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ABSTRACT 

Agent-based modeling has been extensively used by scientists to study complex systems. 
Participatory simulations are similar to agent-based models except that humans play the 
role of the virtual agents. The Bifocal modeling approach uses sensors to gather data 
about the real-world phenomena being modeled and uses that information to affect the 
model. In this work, we are interested in automatically extracting, analyzing and 
modeling group behaviors in problem solving. Combining these three systems into one 
unified platform would be useful for those purposes, since it would facilitate a synthesis 
of their main affordances: understanding the role of locality, mapping human action to 
emergent behaviors, and controlling embedded physical objects in noisy environments 
while receiving sensory feedback. We will demonstrate a technological platform based on 
the NetLogo/HubNet architecture that supports simulated agents, participatory agents and 
physical agents. We place this platform within a more general framework that we call 
Human, Embedded and Virtual agents in Mediation (HEV-M). We have run several 
studies using an instantiation of this platform that consists of a robot-car with four users 
who navigate a maze.  We believe that this tool has potential for three main reasons (1) it 
facilitates logging of participant’s actions, so as to identify patterns, (2) it offers 
researchers in the field of computer-supported collaborative learning an easy-to-use tool 
to design engaging collaborative learning activities and, (3) it foregrounds the role of 
individual actions within the accomplishment of a collective goal, highlighting the 
connections between simple individual actions and the resultant macroscopic behaviors 
of the system.   
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INTRODUCTION  
 

Agent-based modeling has been used by scientists to study phenomena such as the 
interactions of species in an ecosystem, the collisions of molecules in a chemical reaction, and 
the food-gathering behavior of insects (Bonabeau, 1999; Troisi, Wong & Ratner, 2005; Wilensky 
& Reisman, 2006). Typical of agent-based models is that the aggregate patterns or behaviors at 
the macro level are not premeditated or directly actuated by any of the micro-elements. 
Participatory simulations are similar to multi-agent simulations except that humans play the role 
of the virtual agents (Wilensky & Stroup, 2002). As yet another extension to ABM methods, 
Blikstein & Wilensky (2006) have been exploring the use of physical devices in agent-based 
modeling, using sensors to gather data about the real-world phenomena under scrutiny (bifocal 
modeling). 
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The three aforementioned areas (agent-based modeling, participatory simulations, and 
bifocal modeling) are concerned with the creation, manipulation, and development of agents in 
one form or another. In this work, we are particularly interested in automatically extracting, 
analyzing and modeling group behaviors and collective strategies for problem solving. 
Combining these three systems into one unified platform would be useful for those purposes, 
since it would facilitate a synthesis of their main affordances: understanding of the role of 
locality, mapping human action to emergent collective behaviors, and controlling embedded 
physical objects in noisy environments while receiving sensory feedback. We will demonstrate a 
technological platform based on the NetLogo/HubNet architecture (Wilensky, 1999; Wilensky 
and Stroup, 1999) that supports simulated agents, participatory agents and physical agents (Rand, 
Blikstein, & Wilensky, 2006). Within this platform, designers can create participatory 
simulations in which each participant controls one micro-element within a physical system (a 
car, a mini-factory, etc.), while at the same time interacting with virtual agents.  We place this 
technological platform within a more general framework that we call Human, Embedded and 
Virtual agents in Mediation (HEV-M).  This framework facilitates general discussion about the 
components of the overall system and their interaction across particular technologies and 
instantiations. 

 
We have run four studies using an instantiation that consists of a robot-car with four 

motors, each connected to a robotics interface, the GoGo Board (Sipitakiat, Blikstein & Cavallo, 
2004), which communicates with the server. Each user is assigned a motor to control, and 
turning the car is achieved by activating, deactivating, or reversing the correct wheels. 
Participants were given the task of moving the robot from a start area to a goal area while 
avoiding obstacles along the way. 

