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ABSTRACT

This paper introduces an application of simulation-based
multi-objective optimization to solve a system configura-
tion problem in a hybrid flow shop system. The test case is
provided by a firm that manufactures mechanical parts for
the automotive sector. We present an architecture that uses
both discrete-event simulation and mathematical program-
ming tools in order to solve the problem. The multiple-
objective nature of the problem is preserved throughout
the proposed approach, using Pareto-dominance concepts
both to eliminate inefficient solutions within the proposed
solution algorithm and to provide the user with efficient
solutions. Mathematical programming is used to cull the
required number of simulation runs. Computational results
obtained using a real-world case study are reported. The
proposed approach is benchmarked against a general pur-
pose simulation-optimization engine in order to prove its
effectiveness.

1 INTRODUCTION

In modern manufacturing systems, production line, one of
the most efficient and adopted production layouts, has been
improved with the introduction of flexible machines at some
or all of its stages. This has led to a great enhancement in
system’s flexibility, but it has also led to a greater complexity
in its management. The following issues can contribute to
the complexity of the system’s management: flexible ma-
chines needing a human supervision, intermediate buffers
for unfinished parts, quality control stages and the intro-
duction of loops in the workflow. Regardless of the specific
system features, one of the most common objectives to be
pursued when managing the system is the optimization in
the use of the available resources, both in terms of ma-
chinery and human resources. The complexity of modern
systems has often suggested the use of hybrid approaches,
using specific features coming from management tools tra-

ditionally used as stand-alone solutions. Simulation and
mathematical programming are among the methods that are
commonly used for this purpose.

We address a configuration problem that arises in a
firm that manufactures mechanical parts for the automotive
industry. The production system can be classified as a hybrid
flow shop with variable processing times and finite capacity
buffers. Flexible machines are present at each stage, along
with buffers for unfinished parts located before each stage.
Several part types can be processed by the system: each
buffer is composed of distinct buffers, one for each part
type. The number of items to be processed for each part
type is known. Each stage can adopt several configurations,
each requiring the supervision of one or more workers,
and its performance depend on the chosen configuration.
The objective is to choose a system configuration pursuing
two often contrasting objectives: the minimization of the
required workers and the minimization of the makespan,
i.e. the total time needed to process all the required items.

We propose a hybrid approach that uses simulation and
mathematical programming integrated within an architecture
that allows a coordinated use of the main features of both
approaches, providing the system’s manager with a set of
efficient configurations to choose among. In the next section
we present reference works that allow the collocation of
our work in the existing literature. In the following section
3, the proposed method is presented. Aspects related to
mathematical programming are analyzed in section 4, while
the simulation model is presented in section 5. In section 6
we apply the proposed approach to a real-world case study
and we benchmark it against a general purpose simulation-
optimization engine. Finally, section 7 summarizes the
paper results.

2 RELATED WORK

Multi-objective optimization is an interesting research area
in the field of optimization methodologies, especially using
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Evolutionary Algorithms (Deb 2001). However, state-of-
the-art publications report relatively few attempts in the area
of simulation-based multi-objective optimization. Special
cases, in such a field, can be found in (Eskandari et al.
2005) and (Baesler and Sepúlveda 2001).

Evans et al. (1991) suggest a framework for the multicri-
teria optimization of simulation models by, first, discussing
the unique difficulties of this problem area along with im-
portant problem characteristics, and then discussing the way
that these problem characteristics would affect the choice
of a particular technique.

Gupta and Sivakumar (2002) present a simulation-based
multi-objective optimization method based on compromise
programming for operation scheduling in semi-conductor
manufacturing. The proposed method is used to solve
a NP-hard problem that consists in scheduling a number
of independent jobs on a single machine and finding a
Pareto optimal solution. The objectives observed in the
optimization strategy are average tardiness, cycle time, and
machine utilization. A campaign of theoretical job-shop
experiments is carried out using the proposed method.

A simulation optimization problem is an optimization
problem where the objective function, constraints, or both are
responses that can only be evaluated by computer simulation.
An analytical expression of the objective function or the
constraints does not exist. Computer simulation programs
require much longer processing times than the evaluation
of analytical functions. This makes the efficiency of the
optimization algorithms more crucial. The most common
formulation for optimization of systems through simulation
has been the maximization or minimization of the expected
value of the objective function of the problem.

