants and parameters with the attrib-
ute fixed=true are replaced by their numerical
values.

XML generator: when called with -xml option,
Translator generates an XML file from a flat
Modelica model. The generated XML file con-
tains all the information in the flat model.

Once the XML file generated, the user can change
variable and parameter attributes in the XML file with
the help of the GUI. The modified XML file have to
be reconverted into a Modelica program to be com-
piled and initialized. This is done by XML2Modelica.

ModelicaC, which is a compiler for the subset of the
Modelica language, compiles a flat Modelica model
and generates a C program for the Scicos target. The
main features of the compiler are the simplification of
the Modelica models and the generation of the C
program ready for simulation. It supports zero-
crossing and discontinuity handling and provides the
analytical Jacobian of the model. It does not support
DAEs with index greater than one. Another important
feature of the Modelica compiler is the possibility of
setting the maximum number of simplification carried
out during the code generation phase. Thus, the com-
piler can be called to generate a C code with no sim-
plification or a C code with as much simplification as
possible. This is an important feature for the debug-
ging of the model.

A new feature of ModelicaC is generating the inci-
dence matrix. When a C code is generated, the corre-
sponding incidence matrix is generated in an XML
file. The incidence matrix is used by the initialization
GUI to help the user.
As shown in Figure 3, once the user requests the
initialization of the Modelica model, the Modelica

front-end generates a flat Modelica model as well as
its corresponding XML file. The XML file is then
used in the initialization GUI. In the GUI, the user
can change the variable and parameter attributes
defined in the XML file. The modified XML file is
then translated back to a Modelica program. The
Modelica program is compiled with the Modelica
compiler and a C program is generated. The C pro-
gram is used by the Scicos simulator to compute the
value of unknowns. Once the initialization finished,
whether succeeded or failed, the XML file is updated
with the most recent results. The GUI automatically
reloads and displays the results. The user can then
decide whether the simulation can be started or not.

In order to simulate the Modelica model, similar to
the model initialization, a flat model is generated.
Then, the Modelica compiler simplifies the model
and generates the simulation code. The generated
code is simulated by a numerical solver. The initial

Figure 3. Initialization flowchart in Scicos

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

36

values, needed to start the simulation, are read di-
rectly from the XML file. The end result of the simu-
lation can also be saved in another XML file to be
used as a starting point for another simulation.

2 Initialization GUI
In Scicos, a GUI can be used for the initialization of
the Modelica models. Figure 4 illustrates a screen
shot of the GUI corresponding to the Modelica parts
of the Scicos diagram of Figure 2. In this GUI, the
Modelica model is displayed in the hierarchical from,
as shown in Figure 4. Main branches of the tree rep-
resent components in the Modelica model. Sub-
branches are connectors, partial models, etc. If the
user clicks on a branch, the variables and parameters
defined in that branch are displayed and the user can
modify their attributes. In the following subsections,
some main features of the GUI will be presented.

2.1 Variable/parameter attributes
Any variable/parameter has several attributes which
are either imported directly from the Modelica model
such as name, type, fixed etc. or defined and used by
the GUI i.e., id and selection.

name is the name of the variable/parameter used
in the Modelica program. The user cannot
change this attribute in the GUI.
id is an identification of the variable/parameter
in the flat Modelica program. The user cannot
change this attribute in the GUI.
type indicates whether the original type has
been parameter or variable in the Modelica
program. The user cannot change this attribute in
the GUI.
fixed represents the value of the ’fixed’ at-
tribute of the variable/parameter in the Modelica
program. The user cannot change this attribute in
the GUI.
weight is the confidence factor. In the current
version of Scicos, it takes either values 0 or 1.
weight=0 corresponds to the fixed=false in
Modelica whereas weight=1 corresponds to
fixed=true. The default value of weight for the
parameters and differential variables is one,
whereas for the algebraic variables and the de-
rivatives of differential variables (converted to
variables) is zero.
value is the value of the variable/parameter. If
the weight=1, the given value is considered as

the final value and it does not change in the ini-
tialization. If weight=0, the given value is con-
sidered as a guess value. If the user does not pro-
vide any value, it is automatically set to zero.
The user can modify this value in the GUI.

selection is used to mark the variables and parame-
ters. This information will be used by the GUI for
selective display of variables/parameters and to influ-
ence the Modelica compiler in the model simplifica-
tion phase.

