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Introduction 
Agent-based modeling has been increasingly used by scientists to study a wide range of 

phenomena such as the interactions of species in an ecosystem, the collisions of molecules in a 

chemical reaction, or the food-gathering behavior of insects (Bonabeau, 1999; Wilensky & Reisman, 

2006). Such phenomena, in which the elements within the system (molecules, or ants) have multiple 

behaviors and a large number of interaction patterns, have been termed complex and are collectively 

studied in a relatively young interdisciplinary field called complex systems or complexity studies (Holland, 

1995). Typical of complex phenomena is that the cumulative (‘aggregate’) patterns or behaviors at 

the macro level are not premeditated or directly actuated by any of the “lower-level” micro elements. 

For example, flocking birds do not intend to construct an arrow-shaped structure (Figure 1), or 

molecules in a gas are not aware of the Maxwell-Boltzmann distribution. Rather, each element 

(“agent”) follows its local rules, and the overall pattern arises as epiphenomenal to these multiple 

local behaviors—the overall pattern emerges. In the mid-nineties, researchers started to realize that 

agent-based modeling could have a significant impact in education (Resnick & Wilensky, 1993; 

Wilensky & Resnick, 1995). For instance, to study the behavior of a chemical reaction, the student 

would observe and articulate only at the behavior of individual molecules — the chemical reaction is 

construed as emerging from the myriad interactions of these molecular “agents.” Once the modeler 

assigns agents their local, “micro” rules, the model can be set into motion and the modeler can 

watch the overall patterns that emerge. 
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Figure 1: An agent-based model of the flocking behavior of birds. 

Whereas initially complex-systems methods and perspectives arose from the natural sciences, 

complexity, emergence, and micro and macro levels of description of phenomena are all highly 

relevant to research in the social sciences. Indeed, the recent decades have seen a surge in social-

science studies employing ABM (Epstein & Axtell, 1996; Diermeier, 2000; Axelrod, 1997). 

Recently ABM has been used to illustrate aspects of cognitive development (see 

Abrahamson & Wilensky, 2005, Blikstein, Abrahamson & Wilensky, 2006; Blikstein & Wilensky, 

2006a) and collaboration and group work in classrooms (Abrahamson, Blikstein & Wilensky, 2007). 

We, too, propose to use ABM to simulate human reasoning, yet we move forward by juxtaposing our 

simulation with real classroom data using the Bifocal Modeling framework (Blikstein & Wilensky, 2006b). 

We argue that ABM has potential to contribute to the advancement of theory in multiple 

ways that we illustrate in this paper: (a) explicitizing—ABM computational environments demand an 

exacting level of clarity and specificity in expressing a theoretical model and provide the tools, 

structures, and standard practices to achieve this high level; (b) dynamics—the computational power 

of ABM enables the researcher to mobilize an otherwise static list of conjectured behaviors and 

witness any group-level patterns that may enfold through multiple interactions between the agents 

who implement these conjectured behaviors; (c) emergence—investigate intelligence as a collection 

of emergent, decentralized behaviors and (d) intra/inter-disciplinary collaboration—the lingua 

franca of ABM enables researchers who otherwise use different frameworks, terminology, and 

methodologies to understand and critique each others’ theory and even challenge or improve the 

theory by modifying and/or extending the computational procedures that underlie the model. 
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Relevance to learning research 
Various authors established the importance of practitioners’ mental models of the learning 

process itself as determinant for their classroom action (Strauss, 1993; Strauss & Shilony, 1994). 

Therefore, using computer models to conduct research in education and make those models 

approachable and accessible to teachers could influence and transform their everyday work. 

In addition, it could address limitations of current methodologies. First, experiments with 

human subjects cannot be indefinitely re-run, so replicating findings or exploring a wide parameter 

space are costly and oftentimes impossible tasks. Once the classroom data is collected, at most 

researchers can revisit the videotapes and transcriptions, but never re-live the situations. Second, as 

we move towards theories that conceptualize learning as a dynamic and adaptive phenomenon, the 

traditional media of scientific discourse—static linear text—becomes limited in its capacity to 

express these theories (Abrahamson & Wilensky, 2005; Blikstein, Abrahamson, & Wilensky, 2006). 

