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Abstract. In our previous work we proposed Model-Driven Performance
Engineering (MDPE) as a methodology to integrate performance engi-
neering into the model-driven engineering process. MDPE enables do-
main experts, who generally lack performance expertise, to profit from
performance engineering by automating the performance analysis process
using model transformations. A crucial part of this automated process
is to give performance prediction feedback not based on internal mod-
els, but on models the domain experts understand. Hence, a mechanism
is required to annotate analysis results back into the original models
provided by the domain experts. This paper discusses various existing
traceability methodologies and describes their application and extension
for MDPE by taking its specific needs into account.

1 Introduction

Model-Driven Engineering (MDE) is a technique for dealing with the ever-
increasing complexity of modern software systems. It places models of software—
often expressed using domain-specific languages (DSLs)—at the heart of the de-
velopment process. This enables developers to view and design a software system
from a much higher level of abstraction than the code level, allowing them to
cope with much higher levels of complexity. Additionally, the use of DSLs allows
domain experts to be involved in the development of a software systems. This
can increase the quality of software as the domain requirements can be taken into
account more directly and accurately. For example, the authors of [1] describe
how DSLs can be used to develop so called Composite Applications that access
services provided by a SAP Business Suite system. This is supported by indus-
trial tools, such as the Composition Environment (CE) [2] that applies MDE
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for the development of Composite Applications, enabling experts in a domain to
build new applications based on pre-provided modules.

However, a difficulty with MDE lies in supporting extra-functional require-
ments in the software system. As generic solutions that guarantee certain non-
functional properties under any circumstance are typically difficult to provide,
developers need expertise regarding specific non-functional properties and how
to support them in application design. This expertise is typically lacking with
domain experts. Additionally, the high-level of abstraction beneficial to the devel-
opment of complex applications, can also make it difficult to provide reasonable
estimates for non-functional properties of the resulting system.

Therefore, there is a need for a better support for non-functional properties
within MDE. Performance is one such important property, which has been re-
searched in the context of MDE [3, 4] and is also the focus of this paper. We
have previously proposed Model-Driven Performance Engineering (MDPE) [5],
an extension of MDE that allows performance analysis models to be derived
from development models at each level of abstraction. However, so far, the re-
sults of such an analysis still require performance engineering expertise to be
interpreted. In particular, the performance engineer must understand the spe-
cific analysis or simulation technique used and be able to translate back the
results from this analysis into properties of the original development models. In
this paper, we investigate how this feedback of results can be automised in the
context of MDPE, such that domain experts can benefit from analysis results
without consulting performance engineers.

Trace information about all of the various transformations that together make
up MDPE is the most important asset required for implementing result feed-
back. Therefore, in this paper, we will discuss various approaches to collect and
maintain such trace information. We will then discuss which of these techniques
is most appropriate in the context of MDPE and show how we have applied
it to implement result feedback for MDPE. The contribution of this paper is,
therefore, twofold: a) It presents a technique for feeding performance analysis
results back into original development models, and b) to the tracing community
it presents a case of application of tracing and a discussion of the benefits and
drawbacks of a number of tracing techniques in a specific application context.

The remainder of the paper is structured as follows: We begin in Section 2
with a brief overview of MDPE including a description of where tracing infor-
mation is required. Then, in Section 3 we describe the implementation of the
feedback mechanism and also discuss which tracing technique is most suitable
for this purpose. Section 4 describes related work and Section 5 concludes the
paper.

2 Background

Performance engineering is used in software development to meet performance
requirements in the design of a software system. Applying performance engineer-
ing is, however, costly since it requires performance experts, who understand the
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formalisms that performance analysis and simulation tools use, to be consoli-
dated. For this reason, it is often neglected or only done in the very beginning of
system design. Consequently, the performance is only measured on the running
system—which often leads to redesigns and reimplementations of (parts of) the
system.