Note that if the user sets the weight attribute of a
variable to one, it will be considered as a constant and
in the initialization phase it will be replaced by its
numerical value. On the other hand, if the user sets
the weight attribute of a parameter to zero, the pa-
rameter will be considered as an unknown and its
value will be computed in the initialization phase.
This is in particular useful when the user tries to find
a parameter value as a function of a variable in the
Modelica model.

2.2 Display modes
Accessing to variables and parameters of the model
becomes easier, if different display modes of the GUI
are used:

Normal mode is the default display mode. Click-
ing on each branch of the model tree, the user
can visualize/ modify the variables/parameters
defined in that part of the Modelica model.
Reduced mode is used to display the variables of
the simplified model. When the user pushes the
initialization button, the flat Modelica model is
compiled and a simplified model is generated. In
this display mode, only the remaining variables
are displayed. This display mode is in particular
useful when the numerical solver cannot con-

Figure 4. Screenshot of the initialization GUI in Scicos for
the electrical circuit of figure 2.

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++ t

37

N
SN

E 18/2, A
ugust 2008

verge and the user should help the solver either
by influencing the compiler to eliminate the un-
desirable variables or by giving more accurate
guess values.
Selected mode is used to display only the
marked variables and parameters of the active
branch. A variable or parameter can be marked
by putting ’y’ in its selection field in the GUI.
By default, all parameters, all differential vari-
ables and all algebraic variables whose start val-
ues are given are marked. Marking is useful in
particular when a branch has many vari-
ables/parameters whereas the user is interested in
a few ones. In this display mode, unmarked vari-
ables/parameters are not shown.
Selected (all) mode is used to display all marked
variables and parameters of the Modelica model.
Changed mode is used to display the variables
and the parameters whose weight attributes have
been changed, such as the relaxed parameters.

2.3 Initialization methods
Once the user modified the attributes of the variables
and the parameters, the initialization process can be
started by clicking on the "Initialize" button. The
initialization consists of calling a numerical solver to
solve the final algebraic equation. There are several
algebraic solvers available in Scicos such as Sundi-
als and Fsolve [8, 9, 10].

Once the solver finished the initialization, the ob-
tained results, either successful or not, are put back
into the XML file and new values are displayed in the
GUI. If the result is not satisfactory, the user can
either select another initialization method or help the
solver by giving initial values more accurately. This
try and error can be continued until satisfactory ini-
tialization results are obtained. Then, the simulation
can be started.

3 Problems in variable fixing and
variable selection

The initialization of DAE (1) can be formulated as
the following algebraic problem

0 0 0 00 (, , ,)F dx x y p (2)

where 0x , 0dx , and 0y are solutions or the initial
values of differential variables, derivative of differen-
tial variables, algebraic variables, and parameter
values, respectively. The degree of freedom of the
equation (2) is d pN N , therefore the user should fix

d pN N variables or parameters and let the solver
find the values of the remaining d aN N unknowns.

Fixing the variables/parameters and giving the start
values of the relaxed variables/parameters are essen-
tial in the initialization of models. But they are not
easy and straightforward for large models. In the next
subsections the way these problems are handled in
Scicos will be explained.

3.1 Fixing the variables
Consider the following equation set, composed of two
equations and three unknowns.

0 ()
:

0 (, ,)
f x

F
g x y z

 (3)

Since the degree of freedom is one, the user should
provide and fix the value of a variable. But, it is clear
that x cannot be fixed, because its value is imposed
by the first equation. In this case, the GUI should
prevent the user from fixing x .

Consider the next set of equations composed of three
equations and five unknowns.

0 (,)
: 0 (,)

0 (, , ,)

f x u
F g x z

h x y z v
 (4)

Although the degree of freedom is two, the user can-
not fix (,)u z , (,)x z , or (,)x u at the same time. In
general, it is not easy to identify the set of variables
that can be fixed. This is in particular important when
the number of equations increases. In this case, if the
user tries to fix an inadmissible variable, the GUI
should raise an error message and prevent the user
from fixing the variable.

This problem can be solved using the incidence ma-
trix of the Modelica model. For example, this is the
incidence matrix of (3):

1 0 0 0 1
1 0 1 0 0
1 1 1 1 0

Fixing u and z means removing u and z from the
equations which results in the following equation set
and the incidence matrix.