Both these flaws could be addressed, we contend, with a set of dynamic, adaptive computer models 

of learning. Thirdly, tools such as fMRIs cannot yet offer the speed and resolution needed to 

evaluate any complex learning process at a neuronal level. Models at the neuronal level are still far 

from being applicable to real classrooms. Lastly, ethnographic or micro-genetic methods cannot yet 

offer a solid, “runnable”, generalizable, task-independent account on how humans learn. 

The ultimate goal of using agent-based simulation to explore human learning is to enable 

researchers to generalize and play “what-if” scenarios departing from in-depth interviews and 

ethnographic data, as well as investigate internal cognitive structures departing from external, 

observed behaviors. The two experimental obstacles mentioned above (the insufficiency and 

imprecision of fMRI and qualitative methods), as we will explain throughout this paper, could be 

overcome by employing a variable ‘grain size’ for delimitating the cognitive tasks, together with 

simple interaction rules. The ABM modeling paradigm seems to lend itself extremely well for those 

two design principles. 

Our work builds on previous seminal contributions to field, in which theoretical models of 

cognition were implemented in the form of computer programs in attempt to predict human 

reasoning (Newell & Simon, 1972; Rose & Fischer, 1999), in tasks such as shape classifications 

(Hummel & Biederman, 1992), language acquisition (Goldman & Varma, 1995), and memory 

(Anderson, Bothell, Lebiere, & Matessa, 1998), and other more general-purpose models (Anderson, 



Paper presented at AERA 2007, Chicago, IL 

4 
 
 

1983; Anderson & Bellezza, 1993; Anderson & Lebiere, 1998; Just & Carpenter, 1992; Polk & 

Rosenbloom, 1994). Our design, however, differs from extant approaches in two fundamental ways: 

1) Grain Size: Selecting a unit of analysis toward bridging the micro and macro perspective 

on learning. Those theories, slicing human learning into diminutive pieces, when reintegrated 

into the larger context of classroom learning, could not account for any meaningful macro-

cognitive phenomena. 

2) Accessibility: Democratizing modeling-based research. Most computational theories of 

mind were so mathematically complex that only specialized researchers could discuss them – the 

intricacy and language of these theoretical models rendered them incomprehensible for teachers, 

educators, and policymakers. Conversely, the computer language with which we have developed 

the models, NetLogo (Wilensky, 1999), was built from the ground up for non-programmers, so 

that users can not only run simulations, but modify their internal rules and compare scenarios. 

Our models, too, were carefully conceived to follow established models for learning. 

Our theoretical inspiration comes from the work of Minsky, Papert and Collins (Collins, 

1978; Minsky, 1986). Our computer-based simulations of human learning postulate non-intelligent 

cognitive entities with simple rules from whence emerges intelligent behavior. These software tools 

enable researchers to initially feed a computer model with data from real-world experiments, such as 

classroom observations or clinical interviews, and subsequently simulate hypothesized scenarios in 

the safe virtual environment. Researchers from diverse disciplines (and with little, if any, 

programming background) can embody and articulate their theoretical models in a shared medium 

with shared nomenclature and shareable/replicable data, thus facilitating interdisciplinary discourse 

and critique.  

Classroom data: personal epistemologies and cognitive resources 
Traditional research on personal epistemologies (Hofer & Pintrich, 2002) has conceptualized 

them as stable, constant beliefs. However, evidence of variability in student epistemologies suggests 

the need for more complex models (diSessa, 1993; Hammer & Elby, 2002). The activation of 

students’ different epistemological resources could depend on context, as shown by Rosenberg, 

Hammer, & Phelan (2006). In their case study, a brief epistemological intervention by an 8th-grade 

science teacher led to students’ abrupt shift from one epistemological ‘mode’ to another. Rosenberg 

et al. narrative tells the story of a group of students who were given the task of explaining the Rock 
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Cycle. For the first few minutes, before the teacher’s intervention, they fail to engage in any 

productive work or to construct a coherent explanation of the Rock Cycle. Their explanations are 

fragmented, use the wrong vocabulary, and do not survive even simple logical inference. Rosenberg 

el at. state that the reason is epistemological, and that 

“They are treating knowledge as comprised of isolated, simple pieces of information 

expressed with specific vocabulary and provided by authority.” Rosenberg, Hammer, 

& Phelan (2006), pp. 270. 