In Model-Driven Engineering (MDE), software is designed stepwise, by re-
fining models until the concrete implementation is realized. Model-Driven Per-
formance Engineering (MDPE) [5] proposes to do performance engineering at
each of these refinement steps to discover design flaws early in the development
process. Furthermore, it proposes to use model-driven techniques to automate
performance engineering itself. To this end, we propose a semi-automatic gener-
ation of performance models based on development models (e.g. UML models)
using model transformations. To have a sufficient cost-benefit this is also a step-
wise process: basic analysis can be done automatically on each refinement level
while more detailed analysis requires manual input to the generated performance
models and therefore more performance expertise. Thus, MDPE takes two or-
thogonal dimensions of refinement into account: One dimension to refine the
performance models, and another dimension to refine the development models
in a traditional MDE process.

To define a process independent of development and performance analysis
formalisms, we use a tool-independent performance metamodel. Development
models from the MDE process are transformed into an instance of this meta-
model: a Tool-Independent Performance Model (TIPM). Such a TIPM can be
transformed into different performance analysis models called Tool-Specific Per-
formance Models (TSPMs). These models are then employed by specific perfor-
mance analysis tools using the same performance view-point on the system as
common data base.

The TIPM offers a solution that is independent of any specific performance
modelling concept, such as layered queuing models [6], stochastic petri nets [7],
etc. Hence, an MDPE user is able to compare the capabilities of several per-
formance modelling concepts without undergoing the error prone and time con-
suming task of defining the interfaces to the development modelling language
in use [8]. Additionally, MDPE is independent of the performance analysis tool
actually used, such as AnyLogic, etc., which simplifies the industrial application
of MDPE. Finally, as a result of the TIPM we are able to support multiple kinds
of development models, such as UML models, but also proprietary models used
within SAP for the purpose of business behaviour modelling.

In [5] we presented a transformation from UML models to AnyLogic sim-
ulation models. This paper concentrates on the opposite direction: the tracing
of results, collected by running the simulation models, to the UML models. To
support this, the TIPM metamodel contains the concepts of monitors that can
be filled with analysis results.

An excerpt from the metamodel is shown in Figure 1. The left side of the
figure defines concepts that hold information about the structure of the studied
system. These concepts—Scenario, Step, PathConnection, Resource and refine-
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Scenario
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TIPM
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Step

PathConnection

*

Resource

*

*

Experiment

CountingMonitor
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exit
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LatencyMonitor

latency : double

UtilizationMonitor

utilization: double

Fig. 1. The TIPM metamodel defines concepts to describe a system (left) and analysis
results (right).

ments of those (not shown in the figure)—are based on the Core Scenario Model
(CSM) introduced by Woodside et al. [9] and have basically the same seman-
tics as defined there. The right side contains the concept of Experiments and
Monitors, in addition to the concepts borrowed from the CSM. Those are used
to indicate which kind of performance analysis should be performed and where.
For the latter, different kinds of monitors can refer to different kinds of elements
in a TIPM, which they observe. Their properties are only filled by the utilised
analysis tool after an analysis has been performed.

In the figure, three different monitor types are defined: A LatencyMonitor
holds information about the latency between two steps (entry and exit). A uti-
lization measured for a resource can be placed into a UtilizationMonitor. A
CountingMonitor observes how often a step is executed.

Like the transformation to a performance model, the tracing from a perfor-
mance model is also a two-step process. In the first step, the simulation tool
provides data to fill the monitors of a TIPM. Then this information can be used
to update the development models from which that TIPM was generated. The
following section discusses both steps in detail.

3 Extending MDPE with Traceability

Figure 2 provides an overview of our proposed architecture to extend MDPE
with traceability. As shown in the figure, two steps, named as Tool2TIPM Trac-
ing and TIPM2DevelopmentModel Tracing, are required in order to implement
synchronization between performance analysis tools and development models. A
description of both steps is provided in the following subsections.