0

0

0

0 (,) 1 0 0
: 0 (,) 1 0 0

0 (, , ,) 1 1 1

f x u
F g x z

h x y z v
 (5)

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

38

Although, there are three unknowns and three equa-
tions, the incidence matrix is not structurally full
rank. This means that u and z cannot be fixed at the
same time. Computing the structurally rank of the
incidence matrix is a straightforward way to deter-
mine if the user is allowed to fix variables or parame-
ters of the model. Since the incidence matrix is very
often large and sparse in practical models, we should
use special methods for sparse matrices. In the GUI, a
maximum matching method (also called a maximum
transversal method) is used to compute the structural
rank of the incidence matrix. The maximum matching
method is a permutation of the matrix so that its kth

diagonal is zero-free and | |k is uniquely minimized.
With this method, the structural rank of the matrix is
the number of non-zero elements of the matrix diago-
nal [6]. When the user tries to fix a variable or a pa-
rameter, the initialization GUI computes the new
structural rank of the incidence matrix. If the fixing
operation lowers the rank, an error message will
raised and the modification will be inhibited.

3.2 Selection of variables to be eliminated
Another recurrent problem in solving algebraic equa-
tions is the convergence failure of the solver. Newton
methods are convergent if the initial guess values of
unknowns are not too far from the solution. So, the
user should provide reasonable initial guess values. If
the problem size is small and the user knows the
nominal values of the unknowns, the user can provide
the guess values. But in large models, it is nearly
impossible to give all guess values. In medium size
Modelica models, we usually end up with models
with many variables whose start values are not speci-
fied by the user. In this case, their initial guess values
are automatically set to zero which is not often a good
choice. Furthermore, many variables of a model are
redundant and the user does not know for which ones
the initial guess should be given. This often happens
with variables linked by the connect operator in
Modelica. Suppose that two Modelica components
are connected via a connector, e.g.,

connect(Block1.x, Block2.y);

During the model simplification, the compiler may
eliminate either Block1.x or Block1.y. Even if the
user knows the guess values of both, it is not reason-
able to ask the user to provide them. Since the user
has no influence on the compiler’s variable selection,
this may cause a problem in solving the initialization
equation. Consider, e.g., the following situation.

2

30 0.1
(3) 1:

0

x
xF

x y
 (6)

Here, if the user sets the initial guess of y to 10 and
leaves the guess value of x unspecified i.e., 0x ,
although 10y is close to the solution, the Newton’s
method will likely fail. The reason is that the solver
ignores the initial value of y and uses that of x . In
fact, there is no way to tell the solver the guess value
which is "more" correct than the others.

The solution is to formally simplify the equations by
eliminating the variables whose guess-values are not
given, by replacing them with the variables having
given guess values. For that, in the initialization GUI,
variables with known guess-values are marked and
the Modelica compiler is told to eliminate the un-
marked variables. The user, of course, can modify the
list of these marked variables.

The compiler tries to eliminate the variables as much
as possible, but a problem may arise when the com-
piler fails to eliminate all of unmarked variables.
Since, the simulator sets their guess-value to zero, the
original problem still persists. In this case, the user
should be asked to provide the guess-value of the
remaining variables. But, usually the user has no idea
about the nominal values of the remaining variables
or even does not know the physical interpretation of
them. As an example, consider the following set of
equations for which no guess-values are given.

0 ()
:

0
f x

F
x y

 (7)

Suppose that the compiler eliminates y , but the user
does not know the start value of x while y has a
physical interpretation and its nominal value can be
given. In this case, the initialization GUI should pro-
pose the user all variables that can replace x , i.e., y .

Proposing alternative variables for formal simplifica-
tion is done in the initialization GUI. In the next sec-
tions, it will be shown the way these problems can be
handled by the use of the incidence matrix of the
model. This is done using the maximum flow algo-
rithms.

4 Maximum flow problem
The maximum flow problem is to find the maximum
feasible flow through a single-source, single-sink
flow network [5]. The maximum flow problem can be

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++ t

39

N
SN

E 18/2, A
ugust 2008

seen as a special case of more complex network flow
problems. A directed graph or digraph G is an or-
dered pair : (,)G V A with

V is the set of vertices or nodes,
A is the set of ordered pairs of vertices, called
directed edges or arcs.

An edge (,)e u v is considered to be directed from
u to v ; v is called the head and u is called the tail of
the edge; v is said to be a direct successor of u , and
u is said to be a direct predecessor of v . The edge
(,)v u is called the inverted edge of (,)u v .

Given a directed graph (,)G V E , where each edge u ,
v has a capacity (,)c u v , the maximal flow f from
the source s to the sink t should be found. There are
many ways of solving this problem, such as linear
programming, Ford-Fulkerson algorithm, Dinitz
blocking flow algorithm, etc [12, 11].