The authors provide three pieces of evidence for this hypothesis: (i) students organize their 

efforts around retrieving information from worksheets; (ii) they focus on terminology, and (iii) 

students combine information and construct sentences to present a formal ordering rather than a 

causal sequence. But the narrative goes on. Realizing the ongoing failure, the teacher stops the 

activity, and tells students: 

“So, I want to start with what you know, not with what the paper says.” 

Abruptly, students change their ways of engaging in the activity. They immediately start to 

focus on elements of the Rock Cycle that they understand and rebuild the story from there – in few 

minutes, one of the students was able to come up with a reasonable explanation:  

“OK, the volcano erupts, and lava comes out. Lava cools and makes igneous rock. 

Rain and wind cause small pieces of rock to break off. Sediments form, and rain and 

wind carry it away, and rain and wind slow down and deposit sediments and this 

happens over and over again to form layers.” Rosenberg, Hammer, & Phelan (2006), 

pp. 274 

Particularly impressing is how students, departing from a single element of the story (“Lava 

comes out”), could correctly connect all the other pieces of the explanation. Even though the “Lava 

comes out” piece was the first to be mentioned, they realized that for lava to come out, the volcano 

has to erupt; similarly, if the lava comes out and is hot, it has to cool down. Concatenating pieces of 

information making sense of the connection rules was crucial for students to generate a coherent 

explanation, resorting even less times to their worksheets than in the previous half of the narrative. 
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In this paper, our goal is to employ ABM to help model what took place during those 15 

minutes, answering two research questions concerning the abrupt epistemological shift observed: 

1) What caused the two ‘modes’ to generate very diverse student performance? 

2) How could a brief intervention effect such dramatic change? 

We built a model that simulates the construction of declarative knowledge in terms of two 

basic cognitive operations: retrieving information from external/internal sources, then applying 

concatenation rules to join information “pieces” (the retriever/connector model, Blikstein & Wilensky, 

2006; see Figure 1). We expect to answer the two research question aforementioned by exploring a 

significant part of the combinatorial space of initial conditions of the model, with different values 

for number, type, and efficiency of retrievers and connectors, which might result in emergent 

behaviors similar to those observed by Rosenberg et al.  

The Agent-Based Model 
In our model (see Figure 1), the world outside the mind is represented as an ocean of 

disconnected content pieces of various kinds. A piece could be a simple statement, such as “Lava 

comes out of volcanoes”, “Lava shoots up”, or “Water erodes rocks”. These pieces are retrieved by 

special agents, called retrievers and accommodated into the simulated mind, where they interact 

with pre-existing structures until they connect to one of them, making use of a third type of cerebral agent, 

the connectors. These pre-existing structures form an emergent, dynamic network with “hub ideas” 

(highly connected ideas) and peripheral ideas. Students’ explanations are the ad hoc result of pieces 

of content and ideas collected by retrievers outside the mind and assembled by connectors inside 

the mind.  
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Figure 1 – The three types of agents of the model: content pieces, retrievers and connectors 

In our simulated world, the content pieces can have different ‘stickiness’ to the retrievers. 

Therefore, the model can evaluate differently content from different sources – content ‘given from 

authority’ can have a different cognitive effect than ‘previous knowledge’ in the virtual child’s mind. 

Content from books can have a different ‘stickiness’ than content from friends, or from other sorts 

of media. 

In the model, also, content cannot simply enter the mind as raw information. It needs to be 

retrieved and subsequently connected by internal agents to be internalized, which is coherent with 

constructivist theory (Piaget, 1952; Piaget, Gruber, & Vonèche, 1977; Piaget & Inhelder, 1969). 

Outside the mind, there is only information (content pieces), but not knowledge. Inside the mind, there 

is never information (loose pieces), but knowledge (connected pieces). Also, retrieved content pieces 

cannot be accessed until there are evaluated and copied by connectors. Below is a diagram of our 

simulated world.  
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Figure 2. Illustrated explanation of the pieces/retriever/connector computer model. 