In (Banks et al. 2000) various approaches are cat-
egorized according to the characteristics of the adopted
algorithms. The main techniques that have been used can
be divided into the following main categories:

• statistical procedures: sequential response surface
methodology, ranking & selection procedures, and
multiple comparison procedures;

• meta-heuristics: methods directly adopted from
deterministic optimization search strategies, such
as simulated annealing, tabu search, and genetic
algorithms;

• stochastic optimization: random search, stochastic
approximation;

• others, including ordinal optimization and sample
path optimization.

An alternative technique classification, for single ob-
jective problems, presented in (Azadivar 1992) is:

• gradient based search
• stochastic approximation

• response surface
• heuristic search

When considering multi-objective problems, the con-
cept of Pareto-optimality plays an utmost role in multi-
objective problems: a vector x∗ ∈ S is said to be Pareto
optimal for the considered problem if all other vectors x∈ S
have a higher value for at least one of the objective functions
fi(·), or else have the same value for all objectives. S is
the feasible set and fi, i ∈ {1, . . . , I} with I ≥ 2 is the array
of objective functions, all to be minimized. Pareto opti-
mal points are also known as efficient, non-dominated, or
non-inferior points. An up-to-date review of Pareto multi-
objective optimization can be found in Ehrgott (2005).

3 THE PROPOSED METHOD

The problem to be addressed has a double-faced objective:
to minimize the number of workers required by the adopted
system configuration (objective O1) and to minimize the
blocking or starvation times within the system (objective
O2). Given the highly different nature of such objectives,
these aspects cannot be effectively translated into a single,
numerical objective, such as a cost function. Hence, the
problem has to be treated explicitly addressing its multi-
objective nature.

3.1 Multiple Objectives

In the addressed problem, the values that can be assumed
by one of the two pursued objectives can only be integer
values: namely, the number of workers required by the
adopted system configuration. Furthermore, in real world
cases, a rough estimate of a reasonable range for this value
can also be obtained. Hence, in the proposed approach, we
can fix a range {ηmin, . . . ,ηmax} of values for the O1 objective
and iteratively address the problem obtained introducing the
additional constraint to use a specified number η of workers
iteratively chosen within the mentioned range, pursuing the
O2 objective.

3.2 Simulation vs. Optimization

Theoretically, at each iteration, it would be possible to enu-
merate all the configurations requiring a fixed number of
workers and then run a simulation to evaluate the configu-
ration that achieves the best performance according to the
O2 objective. Indeed, an approach entirely based on simu-
lation techniques is not viable for the analyzed case, since
it leads to a number of simulation runs needed that grows
exponentially with the number of stages and the number
of product types. This aspect will be deeply analyzed with
reference to the case study in section 6.
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On the other hand, an approach entirely based on a
comprehensive mathematical model cannot be effectively
adopted. The blocking and starvation times in the system
are determined by a wide range of aspects: the quantities to
be produced for each part type, the inventory state among
inter-stage buffers, the processing rates at each stage, which
depends both on the stage configuration and on the part type
to be processed. Finally, the idle times at any stage can
depend on the configurations chosen for all the preceding and
following stages. Hence, a model including all these aspect,
and in particular the last one, would grow exponentially in
complexity with the number of stages to be considered.

3.3 Problem Decomposition

The problem can be effectively modeled through a math-
ematical model accepting a simplification of the system.
In particular, we adopted a problem decomposition method
similar to the one presented in Colledani et al. (2005).
The system is considered in its whole complexity, but the
interactions among stages are only considered couple-wise:
i.e. only the idle times directly generated by each couple of
consecutive stages are considered. This approach neglects
the domino effect that can cause, for instance, a blocking
phenomenon at the first stage to propagate through all the
stages of the system but, as illustrated in sections 4 and 6,
this rarely affects the results obtained when idle times are
being couple-wise minimized. The details of the mathemat-
ical model are reported in section 4. It is important to note
that such a mathematical model, even if solved to optimality
for a fixed number of workers, cannot guarantee the actual
optimality of the found solution in the real system, due to
the introduced simplification.

3.4 Simulation Runs Reduction

The purpose of using such simplified mathematical model is
to reduce the number of system’s configurations to be studied
through simulation. Only the best solutions for each fixed
number of workers are, indeed, saved and will be used as an
input for the simulation engine. The number of solutions
to be considered is a parameter of the method. Figure
1 shows an example that better explains how simulation
runs can be reduced with the proposed approach. The
horizontal axis reports the number of workers needed by
the system configuration, while the objective function of
the mathematical model is reported on the vertical axis.