 
Initial results were intriguing. In our first studies, with university professors and 

researchers (Blikstein, Rand & Wilensky., 2006; Rand, Blikstein & Wilensky, 2006), before the 
start of the activity, participants were confident that they could easily accomplish the task. 
However, as soon as the first turn was necessary, participants started to report increasing 
frustration1 with their ability to solve the problem, and we observed the emergence of strategies 
for optimizing the process, such as delegating leadership to one participant, or formation of two 
groups acting fairly independently. Also, at the beginning, many participants seemed unaware 
that an error from any of the participants could ruin the group’s goal, no matter how well other 
participants were doing. However, in the present study, with computer science students as 
subjects, resulted in a diverse set of strategies for managing the task, as we will explain in this 
paper. 

 
We present the current study as one example of how collaboration with embedded objects 

can be observed, but the potential of this framework and technology goes beyond this instance.  
As an example, almost any agent-based model could be recreated using physical agents and 
human agents interacting with those agents.  For instance, traffic simulations in which 
participants controlled remote control cars, could offer insight into human behavior in traffic 
systems.  The virtual agents in the current study are fairly passive, serving as conduits from the 
participants to the robot.  However, these agents could be given a greater level of interaction, 
allowing them to interpret and respond to data from both the participants and the robot, and make 

                                                 
1 It should be noted that the participants found this frustration humorous, since they were amazed that they could not 
solve such a simple problem. 
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their own autonomous decisions.  This would add another level of complexity to the overall 
system. 

 
We believe that the framework instantiation presented in this paper has significant 

potential for three main reasons (1) it facilitates logging of participant’s actions, so as to identify 
patterns and match them to observations, (2) it offers researchers in the field of computer-
supported collaborative learning an easy-to-use tool to design engaging collaborative learning 
activities and, (3) it foregrounds the role of individual actions within the accomplishment of a 
collective goal, highlighting the connections between simple individual actions and the resultant 
macroscopic behaviors of the system.   
 

THE HEV-M FRAMEWORK 
 
On a certain abstraction level, human, robotic (also called embedded) and virtual agents 

can be viewed as equivalent: all of these agents have properties (i.e., descriptions of themselves, 
and knowledge about the world) and methods (i.e., actions that they can take to achieve goals). 
In all three cases, the agents, regardless of being human, embedded or virtual, will examine the 
world around them and their own internal state and decide what action to take on the basis of this 
input.  

 
Each of these systems, virtual, robotic, and human, present their own challenges.  In the 

case of human agents, the logic that connects the input to the output may not be well known by 
outside observers, and thus the actions taken may be quite unpredictable. But confusion about the 
relationship between inputs and outputs is not limited to the human case.  Robots can have noisy 
sensors that affect their perception of the world, and their actuators, also subject to a noisy 
environment, may not always work perfectly. In addition, there are many challenges to designing 
virtual agents correctly. Often low-level rules do not result in anticipated emergent patterns.  
Nonetheless, there are many reasons to motivate the combination of these systems into one 
integrated platform. 

 
Robotic agents and virtual agents working within a shared model can be complementary. 

Robotic agents could use virtual agents to plan out routes and to simulate their movements ahead 
of time, which would assist in the development of some robotic agents, like planetary rovers. 
However, this is not a simple task.  Robotic agents operate within the physical world (which 
often interferes with the task) and they have noisy sensors and fallible actuators. As mentioned, 
the integration of virtual systems with robotic systems can present researchers with many 
difficulties. How does one model the noisiness and inefficiency of the physical world within a 
virtual system, so that virtual and robotic agents can remain in step with each other? How should 
virtual agents interpret data from a robotic agent? 