 

 
Figure 3. The model’s interface at its initial state (top), and after some steps of the simulation (bottom), in 

which ‘clumps’ of content pieces around retrievers (represented as hubs) are noticeable. 
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One important design stance was the decision to employ a simple ‘cognitive’ rule. In the real 

classroom situation, students would assemble a textual explanation such as: 

 

In our model, all textual explanations are replaced with numbers, and a ‘correct’ explanation is 

simply an ascending sequence of integers. The model would evaluate as correct both of the options 

below: 

 

 

And as incorrect both of the ‘sentences’ below: 

 

 

As many cognitive tasks involve putting together a sequence of pieces in the correct order, 

we decided to make this task the basis of the computer model. We are aware, however, of the 
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infinite variations and subtleties of this task in the real world, and the limitations of our chosen 

computer task. Nevertheless, as we will show throughout the paper, our design decision, while 

avoiding the computational cost of natural language processing, rendered a rich set of results. 

Investigations 
Contrarily to most cognitive modeling software, our model is not trying to simulate human 

thinking in its immense range of complexities and detail. Conversely, we selected the particular 

features of human learning processes that will possibly enable us to pair our data with Rosenberg et 

al. observations. As all we are modeling is the agents’ ability to construct correct connections 

between pieces, we are ultimately investigating the computational cost and accuracy in building 

probabilistic cognitive structures. 

“Success”, in the model, is defined by the correct assemblage of a sentence with no errors, 

i.e., with all number in ascending order. We measure the time to completion of the sentences as 

well as the error rate in building them. The final performance measure is the ratio between 

average time to completion and average error rate, which we call cost of accuracy. 

First experiment 

The first round of simulations compares retrievers with different performances, or 

“stickiness”. When retrievers collide with pieces, they grab those pieces. Low-performing retrievers, 

however, might collide with a piece but fail in grabbing it. The net effect of a low performing 

retriever is to bring fewer pieces to the connectors per unit time. This is loosely analogous to 

improving students’ short-term memorizing skills, or how much sheer information they can gather 

in the environment. 
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Figure 4. Comparison of the time to completion of task for different retriever success rates, showing very little 

performance gain (20 runs per data point). 

One conclusion from this data is that retrievers have a small impact in overall task 

performance – dropping retriever success rates from 90% to 20% (a 70% drop) results in a timid 

16% increase in time to completion of the task. In other words, in the model, retrievers appear not 

to be the controlling phase of the process. This is a key qualitative result of the model: good 

information retrieval skills do not cause abrupt gains in learning. Rosenberg et al. data qualitatively 

corroborates this hypothesis: during the first narrative, even with books and worksheets readily 

accessible, but with weak ‘connecting skills’, students were unable to weave a coherent explanation. 

From the narrative, it is clear that if students were given more time or more informational resources 

to complete the task, the impact in task performance would not have been significant. In other 

words, so far, our model replicates one of the observations of Rosenberg et al. classroom 

observations: the controlling phase of students’ cognitive work was not information retrieval, and the 

cause of students’ failure in explaining the rock cycle was not due to lack of information, lack of 

time to retrieve the correct information, access to information, or weak memorizing skills. Indeed, 

retrieving skills have at best a linear impact in the overall task performance. 
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Second experiment 

The goal of the second experiment was to investigate the influence of connectors’ 

performance in overall task completion time and accuracy. Connectors, in the model, represent 

more elaborate cognitive elements, which can evaluate different pieces of information and link them 

together based on an internal rule. In the model, the internal rule is to build ascending sequences of 

numbers. Connectors can make mistakes, and wrongly connect the number ‘41’ to the otherwise 

correct ascending sequence [3  45  67]. The probability of such mistakes is controlled by an internal 

variable in each connector (connector-strength). The following plots show the impact on time to 

completion, accuracy, and computational cost of accuracy for different values of ‘connector 

strength’ (from 10% to 95% of probability of a wrong connection). 
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Figure 5. Connector strength vs. Time to completion of task, accuracy, and cost of accuracy (50 runs per data 

point, sentence size 2) 

At first sight, looking at the “Connector strength vs. Time to completion” plot (top left), it 

appears to have no impact on overall performance. However, even though the time to complete the 

task remains roughly the same, accuracy increases significantly (top right). Combining the two plots 

(bottom, center), we observe that there is a very good linear fit of the computational cost of 

accuracy and connector strength. Therefore, increasing the ‘skill’ of the connectors has a much 

greater impact on overall task performance than increasing retrievers’ skill (see previous experiment). 