The values on the horizontal axis represent different
runs of the mathematical model with the constraint to use
exactly η ∈ {ηmin, . . . ,ηmax} workers in the system. The
bold dots on the vertical line relative to η represent different
system configurations, each requiring exactly η workers and
characterized by the objective function value corresponding
to the vertical coordinate of the dot. The best configuration
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Figure 1: Configurations to be simulated.

for each η is represented by the lowest dot. However, since
the mathematical model represents a simplified system, it
is not guaranteed that the configuration corresponding to
the lowest dot is actually the best configuration requiring
η workers in the real system. Therefore, a number of good
configurations are chosen to be tested using simulation.
Such configurations are the ones contained in the rectangles
in Figure 1: in the example, the three lowest – and hence
best according to the mathematical model – configurations
are chosen for each η .

It is worth noting that the number of configurations
for each η grows exponentially with the number of stages
and that an exhaustive simulation of all possible system
configurations is extremely time-consuming and rapidly be-
comes impossible for real world instances of the problem.
Such consideration is confirmed by the analysis reported in
section 6.

3.5 Method Overview

Figure 2 shows a graphical representation of the proposed
approach. For each η ∈ {ηmin, . . . ,ηmax} the mathematical
model described in section 4 is solved in order to store
the h best solutions, where h is a user-defined number.
The result can be shown as in Figure 1: the value of h
determines the height of the selection rectangles. A further
selection among the selected solutions is conducted using
the concept of Pareto-optimality: if a solution achieves the
same or better objective function than another one requiring
less workers, than the solution with the higher η is not
considered. The simulation process described in section 5
is then used to evaluate the actual performance parameters
for the selected configurations. Similarly to the selection
conducted before, only Pareto-optimal solutions are then
reported to the decision maker.
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Figure 2: Method overview.

4 MATHEMATICAL PROGRAMMING

A mathematical programming approach is used, as described
in section 3, in order to find the best configurations for the
system once the number of workers to be used is fixed.
The objective to be pursued is to minimize the blocking or
starvation times within the system, while the constraints to
be considered are relative to the number of workers to be
used and to the configurations available for each stage and
to the quantities of different part types to be manufactured.

The following notation is used throughout the paper:

P is the set of different part types processed by the
system;

p ∈ P is the index used to indicate a specific part type;

S is the set of stages available in the system;

i ∈ S is the index used to indicate a specific stage;

Cip is the capacity of the i-th buffer for p part type items;

Wip is the number of partially processed p part type
items available in the i-th buffer;

Qp is the required number of p part type items.

The binary decision variables xi j are defined in order
to indicate whether the i-th stage uses the j-th configuration

or not. Variable xi j is defined for i ∈ S and j ∈ Γ, where Γ
is the set of possible system’s stages configurations. Each
stage i is characterized by a set of possible configurations
Γi ⊂ Γ. The whole set Γ can be hence partitioned as
follows: Γ = (Γ1| . . . |ΓS) and xi j = 0 ∀i /∈ Γi. Hence, for
each configuration:

j ∈ Γ is the index used to identify a specific configura-
tion;

n j is the number of workers required by the j-th
configuration;

r jp is the processing time of a part type p item when
the j-th configuration is used.

Finally, the allocation of workers along the stages is
defined by:

α = (n j1 , . . . ,n j|S|) ji ∈ Γi ∀i ∈ S

In other words, α indicates the number of workers per
each stage.

An example of the adopted notation is given in Figure 3.
Three stages and two part types are reported. For each stage,
one or two workers can be used. Two worker allocations A
and B are represented. The first one αA = (2,1,1) adopts
two workers for stage 1 (configuration j2), one worker
for the remaining stages (configurations j3 and j5). The
second αB = (2,2,1) uses an additional worker in stage 2
(configuration j4)

Given the fixed number of workers η to be used by
the overall system configuration, the following constraint
ensures that such condition is verified:

∑
i∈S

∑
j∈Γi

n jxi j = η

For each stage, exactly one configuration has to be
chosen, hence:

∑
j∈Ji

xi j = 1 ∀i ∈ S

and each configuration can be assigned to at most one
stage, as guaranteed by the following constraint:

∑
i∈S

xi j ≤ 1 ∀ j ∈ J

A possible way of achieving the objective to minimize
the blocking or starvation times within the system is to
minimize the average makespan calculated for each couple
of consecutive stages, in accordance with the decomposition
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Stage 1 Stage 2 Stage 3

Wip =




6 5
2 2
3 1


S = {1,2,3}P = {1,2}

Part Type 1

Part Type 2

ηmin = 3
ηmax = 6

Available 
configurations

Allocation examples

ηA = 4

ηB = 5

Γ = { j1, j2, j3, j4, j5, j6}

j1 j2 j3 j4 j5 j6

j2

j2

j3

j4

j5

j5

ΓA = { j2, j3, j5}

ΓB = { j2, j4, j5}

Γ1 = { j1, j2} Γ2 = { j3, j4} Γ3 = { j5, j6}

Γ = {Γ1|Γ2|Γ3}

αA = (2,1,1)