 
In much the same way that robotic agents are different from virtual agents, so are human 

agents different from virtual agents. The integration of human agents into a unified system also 
presents many of the same issues that challenge the integration of robotic agents, since they also 
have noisy sensors and inefficient actuators. Moreover, they present additional problems from a 
virtual agents’ standpoint – human agents can adapt to their surroundings in new and surprising 
ways, which means that they are less predictable, and can be deliberately obstinate or malicious, 
attempting to confuse and take advantage of virtual agents. Notwithstanding these challenges, the 
integration of human and virtual agents within a shared system has a lot of potential. For 
instance, a model developer can have humans play the role of agents, subsequently capturing and 
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embedding the decisions made by humans into virtual agents, enabling a richer and more 
elaborate examination of the behaviors employed by the humans (for more information on work 
on virtual and humans agents using the HubNet platform, see Abrahamson & Wilensky, 2004; 
Berland & Wilensky, 2006; Wilensky & Stroup, 2002). Alternatively, human agents could work 
together with virtual agents to accomplish some mutual goal. For instance, in a war simulation, 
humans could place emphasis on different targets while allowing the virtual agents to take care 
of the low-level planning. However, all of this requires the development of new protocols – for 
example, how does one automatically capture human decisions and embed them in agent-based 
rules? How can human agents express new beliefs, desires and intentions to a virtual agent?  

 
We have been discussing these relationships between human and virtual agents, and 

robotic and virtual agents as separate entities, but these relationships can also be combined 
within a unified framework. In this paper, we will explore the combination of all these agents 
within one integrated platform (Blikstein, Rand & Wilensky., 2006; Rand, Blikstein & 
Wilensky., 2006). Our unified conceptual framework is the HEV-M framework, which stands for 
the integration of Human agents, Embedded sensory-enabled robotic agents, and autonomous 
Virtual agents, which communicate via a central Mediator (see Figure 3).  The three different 
agent groups may have different goals and even different tasks.  The mediator takes messages 
from any of the three groups of agents, transforms the messages, and relays the information to 
the other groups within a well-established protocol.   

 
We have previously speculated (Rand, Blikstein & Wilensky, 2006) how this framework 

might be useful through the use of three hypothetical examples:  Widget Factory, Planetary 
Rover, and Demon Soccer.  In Widget Factory humans and virtual agents control simple 
machines that create parts of widgets.  This environment can show, for example, that minor 
errors in the creation of the parts can dramatically alter the resultant outcome. In Planetary Rover 
humans cooperate with virtual agents to control a robotic agent.  The virtual agents utilize 
sensory data about their environment to make independent decisions.  This environment can 
enable the exploration of collaborative human-robot protocols. In Demon Soccer, human agents 
interact with virtual agents to control a soccer ball. The human agents play on opposing teams 
and attempt to steer the soccer ball in to their opponent’s goal.  Four different agents control the 
four wheels. Two of the agents are humans, and two of the agents  are demon agents that either 
malignantly or randomly alter the speed and direction of the wheels.  This environment enables 
the exploration of mediation between hostile agents, and could offer insight into how humans 
adapt to new and challenging situations.  
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Figure 1: HEV-M Framework. 

 
TECHNOLOGICAL PLATFORM 

 
In this paper, we describe one technological platform that implements the components of the 
HEV-M framework. This platform is based on the NetLogo/HubNet modeling environment, and 
on the GoGo Board, an open-source piece of hardware for interfacing the computer with sensors 
and actuators. The system has three components: 

 
1. Robot-car: the car has four motors, each connected to a wheel and controlled 

independently. The wheels cannot be steered, thus turning the car is achieved by 
selectively engaging different wheels in different directions.  For example, a slow turn to 
the left can be accomplished by turning on both of the right wheels, and a faster turn can 
be accomplished by also turning the left wheels on, but in reverse. The motors have three 
power levels (high, medium and low), and are connected by long wires to the robotics 
interface. The interface, in turn, is connected to the server.  
 

2. Client computers: each of the four client laptops have a simple interface for wheel 
control, enabling the user to turn his/her own wheel on and off, set the power level, and 
toggle the direction of rotation of the wheel. 
 

3. Server: the server receives information from the four client computers and controls the 
robot-car accordingly. It also keeps a log of all the actions performed by the users.  
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Figure 2 Diagram of the system, with its three components: 

the client computers, the robot-car, and the server. 

EXPERIMENTS 
 

This framework for agent integration is not just hypothetical– we have implemented it in 
several projects. (Blikstein, Rand  & Wilensky, 2006; Rand, Blikstein & Wilensky, 2006). These 
preliminary prototypes had human and virtual agents working together to guide a robotic agent 
through a maze. 
 