Even though training skilled receivers and connectors might have different costs, this result is also 

qualitatively in agreement with the data from Rosenberg et al. narrative. When students were told to 
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“start from what they already knew”, and evaluate the connections among the different phases of 

the rock cycle using previous knowledge, or just their common sense (i.e., ‘if lava is hot, it must cool 

down’), their performance increased significantly in a non-linear fashion. 

This second experiment, therefore, hints that connecting skills are far more significant for 

task performance than retrieving skills. There is, still, an outstanding question: the cost of training 

skilled connectors in unknown, so a comparison between scenarios with unskilled but fast and 

skilled but slow connectors is still not conclusive. We will try to illuminate this question in the third 

experiment. 

Third experiment 

The third experiment was aimed at finding out the impact in performance of the complexity 

of the desired explanation. In the model, the complexity of the explanations is represented by the 

‘sentence-size’, which is the target number of knowledge pieces which connectors need to put 

together. The following examples show explanations with sentence size two, three and four: 

Sentence size = 2 

 
Sentence size = 3 

 
Sentence size = 4 
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The following plot shows a comparison between sentence sizes 2 and 3, for different values 

of connector strength. 

 
Figure 6. The graph represents the time to completion of the task (i.e., an explanation construed) divided by 

the accuracy of the explanation, on the Y axis, and the connector strength (how well trained the connectors are to 
identify viable connection between two content pieces) on the X axis. Explanation comprised of few content pieces are 
relatively insensitive to the connectors’ training (sentence size 2, blue line), whereas the drop is more dramatic when 

explanations are longer (sentence size 3, red line). 

A striking result is that, while the impact of increasing values of connector strength is linear 

for sentence size 2, it is roughly exponential for sentence size 3 (the best fit for the curve was 

exponential, but even a linear fit would have an much higher angular coefficient). This suggests that, 
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for assembling ‘simple’ content, the gain that students get from improved connecting skills is much 

lower than when there are struggling with complex knowledge. 

Again, this finding seems fitting with Rosenberg et al. narrative. Even in the first moment of 

the narrative, when students are trying to assemble explanations based on worksheets and other 

authority-based sources, with more consideration for formal ordering and a quasi-random approach, 

they were able to assemble a number of “sentence-size 2” explanations. The following four 

examples were extracted from the transcriptions of students’ dialogues: 

 

 
However, in that first part of the narrative, students were never able to form “sentence size 

3” explanations, which would require an extra step: connecting a relatively simple pair of pieces to a 

third piece, evaluating all possible pieces for their fit. In the second part of the narrative, after just 

some minutes, by trying to ‘enlarge’ their explanation making sense of the connection between 

pieces, students formed a sentence size 4 explanation, and just some minutes later a sentence size 10 

explanation. 
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Figure 7. Students’ sentence size 4 explanation (above), and sentence size 10 (below) 

“Bethany: Listen up! OK, the volcano erupts [1], and lava comes out [2]. Lava cools 

[3] and makes igneous rock [4]. Rain and wind cause small pieces of rock to break 

off [5]. Sediments form [6], and rain and wind carry it away [7], and rain and wind 

slow down and deposit sediments [8] and this happens over and over again to form 

layers [9]. OK, so water is added to this [10]…” Rosenberg, Hammer, & Phelan 

(2006), pp. 274 

To further investigate the role of increase sentence sizes to overall cost of accuracy, we ran 

the model for sentence size 4 as well. The results, comparing sizes 2, 3 and 4, are in the following 