αB = (2,2,1)

Figure 3: Example of the adopted notation.

principle introduced in 3.3. The makespan for the generic
couple of consecutive stages (i, i+1) on part type p when
stage i adopts configuration j and stage i+1 uses config-
uration k is denoted by mi jkp. Thus, the overall objective
function to be minimized is written as follows:

min ∑
p∈P

|S|−1

∑
i=1

∑
j∈Γi

∑
k∈Γi+1

mi jkpxi jx(i+1)k

The problem can be considered as a variant of the well
known QAP (Quadratic Assignment Problem). In general,
the QAP consists in the assignment of facilities to location,
given a material flows matrix that contains the expected flows
between couples of facilities, and a distance matrix, that
geometrically characterizes the distances between couples
of locations. The general objective is to minimize the overall
assignment cost, calculated as the sum of the distance-flow
products corresponding to the selected assignment.

The classic QAP problem was introduced in Koopmans
and Beckmann (1957), while an up to date review of QAP
related literature can be found in Loiola et al. (2007). In

general QAP, the number of facilities exactly matches the
number of locations. The stages in the considered system
can be modeled as locations, while configurations can be
thought of as facilities to be assigned to each location/stage.
The assignment cost is given by the makespan associated
with each configuration chosen for each stage. Unlike
classic QAP, the number of configurations to be assigned
is not equal to the number of stages. The problem has
been solved using ILOG CPLEXTM, a commercial MIQP
(Mixed Integer Quadratic Problem) solver.

5 SIMULATION MODEL

A deterministic discrete event simulation model has been
adopted in order to evaluate the actual system performance
for a specific configuration Γ = { j : xi j = 1}. Such a model
has been developed with the Arena RockwellTM software
ver. 7. The input data set for the simulation model consists
in:

• j ∈ Γ
• Wip,Cip ∀i ∈ S, ∀p ∈ P
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• Qp ∀p ∈ P
• r jp ∀ j ∈ Γ ∀p ∈ P

The entities represented in the simulation model are the
parts to be produced. For each buffer stage, a priority based
rule is adopted to determine the next part to be processed.
At a given time t, the part type having the highest value of
the priority index φp(t) is selected, see (1). Such an index
is based on the number of finished items for a given part
type fp(t).

φp(t) = 1− fp(t)
Qp

∀p ∈ P (1)

At each stage, the part type having the highest priority
index is processed first. Note that, at a given stage i, if the
input part type buffer is full, the previous stage i−1 does
not process such part type in order to avoid the blocking
phenomenon.

Simulation model events are the start/end of a part
processing for a given stage. The simulation stops when
all the required items Qp are produced for each part type.
Finally, the simulation outputs are the system makespan and
the average usage rate for each resource stage.

6 CASE STUDY

The validation of the proposed approach has been conducted
with an experimental campaign performed on a real world
case study in the automotive sector.

6.1 EXPERIMENTAL CAMPAIGN

The configuration problem consists in the allocation of work-
ers on an in-line production system with a fixed number of
stages and part types. The objective consists in finding the
configuration minimizing the makespan and worker num-
ber. The experimental campaign consists in five different
production scenarios reported in Table 1. As it is possible
to note, the number of stages and part types varies from 5
to 10. For each stage, the number of workers that can be
used varies from 1 to 3.

Table 1: Experimental campaign scenarios.

Id Scenario No. stages |S| No. part types |P|
1 5 8
2 6 6
3 8 5
4 8 8
5 10 10

In the following, the case study is synthetically described
on the basis of probability functions inferred from an analysis
of the real production system.

For each part type, the number of parts to be pro-
duced Qp has been generated from a uniform probabil-
ity distribution with min/max values equal to 60 and 120
(Qp : bUNIF(60,120)c in the following). For each stage
and part type, the number of parts waiting to be processed
Wip is defined in (2). Note that parts waiting to be pro-
cessed at stage 1 are raw parts. The buffer capacity is
Cip : bUNIF(8,60)c. The probability that a part type is
not processed at a given stage is 0.3. If a part type is
processed at a given stage, the processing time values r jp
are inferred from the probability density functions reported
in (3). Different probability density functions are used in
order to achieve the result of having larger processing times
when less workers are used.