4.1 Ford-Fulkerson algorithm
The Ford-Fulkerson algorithm computes the maxi-
mum flow in a flow network. The name "Ford-
Fulkerson" is often also used for the Edmonds-Karp
algorithm, which is a specialization of Ford-
Fulkerson. The idea behind the algorithm is very
simple: as long as there is a path from the source to
the sink, with available capacity on all edges in the
path, we send flow along one of these paths. Then we
find another path, and so on. A path with available
capacity is called an augmenting path.

Algorithm: Consider a graph (,)G E V , with capac-
ity (,)c u v and flow (,) 0f u v for the edge from u
to v . We want to find the maximum flow from the
source s to the sink t . After every step in the algo-
rithm the following is maintained:

(,) (,)f u v c u v . The flow from u to v does not
exceed the capacity.

(,) (,)f u v f v u . Maintain the net flow be-
tween u and v . If in reality a units are going
from u to v , and b units from v to u , maintain

(,)f u v a b and (,)f v u b a .
(,) 0 () ()in outv

f u v f u f u for all nodes
u , except s and t . The amount of flow into a
node equals the flow out of the node.

This means that the flow through the network is a
legal flow after each round of the algorithm. We de-
fine the residual network (,)f fG V E to be the network
with capacity (,) (,) (,)fc u v c u v f u v and no flow.

Notice that it is not certain that fE E , as sending
flow on ,u v might close ,u v (it is saturated), but
open a new edge ,v u in the residual network.

1. (,) 0f u v for all edges (,)u v
2. While there is a path p from s to t in fG , such

that (,) 0fc u v for all edges (,)u v p :

a. Find (,)() min (,)f u v p fc p c u v

b. For each edge (,)u v p
i. (,) (,) ()ff u v f u v c p

ii. (,) (,) ()ff v u f v u c p

The path p can be found with, e.g., a breadth-first
search or a depth-first search in (,)f fG V E . The for-
mer which is called the Edmonds-Karp algorithm has
been implemented in Scicos.

By adding the flow augmenting path to the flow al-
ready established in the graph, the maximum flow
will be reached when no more flow augmenting paths
can be found in the graph. When the capacities are
integers, the runtime of Ford-Fulkerson is bounded by

max()O E f , where E is the number of edges in the
graph and maxf is the maximum flow in the graph.
This is because each augmenting path can be found in

()O E time and increases the flow by an integer
amount which is at least 1. The Edmonds-Karp algo-
rithm that has a guaranteed termination and a runtime
independent of the maximum flow value runs in

2()O V E time.

4.2 Problem of proposition of alternative
variables

In order to handle this problem, we build the bipartite
graph shown in Figure 5. The left-hand side vertices
indicate unknowns, and each vertex at the right-hand
side indicates an equation. The edges are bidirectional
and their capacity is infinite.

Figure 5. Bipartite graph of variables and equations.

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++
SN

E
18

/2
, A

ug
us

t
20

08

tN

40

Note that, at this stage of initialization, the number of
unknowns and the number of equations are identical
and the incidence matrix is full rank.

For the problem of proposing alternative variables
that can be initialized instead of a variable iV , based
on the bipartite graph in Figure 5, we build another
directed graph as shown in Figure 6. In this graph, a
source vertex and a target (sink) vertex have been
added to the graph. The edge connecting the source
vertex to iV has infinite capacity. All m edges con-
necting the target vertex to the variable vertices have
the capacity 1 (except the edge connected to the ver-
tex iV). The edges are mono-directional.

Now, the problem of finding all alternative variables
for iV is transformed into that of finding of all feasi-
ble paths from the source to the target. All predeces-
sors of the target are possible alternative variables
that can be used instead of iV . In the initialization
GUI, when the user double-clicks on a variable, its
alternative variables are displayed. This is a useful
help during the initialization.

5 Initialization iterations
The role of the GUI and the marking in the initializa-
tion loop (see the flowchart in the Figure 3) can be
summarized in the following algorithm.

1. The GUI automatically marks the model parame-
ters, the differential variables and the algebraic
variables whose guess value are given.

2. In the GUI, the user can
a. visualize/modify the fixed attribute of the

variables and the parameters.
b. change the guess values of variables and pa-

rameters (final values if they are fixed).
c. modify whether a variable or a parameter is

marked or not.
3. Initialization is invoked.

a. If necessary, the model is compiled. The
Modelica compiler tries to reduce the num-
ber of unknowns by performing several
stages of substituting and elimination. In this
phase the marked variables are more likely
to be eliminated by the compiler.

b. A numerical solver is used to find the solu-
tion of the reduced model.

c. The obtained solution values are send back
to the GUI to be displayed.