three plots: 
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Connector strengthSent. Size 2Sent. Size 3Sent. Size 4Sent. Size 2Sent. Size 3Sent. Size 4Sent. Size 2Sent. Size 3Sent. Size 4
10 1,937.24      1,990.22      2,075.82        2.00            0.40            0.02                968.62         4,975.55      103,791.00    
15 2,156.32      2,016.42      2,133.50        1.74            0.50            0.04                1,239.26      4,032.84      53,337.50     
20 2,031.34      2,019.20      1,969.26        2.14            0.42            0.02                949.22         4,807.62      98,463.00     
25 1,951.30      2,118.40      1,995.78        2.22            0.64            0.10                878.96         3,310.00      19,957.80     
30 2,121.20      1,857.38      2,068.00        2.28            0.62            0.04                930.35         2,995.77      51,700.00     
35 1,950.32      2,049.92      2,135.14        1.96            0.56            0.16                995.06         3,660.57      13,344.63     
40 2,206.98      2,005.38      2,079.40        2.28            0.86            0.08                967.97         2,331.84      25,992.50     
45 1,978.48      2,060.42      2,069.74        2.36            0.62            0.14                838.34         3,323.26      14,783.86     
50 2,021.84      1,957.52      2,225.82        2.86            0.64            0.10                706.94         3,058.63      22,258.20     
55 1,888.52      2,063.68      1,989.16        2.60            0.66            0.08                726.35         3,126.79      24,864.50     
60 2,082.30      2,304.06      1,919.54        2.72            0.72            0.22                765.55         3,200.08      8,725.18       
65 1,995.26      2,044.94      2,075.34        2.94            0.94            0.10                678.66         2,175.47      20,753.40     
70 2,211.68      2,145.80      2,058.80        3.06            0.92            0.20                722.77         2,332.39      10,294.00     
75 1,916.12      2,071.82      2,275.00        2.80            1.26            0.10                684.33         1,644.30      22,750.00     
80 2,079.74      2,310.88      2,255.38        3.06            1.04            0.34                679.65         2,222.00      6,633.47       
85 1,996.68      2,098.42      2,237.10        3.36            1.54            0.40                594.25         1,362.61      5,592.75       
90 2,089.02      2,288.12      2,276.06        3.74            1.46            0.44                558.56         1,567.21      5,172.86       
95 2,228.20      2,390.98      2,759.40        3.56            2.16            0.74                625.90         1,106.94      3,728.92       

100 4,319.58      11,499.34     16,393.18      4.86            4.86            4.90                888.80         2,366.12      3,345.55       
Grand Average 2,166.43      2,594.36      2,894.29        2.77            1.10            0.43                783.44         2,367.57      6,689.95       

Time to completion Accuracy Connectors Time cost of connections

 
Figure 8. Connector strength vs. Time to completion of task, accuracy, and cost of accuracy (50 runs per data 

point, sentence sizes 2, 3 and 4), and data table. 

For sentence size 4 (SS4), with low values of connector strength (CS), it is virtually 

impossible for agents to assemble a correct explanation: for CS 10%, increasing SS from 2 to 4, 

accuracy drops 100 times, from 2 to 0.02 (see data table). Increasing SS from 2 to 3, accuracy drops 

5 times. Consequently, the cost of accuracy for SS 4 is 100 times higher for CS 10%. The “Cost of 

accuracy” plot shows that cost of accuracy (CA) drops non-linearly, in particular for CS in the 80-

95% region. For example, for SS 4, increasing CS from 80% to 95% (a 15% increase) renders a 50% 

drop in CA (from 6633 to 3345). 

Figure 8 shows that increasing sentence sizes has a dramatic impact on performance and on 

the important of ‘connecting skills’. For SS 3 and 4, ‘brute force’ (low CS) assemblage breaks down. 

For SS 2, brute force assemblage is not so costly, and the benefit of developing connecting skills is 

not so pronounced. 