3.1 Synchronization between Performance Analysis Tools and
TIPMs

The tracing of simulation results back to a TIPM concentrates on filling the
properties of monitor elements in the TIPM (cf. right side in Figure 1). These are
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Fig. 2. Tracing architecture for MDPE as Block Diagram [10]

initially not set, because they are explicitly provided as containers for feedback
information. The performance analysis tool, which is responsible for providing
the result data, has to know about the monitors and their properties. This has
to be taken into account, when transforming a TIPM into a TSPM.

As an example of such performance analysis tool we used AnyLogic devel-
oped by XJ Technologies [11]. It is a multi-method simulation tool, which in-
cludes basic services that can be used to create simulation models using dif-
ferent methods—discrete-event, system dynamics or agent-based modeling—and
allows combining these methods in one model. The object-oriented model design
paradigm supported by AnyLogic provides modular and incremental construc-
tion of large models. The simulation engine is based on Java technology, which
makes it possible to use functionality provided by the Java runtime library in
simulation models.

AnyLogic supports developing custom object libraries that can include model
objects developed with the tool itself together with Java objects and third-party
libraries written in Java. An AnyLogic library can be attached to a model devel-
opment environment and its objects can be used in other simulation models. In
order to support simulations based on TIPMs, we developed a special AnyLogic
library that includes objects which behave corresponding to concepts from the
TIPM metamodel and collect data about the simulated model during its ex-
ecutions. To generate AnyLogic simulation models, two transformations were
developed using the Atlas Transformation Language (ATL) [12]. The first one
converts a TIPM into a structure of AnyLogic library objects as anticipated
by AnyLogic. It generates all required objects together with additional objects
required to connect everything into a working model. This structure includes
all AnyLogic objects and connections between them that have to be present
in the model. The second transformation applies XML formatting to make the
structure readable by the AnyLogic tool, effectively leaving the MDE technology
space.

To enable the actual feedback, we have implemented a small service to which
a simulation tool like AnyLogic can send information. In this way, the simulation
tool itself does not require any MDE specific knowledge. It is sufficient to send a
message to a designated port containing the information which TIPM (identified
through its filename) and which property in which monitor to fill (addressed
through their unique names). When receiving such a message, the service updates
the corresponding TIPM with the provided information.
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Monitors are also defined as objects in our AnyLogic library. Their main
functionality is to collect the required result data during execution of the sim-
ulation model. Type and scope of the information collecting is defined in the
TIPM: Parameters of monitors are transformed to parameters of library objects
together with information on how to connect to the service listening for result
data. As mentioned, the AnyLogic simulation engine can use a wide variety of
features provided by Java; This was used to realise the connection to the service.
After a model’s execution, AnyLogic connects to the specified port and provides
result data. Assuming, for instance, that AnyLogic has measured a latency of
11.38 ms for a certain sequence of steps, it can set the latency value of the
corresponding LatencyMonitor to 11.38.

3.2 Synchronization between TIPM and Development Models

For the tracing between development models and TIPMs a solution is required
to trace between two modeling languages where one, defined by the TIPM meta-
model, is known, but the other, used for defining the development models, may
vary. Our current MDPE prototype, however, only supports UML models as de-
velopment models. In the future we require support for other (domain-specific)
languages, such as SAP proprietary languages for business process modeling as
shown in [1], as well.

In the following, different options to implement tracing between development
models (of arbitrary metamodels) and TIPMs are analysed and one is selected.
Afterwards, we exemplify the actual feedback process on UML development mod-
els using the chosen traceability methodology.

A straightforward option is the usage of bi-directional transformations, such
as provided by the Query View Transformations (QVT) [13] relations language.
Initial tool support has been published in [14]. We claim that this solution is
tracing by design—in the sense that there is no need to care about tracing after
the implementation of a transformation. However, it is more effort to develop
bi-directional transformations than uni-directional ones as the transformation
developer always has to keep both directions in mind. Thus, bi-directional are
not an option for MDPE because we do not want to complicate the development
of transformations between development models and TIPMs.