4. If the obtained results are satisfactory, goto step 7.
5. The user can readjust the guess values of the re-

maining unknowns. If there are still unmarked
unknowns in the reduced model, either the user
can provide more accurate guess values for them
or can click on the variables to see their alterna-
tives variables. The alternative variables should
be marked to be remained in the reduced model.

6. Goto step 2
7. Start the simulation

6 Example
The model of a thermo-hydraulic system is shown in
Figure 7. In this model, there are a pressure source,
two pressure sinks, three pipes (pressure losses), a
constant volume chamber, and two flow-meter sen-
sors linked to a Scicos scope.

As shown in Figure 8, the initial non-simplified
model is composed of 132 equations, 131 relaxed
variables and 1 relaxed parameter (i.e., 132 un-
knowns). The number of fixed parameters and vari-
ables are 36 and 1, respectively.

When the model is simplified, the model size is re-
duced to only 11 unknowns. In Figure 9, where the
display mode is Reduced, the remaining variables as
well as their solution values are shown.

Figure 6. Directed graph for the problem of proposing all
alternative variables for iV .

Figure 7. A thermo-hydraulic system.

+++ Selection of Variables in Ini t ia l izat ion of Model ica Models +++ t

41

N
SN

E 18/2, A
ugust 2008

7 Conclusion
In the Modelica models, initialization is an important
stage of the simulation. At the initialization, variables
and parameters can be fixed or relaxed and their start
values can be changed by the user. In this paper, we
presented a special GUI to facilitate the task of select-
ing fixed and relaxed variables.

Acknowledgements
The author would like to thank Sébastien Furic
(LMS. Imagine Co.) for a number of helpful com-
ments. This work is supported by the ANR/SIMPA2-
C6E2 project.

References
[1] K.E. Brenan, S.L. Campbell, L.R. Petzold. Numerical

solution of initial-value problems in differential-
algebraic equations. SIAM pubs., Philadelphia, 1996.

[2] P.N. Brown, A.C. Hindmarsh, L.R. Petzold. Consis-
tent initial condition calculation for differential-
algebraic systems. SIAM Journal on Scientific Com-
puting, 19(5):1495– 1512, 1998.

[3] S.L. Campbell, J-Ph. Chancelier, R.Nikoukhah. Mod-
eling and simulation Scilab/Scicos. Springer Verlag,
2005.

[4] J.P. Chancelier, F. Delebecque, C. Gomez, M. Gour-
sat, R. Nikoukhah, S. Steer. An introduction to Scilab.
Springer Verlag, Le Chesnay, France, 2002.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein.
Introduction to Algorithms. MIT Press and McGraw-
Hill, 2nd edition, 2001.

[6] T.A. Davis. Direct Methods for Sparse Linear Systems
(Fundamentals of Algorithms 2). Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA,
2006.

[7] P. Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE Press,
2004.

[8] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee,
R. Serban, D.E. Shumaker, C.S.Woodward. Sundials:
Suite of nonlinear and differential/algebraic equation
solvers. ACM Transactions on Mathematical Softwar
31(3), pages 363–396, 2005.

[9] A.C. Hindmarsh. The pvode and ida algorithms.
LLNL technical report UCRL-ID-141558, 2000.

[10] M. Najafi, R. Nikoukhah. Initialization of modelica
models in scicos. Conference Modelica 2008, Biele-
feld, Germany., 2008.

[11] R.L. Rivest, C.E. Leiserson. Introduction to Algo-
rithms. McGraw-Hill, Inc., New York, NY, USA,
1990.

[12] D.D. Sleator, R.E. Tarjan. A data structure for dy-
namic trees. In STOC ’81: Proc. 13th annual ACM
symposium on Theory of computing, pages 114–122,
New York, NY, USA, 1981. ACM. 118

Corresponding author: Masoud Najafi
INRIA-Rocquencourt, Domaine de Voluceau,
BP 105, 78153, Le Chesnay, France
masoud.najafi@inria.fr

Accepted EOOLT 2008, June 2008
Received: July 30, 2008
Revised: August 10, 2008
Accepted: August 15, 2008

Figure 8. The initialization GUI for the model in Figure 6
(the display mod is normal and the variables and the

parameters of the block Volume are shown)

Figure 9. The remaining variables as well as their initial
values after the model simplification. The display mode is

reduced.