To extend those preliminary studies, we defined a methodological framework to conduct 
experiments. First, we standardized the size of the track and generated three fixed mazes. We 
also implemented a logging feature to capture keystrokes and mouse clicks from the participants. 
Finally, we defined a sequence of four activities to propose to participants: 
 

Act. 1. Maze with one obstacle, with communication – we tell participants that they 
can talk to each other. 

 
Act. 2. Maze with two obstacles, without communication – we tell participants that 

they should conduct the activity in silence, although they can observe at each 
other. 

 
Act. 3. Maze with three obstacles, with leader. We randomly pick one of the 

participants and ask them to lead the other ones. 
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Act. 4. Maze with three obstacles, randomized. All wheels are randomized at the 

beginning, so users don’t know beforehand which wheel they control. They have 
to figure it out during the activity. 

 
Two main sources of data were used: video data and log files of students’ interactions. 

For the video data collection, two cameras were utilized, one fixed, facing the participants, and 
one mobile, mainly facing the whiteboard and the robot-car. The log files recorded all of 
participants’ interactions with the system. 

 
 
 
 
 
 

Figure 3 Clockwise from the left: The experimental setup for Act. 1, the four participants, and 
the experimental setup for Act. 2. 

DATA ANALYSIS AND DISCUSSION 
 

In previous work (Rand, Blikstein & Wilensky, 2006), we reported on a group of four 
university professors and researchers that had great difficulties in successfully completing the 
maze. We observed that inter-subject communications were confusing and out-of-sync with the 
required speed of action, and users could not establish clear leadership. The group of professors 
apparently underestimated the difficulty of the task and over-engineered their own strategies, 
resulting in poor performance. For that study, however, the logging mechanism was not yet in 
place, so our understanding of participants’ reaction was partial, based on their own utterances 
and our observations of the robot-car. For the following study, with the logging mechanism in 
place, a group of four computer science students was selected. We began the study with the 
hypothesis that, being young students, they would be more spontaneous and communicate 
extensively; being experts in computer science, they would try to engineer elaborate strategies to 
control the car. Both of these hypotheses were proved wrong, and other results became apparent 
from our data analysis, which we will explain below 
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Fading inter-personal communication patterns 
 
Participants started out communicating extensively during the first activity. The second 

activity was supposed to be in silence, but even after communication was permitted again, on the 
third activity, participants did not resume verbal communication: they were paying attention 
exclusively to the car. Below is the transcript of the dialogue during the first activity, showing 
that participants were able to devise a successful strategy and orally coordinate their activities: 
 

John: I have a plan: Jim and I don’t do anything, you do it all. You guys are the front. 
[after a few second, the car stalls] 
Marcia: Uh Oh. More power. 
John: Do you think you need us? 
John: We need some back… 
Marcia: Nice 
John: You guys got it, you don’t need us. 
Marcia: Great success, guys. 

 
However, from the third activity on, there was barely any verbal communication. This 

was in contradistinction to our initial hypotheses. Somehow the participants developed a 
personal heuristic as to how to control their wheel which did not require communication.  One 
explanation is that they “read” other participants’ states and intentions through the state of the 
car, with no need of explicitly asking questions. As we will show below, this explanation is 
supported by both the post-interviews that we conducted with the participants and an 
examination of the log files. 
 
Diversity of personal strategies 

 
Participants’ post interviews further corroborate the hypotheses of decreased oral 

communication, since their self-reported strategies and heuristics did not include talking or 
asking question of the other participants:  
 

Edward: I was not paying attention to anyone; I was paying attention to the car. I was 
just paying attention to my wheel. If I did something and it went bad, because another 
person did something else, I would just go back to my previous state. 
 
Jim: I did very little. I figured that if everyone was hitting buttons and moving forward, 
the car wouldn’t go anywhere, so I waited for opportunities in which I was pretty sure I 
would make a difference. 
 