As another option, the transformation developer can provide a definition of
how tracing information between development models and TIPMs are estab-
lished after the transformation was performed. The Epsilon Comparison Lan-
guage (ECL) [15] enables comparison of models of arbitrary metamodels. Hence,
a transformation developer could use ECL to write a comparison specification
using ECL that identifies correspondences between a development model and a
TIPM. The disadvantage of this approach is that it currently requires manually
writing comparison rules for each single transformation or, in other words, for
each type of development model that should be supported. An approach sup-
porting the definition of ECL rules in parallel with defining the transformations,
could significantly reduce reduce the indicated overhead but is not available at
the moment.
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The approach we claim as most useful for the MDPE process is based on
Higher-Order Transformations as available and described by Jouault [16] for
the Atlas Transformation Language (ATL) [12]. Higher-Order Transformations
are transformations that are used to transform one transformation A to a new
transformation A∗. This approach is used in [16] to automatically extend rules
within ATL transformations with code for additional information generation.
This code creates a tracing model when the transformation is executed. This
tracing model conforms to a traceability metamodel, which is defined in [16]
by extending the Atlas Model Weaver (AMW) [17] metamodel. This approach
is not traceability by design as there is the need to consider tracing after im-
plementing a transformation. However, the additional effort is simply executing
a Higher-Order Transformation which has only to be defined for each applied
transformation language but not for each single transformation. Additionally,
the application of the Higher-Order Transformation can be integrated in the
transformation tooling.

In our implementation, we execute the transformation provided by [16] to ex-
tend our current UML2TIPM transformation with tracing capabilities. Figure 3
depicts how, for instance, the rule “DeviceObject” is extended with traceability
model generation capabilities. Hence, if the extended UML2TIPM transforma-
tion is executed, not only a TIPM but also a tracing model is generated.

Fig. 3. Comparison between one ATL rule before (left) and after the HOT (right)

The tracing model enables us to annotate simulation results serialized by the
monitor model elements in the TIPMs back to the original development models.
Therefore, an Eclipse plug-in has been developed which iterates all monitors
of a TIPM. Monitors are associated with Steps and Resources in the TIPM as
described in subsection 3.1. It is the purpose of the plug-in to use the generated
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tracing model in order to get the related development model element for the
TIPM Step or TIPM Resource, the monitor is attached on.

For instance, if a LatencyMonitor is associated with the Steps “Initial Node 1”
(as entry) and “Final Node 1” (as exit), the plug-in would analyze the trace links
within the tracing model in order to get a reference to the UML Activity Di-
agram elements that were sources for the UML2TIPM transformation. In the
case of the two Steps “Initial Node 1” and “Final Node 1” we get references to
an InitalNode and a FinalNode in an UML Activity Diagram.

The actual annotation of the simulation result stored in the LatencyMonitor,
which has been used as in the example in subsection 3.1, to the development
models follows in a second step: The latency (11.38 ms) is annotated to the UML
Activity containing the InitalNode and the FinalNode to which the trace links
point. It has been mentioned that we do not only need to support UML models
as development models but also other modeling languages such as proprietary
languages used within SAP. A general solution for annotation is not possible
since we have to take development language specifics, such as the mechanism
used for the actual annotation of simulation results, into account. Therefore, we
encapsulated the logic implementing the development language specific annota-
tion of performance analysis results in one module, and the logic implementing
the development language independent access of the TIPM and Tracing Model
in another module.

In order to realize loose coupling between the modelling language specific part
and the modelling language independent part, we used the standard extension
mechanism provided by the Eclipse platform.

Thus, we implemented one Eclipse plug-in which implements the development
language independent part of the TIPM to development model tracing, and
provides an Eclipse Extension Point to be implemented by the development
language specific Eclipse plug-in. We implemented such a plug-in in order to
annotate the AnyLogic simulation results from the TIPM monitors back to UML
models via the SPT profile [18].