The events in Mrs. Phellan’s classroom tell a similar story. In the first half of the class, when 

students were using brute force methods and not investing on their own connecting skills, they 

couldn’t go much further than assembling simple, SS 2, explanations. When they activated their 

‘connectors’, prompted by the teacher’s intervention, they switched from a brute force to a “sense-

making” mode, in which most energy was spent on connecting pieces, and not retrieving them. That 

shift enabled them to assemble seamlessly explanations of SS as high as 10. 
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Conclusion, limitations, implications 
Along this paper, we tried to pair our model data with real classroom data (Bifocal Modeling, 

Blikstein & Wilensky, 2006). In our three experiments, we searched for instances that would 

resemble what Rosenberg et al. described in their classroom observations. The model seems to 

validate key elements of those observations: 

1) Students’ failure in the first half of the narrative was epistemological, and not due to 

lacking memorizing or information retrieving skills (see Experiment 1). 

2) The fundamental mathematical basis of the model, from which all other behaviors 

emerge, is that brute-force methods are fast for short sequences, but for long sequences, as the 

combinatorial space increases exponentially, their performance drops accordingly. In the high 

connector strength mode, however, once the connector is trained, the size of the sentence has a 

much lesser impact, since the evaluative rule of the connector filters out the combinatorial space, 

and one single successful connection (given an unlimited supply of pieces), will take the exact same 

computational time for any sentence size. This seems to be the case in the classroom, where 

students could assemble long explanations quickly, once they were in a ‘high connector strength’ 

mode. 

3) In this simulated environment, we were able to verify that for learning intricate content 

(i.e., assembling long explanations), there is a significant, non-linear, payoff to invest in “sense-

making skills” (connector strength) as opposed to “memorizing skills” (retrieving speed). For simple 

content (involving the connection of 2 content pieces), however, sheer memorizing can even 

outperform “sense-making skills”. The data shows that the payoff of improved connector strength 

only manifests itself after CS 80% (see Figure 5, Figure 6 and Figure 8).  

4) Abrupt, non-linear shifts in student understanding are indeed possible even within very 

short periods of time, by activating different cognitive resources. If we consider “previous 

knowledge” as a strong connector, it follows that its activation following the teacher intervention 

could cause a sudden change in student performance. 
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Limitations 

Our task is only an approximation of a real classroom task, and might not capture all of its 

complexities. In addition, we do not have a good methodology for evaluating the cost of training a 

strong connector. It could be that, in the real world, the difficulty in training connectors is also non-

linear and increases exponentially in the 80-95% region, so the gains in performance could be 

diminished. Also, we would like to develop automated data collection techniques which would make 

our model-to-transcription comparison less ambiguous. 

Implication for design 

This work, we believe, could potentially have broad implications for the practice of 

curricular designers, teachers, and policy makers – by offering researchers “glass box,” accessible 

tools to simulate, model and test hypothesis about human cognition in social contexts, as well as to 

pair model data with real classroom data.   

References 
Abrahamson, D., & Wilensky, U. (2005). Piaget? Vygotsky? I’m Game: Agent-Based Modeling for Psychology 

Research. Annual Meeting of the Jean Piaget Society. Vancouver, Canada. 
Abrahamson, D., Blikstein, P., & Wilensky, U. (2007). Classroom Model, Model Classroom: Computer-

Supported Methodology for Investigating Collaborative-Learning Pedagogy. Forthcoming in the 
Proceedings of the Computer-Supported Collaborative Learning conference, New 
Brunswick, NJ. 

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University Press. 
Anderson, J. R., & Bellezza, F. S. (1993). Rules of the mind. Hillsdale, N.J.: L. Erlbaum Associates. 
Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. (1998). An integrated theory of list memory. 

Journal of Memory and Language(38), 341-380. 
Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, N.J.: Lawrence 

Erlbaum Associates. 
Axelrod, R. M. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. 

Princeton, NJ: Princeton University Press. 
Blikstein, P., Abrahamson, D., & Wilensky, U. (2006). Minsky, Mind, and Models: Juxtaposing Agent-

Based Computer Simulations and Clinical-Interview Data as a Methodology for Investigating Cognitive-
Developmental Theory. Annual Meeting of the Jean Piaget Society. Baltimore, USA. 

Blikstein, P., & Wilensky, U. (2006a). Learning about learning: Using multi-agent computer simulation to 
investigate human cognition. Paper presented at the International Conference of Complex 
Science, Boston. 