John: I was back-left, when I was on, the car would go to the right. When my thing is 
going forward, the car would go right. If my thing is going backwards, the car is going 
left. 
Interviewer: But if the other guy is doing the opposite… 
John: Then the car wouldn’t go anywhere. [long pause] That’s ok. 
 
For John, looking at the car (which was exhibiting behavior that resulted from 

aggregating each group member’s directives) and reacting to it on-the-fly was more efficient 
than explicitly discussing strategies (which we observed in our previous study with the university 
professors and researchers). Despite the car’s behavior being a collective construction, John was 
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reacting to the resulting emergent behavior of the group, and not discussing every single 
individual action. Jim had a very different strategy: he realized that, by simply doing nothing, the 
car would probably achieve the same goal, since there was redundancy in the system – by 
staying out, he thought he could help the group achieve the goal faster. Edward, conversely, was 
very active, and devised a strategy of trial-and-error – if his move resulted in undesired behavior, 
he would just undo the movement, without negotiating every move.  In all three of these cases 
the individual decision criteria is focused on the aggregate behavior of the car, and completely 
excludes any involvement of the other participants. 
 
Use of the different motor control commands 

 
Additionally, the log files show that, notwithstanding the symmetry of the car, each user 

had a different approach to their use of the six different commands. One commonality between 
participants was observed: power-high, medium and low were used very infrequently. Two users 
(back-right and front-right) realized that just leaving the motor on and using ‘reverse-direction’ 
during the activity was the most effective strategy. As the log files show, as time went on, these 
participants employed this strategy with increasing frequency. John, who was controlling the 
‘back-right’ wheel, used ‘reverse-direction’, or ‘rd’, almost exclusively toward the end of the 
study (Activity 3). Comparing the log files and the verbal data, we observed that this learning 
process took place tacitly, without any oral communication between users. However, John was 
conscious that he had learned an important technique, since when he was asked to lead the group, 
on activity 3, he asked everyone to “turn on and just use reverse-direction”. Another surprising 
observation was that, even after John asked all users to exclusively use ‘rd’, only those users who 
had had a significant increase in ‘rd’ from activity 1 to activity 2 followed his advice.  This can 
be seen in the ‘rd’ lines on the plots in Figure 4.  Compare the ‘rd’ lines of ‘back-right’ [John 
himself] and ‘front-right’, as opposed to ‘back-left’ and ‘front-left.’ One explanation is that two 
of the participants employed their own personal theory on how to control the car and were 
resistant to follow the directions of the leader. This hypothesis is further supported by the 
aforementioned transcriptions of users’ self-reported techniques for car control. 
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Figure 4 The use of each command over the four activities for each user (first four plots), the 

overall percent of use per command for all users (bottom left, note the clear increase in the use 
of reverse-direction), and the percent of actions per user (bottom right), showing an almost 

uniform distribution, with the exception of user ‘back-left’. 

 
CONCLUSION 

 
The HEV-M framework and the implementation described in this paper proved to be a 

useful tool in exploring the interactions and interoperability among human, virtual and physical 
agents. We developed data collection tools and techniques that reveal tacit individual and 
collective strategies for problem solving and communication. The approach of pairing verbal 
data and log files described in this paper could enable other researchers to unveil unexpected 
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communication and behavior patterns that would otherwise go unnoticed. For example, one 
behavioral pattern that we observed was that users’ final strategy resulted in a focus on the car’s 
actions and movements, instead of observing or communicating with the participants – despite 
being in the same room. Surprisingly, a simple robot-car ended up mediating interpersonal 
communication more effectively than oral discourse. Seeing as how the humans involved did not 
actually communicate and seemed to settle on final strategies quickly, it might have been 
possible to replace them with virtual agents able to observe the robot-car and make decisions 
similar to the humans.  As we have observed there would need to be different types of virtual 
agents to represent the different human behavioral styles, but that is a simple task. These results 
suggest that the nature of the agent controlling the device – human or virtual – could be of less 
importance than is commonly thought. If this result is confirmed by further research, this could 
be an important contribution to the study of human-computer interaction within the field of 
agent-based modeling. 
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