By combining our transformation and tracing solutions, we created a proto-
type, which we successfully applied on examples. An issue often discussed when
it comes to applying such transformation chains with tracing is information loss.
For the application presented in this paper, however, we did not encounter any is-
sues with transformation loss. Clearly, information is not preserved by our trans-
formations; but that is intended, since only selected information is carried from
development to transformation models and a different kind of information—the
analysis results—are carried back.

4 Related Work

Our work has been strongly influenced both by needs arising from industrial
practice and by previous work in the academic literature. Here, we briefly discuss
some of the influences from the literature.
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Grassi and Mirandola with their work in the area of component-based software-
performance engineering were the first, in our knowledge, to present the notion of
using model transformations in the MDA context for generating analysis models
([19], for example) for analysing performance. They propose refining a second
line of models from the most generic models in parallel to those models meant for
eventually generating executable code. In contrast, we propose to generate a new
analysis model whenever it is needed, basing it on the most current development
model available. Other authors have also proposed using model transformations
for constructing analysis models. A more detailed discussion can be found in [5].

Our approach is much closer to work performed by Sabetta et al. [20], who
present a new technique for transforming development models into analysis mod-
els using so-called abstraction-raising transformations. This work could be used
as an extension of our work, although we would need to extend their specific
transformation technique to support tracing in the way we need it.

Our TIPM metamodel is closely related to Woodside’s work on CSM [9]. In
fact, the TIPM metamodel is an extended version of CSM. Our main extension
is the addition of the concept of monitors that enable us to indicate the specific
performance properties of interest. As we have seen, these monitors play an
important role in feeding information back into the development model as they
will contain the analysis results. Based on the CSM, Woodside has gone on to
build PUMA [8], a system quite similar to the work presented here. Feedback to
development models is quoted as future work in [8], however.

5 Conclusion

We have presented the implementation of a performance analysis result feed-
back mechanism for MDPE based on Higher-Order Transformations for ATL.
This technique helps developers to understand and experiment with performance
effects of design decisions without the need for performance expertise. All that
is required is the provision of basic performance annotations in the development
models. In cases like the SAP case cited above, even this can be avoided by pro-
viding catalogues of available components already pre-annotated with correct
performance data.

With the basic MDPE framework in place, we now need to perform experi-
ments to support our claim that the result feedback is actually useful to domain
experts. Such experiments will be performed in the experimentation phase of the
MODELPLEX project and may lead to corresponding adjustments to MDPE.
Also, in this context we will be implementing support for further input languages
and simulation engines.

Acknowledgement

This research has been co-funded by the European Commission within the 6th
Framework Programme project Modelplex contract number 034081 (cf. http:
//www.modelplex.org).



Fritzsche, Johannes, Zschaler, Zherebtsov and Terekhov

References

1. Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I., Kilpatrick, P., Brown, J.: To-
wards utilizing Model-Driven Engineering of Composite Applications for Business
Performance Analysis. In: ECMDA-FA’08 (to appear). (2008)

2. SAP AG: SAP NetWeaver Composition Environment 7.1 (2008)
https://www.sdn.sap.com/irj/sdn/nw-ce/.

3. D’Ambrogio, A.: A model transformation framework for the automated building
of performance models from UML models. In: WOSP ’05, ACM (2005) 75–86

4. Gu, G.P., Petriu, D.C.: XSLT transformation from UML models to LQN perfor-
mance models. In: WOSP ’02, ACM (2002) 227–234

5. Fritzsche, M., Johannes, J.: Putting Performance Engineering into Model-Driven
Engineering: Model-Driven Performance Engineering. In: MoDELS’2005 Satellite
Events: Revised Selected Papers, LNCS 5002, Springer (2007)

6. Franks, R.G.: Performance analysis of distributed server systems. PhD thesis
(2000) Adviser-C. Murray Woodside.
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