Wip :
{
bUNIF(2,20)c i > 1
bUNIF(30,70)c i = 1 (2)

r jp :





UNIF(20,100) mins, n j = 1
UNIF(12,60) mins, n j = 2
UNIF(8,40) mins, n j = 3

(3)

The experimental campaign is used to compare the
performance of the proposed method with another tool to
configurate the system. On one hand, if the number of
feasible configurations is limited, an exhaustive approach
can be adopted by simulating any configuration Γ (see Table
2). On the other, a simulation optimization tool has to be
adopted. We selected OptQuestTM, included in the Arena
Rockwell package, in order to benchmark our methodology.
OptQuest is an optimization tool customized for analyzing
the results of simulation runs conducted in Arena. OptQuest
includes sampling techniques and error control to find better
answers, and incorporates algorithms based on tabu search,
scatter search, integer programming, and neural networks.
A time limit of two hours has been fixed in order to let
OptQuest find the best solution (see Table 2).

In the considered case study, the variables controlled by
OptQuest are the number of workers n j allocated on each
stage for a given configuration j. A constraint is introduced
in order to have a fixed number of workers η in the overall
system. The performance parameter is the makespan to
be minimized. As reported in section 3.5, an analysis is
performed for any η ∈ {ηmin . . .ηmax}. Since the number of
workers that can be allocated to each stage varies between
1 and 3, then ηmin = |S| and ηmax = 3|S|. Then, the Pareto
analysis is performed and the final solution list is issued.
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Table 2: Analysis of computer processing times with dif-
ferent approaches.

Id Computational time
Scenario Exhaustive

approach
Proposed
approach

OptQuest
approach

1 4h 3’ 5’ 16’
2 12h 9’ 20’ 55’
3 4d 22h 27’ 33’ 2h∗

4 5d 16h 41’ 38’ 2h∗

5 68d 8h 15’ 55’ 2h∗
∗ time limit

6.2 COMPUTATIONAL RESULTS

For each scenario, the benchmark between the proposed
approach and OptQuest is performed. The Pareto optimal
solution set is reported together with the corresponding
makespan using both the proposed approaches (see Table
3, 4, 5, 6 and 8) and OptQuest (see Table 3, 4, 5, 7 and 9).
For scenario 1, 2 and 3 both approaches lead to the same
solution set because of the limited number of available con-
figurations. Instead, for scenario 4 and 5 different results
are obtained. In Figure 4 and 5, a graphical comparison can
be performed between the two approaches. As it is possible
to note the solution set obtained with the proposed approach
dominates the OptQuest set. Moreover, the proposed ap-
proach obtains such results in less time than OptQuest.
Such an outcome is obtained because of the ability of our
optimization model to predict the most suitable solutions
to be investigated with the simulation analysis. Instead, the
simulation optimization approach performed with OptQuest
does not take into account the internal system description
and executes a sequence of simulation considering only the
control variables and performance parameters.

Table 3: Pareto optimal solutions for scenario 1 using both
the proposed approach and OptQuest.

No. of
workers

Worker allo-
cation α

Makespan
(min)

5 (1,1,1,1,1) 34518
9 (1,2,2,2,2) 24291
10 (2,2,2,2,2) 18512
14 (2,3,3,3,3) 13009

7 CONCLUSIONS

In this work, we proposed a new hybrid technique to solve
a system configuration problem in a manufacturing system.
We addressed the problem using a mathematical program-

Table 4: Pareto optimal solutions for scenario 2 using both
the proposed approach and OptQuest.

No. of
workers

Worker allo-
cation α

Makespan
(min)

6 (1,1,1,1,1,1) 30526
8 (1,1,1,2,1,2) 23524
11 (1,2,2,2,2,2) 19914
12 (2,2,2,2,2,2) 16458
14 (2,2,2,3,2,3) 12721
18 (3,3,3,3,3,3) 11229

Table 5: Pareto optimal solutions for scenario 3 using both
the proposed approach and OptQuest.

No. of
workers

Worker alloca-
tion α

Makespan
(min)

8 (1,1,1,1,1,1,1,1) 27297
9 (1,1,1,1,1,2,1,1) 18772
10 (1,1,1,1,1,2,2,1) 15821
15 (2,2,1,2,2,2,2,2) 14670
16 (2,2,1,2,2,3,2,2) 10219

ming approach integrated with a discrete event simulation
tool. The mathematical problem performs a linear decompo-
sition of the production system in order to reduce the set of
solutions on which the simulation analysis is executed. The
benchmark of the proposed approach has proven its effec-
tiveness against a general purpose simulation-optimization
tool.
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