Blikstein, P., & Wilensky, U. (2006). The Missing Link: A Case Study of Sensing-and-Modeling 
Toolkits for Constructionist Scientific Investigation. In Proceedings of the 6th IEEE International 



Paper presented at AERA 2007, Chicago, IL 

22 
 
 

Conference on Advanced Learning Technologies (ICALT 2006), Kerkrade, The Netherlands, 980-
982. 

Bonabeau, E., Dorigo, M., Théraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. 
London: Oxford University Press. 

Collier, N., & Sallach, D. (2001). Repast. University of Chicago (2001).  
http://repast.sourceforge.net . 

Collins, A. M. (1978). Fragments of a theory of human plausible reasoning. Urbana-Champaign, Illinois: 
Association for Computational Linguistics. 

Diermeier, D. w. A. M. (2000). Government turnover in parliamentary democracies. Journal of 
Economic Theory, 94, 46-79. 

Epstein, J., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Washington: 
Brookings Institution Press. 

Fischer, K. W., & Rose, S. P. (1999). Rulers, models, and nonlinear dynamics: Measurement and 
method in developmental research. In G. Savelsbergh, H. van der Maas, & p. van Geert, 
(Eds.), Nonlinear developmental processes (pp. 197 - 212). Amsterdam: Royal Netherlands 
Academy of Arts and Sciences. 

Goldman, S. R., & Varma, S. (1995). CAPing the construction-integration model of discourse 
comprehension. In C. A. Weaver, S. Mannes & C. R. Fletcher (Eds.), Discourse Comprehension: 
Essays in Honor of Walter Kintsch. Hillsdale, NJ: Erlbaum. 

Holland, J. (1995). Hidden order: How adaptation builds complexity. Reading, MA: Helix Books/ 
Addison–Wesley. 

Hummel, J. E., & Biederman, I. (1992, Jul 1992). Dynamic binding in a neural network for shape 
recognition. Psychological Review, 3(99), 480-517. 

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: individual differences in 
working memory. Psychological Review(99), 122-149. 

Minsky, M. L. (1986). The society of mind. New York, N.Y.: Simon and Schuster. 
Piaget, J. (1952). The Origins of Intelligence in Children. New York, NY: International University Press. 
Piaget, J., Gruber, H. E., & Vonèche, J. J. (1977). The essential Piaget. New York: Basic Books. 
Piaget, J., & Inhelder, B. (1969). The psychology of the child. New York,: Basic Books. 
Polk, T. A., & Rosenbloom, P. S. (1994). Task-independent constrains on a unified theory of 

cognition. In F. Boller & J. Grafman (Eds.), Handbook of Neuropsychology (Vol. 9). Amsterdam, 
Netherlands: Elsevier. 

Resnick, M., & Wilensky, U. (1993). Beyond the Deterministic, Centralized Mindsets: A New 
Thinking for New Science. Presentation to the American Educational Research Association. Atlanta, 
GA. 

Strauss, S. (1993). Teachers' Pedagogical Content: Knowledge About Children's Minds and 
Learning: Implications for Teacher Education. Educational Psychologist, 3(28), 279-290. 

Strauss, S., & Shilony, T. (1994). Teachers' models of children's minds and learning. In L. A. 
Hirschfeld & S. A. Gelman (Eds.), Mapping the mind : domain specificity in cognition and culture (pp. 
455-473). Cambridge; New York: Cambridge University Press. F:\Dados\Paulo 
Blikstein\NU\LS428\papers\strauss3imageontext.pdf 

Resnick, M., & Wilensky, U. (1993). Beyond the Deterministic, Centralized Mindsets: A New Thinking for 
New Science. Paper presented at the American Educational Research Association conference, 
Atlanta, GA. 

Wilensky, U. (1999a). NetLogo. The Center for Connected Learning and Computer-Based 
Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/ 



Paper presented at AERA 2007, Chicago, IL 

23 
 
 

Wilensky, U., & Resnick, M. (1995). New Thinking for New Sciences: Constructionist Approaches for 
Exploring Complexity. Paper presented at the annual conference of the American Educational 
Research Association, San Francisco, CA. 

Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep or a firefly: Learning biology 
through constructing and testing computational theories -- an embodied modeling approach. 
Cognition & Instruction, 24(2), 171-209. 


