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ABSTRACT

In recent years the importance of a large-scale Agent-Based

Simulation(ABS) that can handle large complex systems is

increasing. We developed a large-scale ABS framework on

BlueGene, which is a multi-node supercomputer. The ABS

processes the agents’ communications. When the number

of transmissions among the agents is large, the transmission

costs seriously affect the performance of the simulation. It

is possible to reduce the amount of transmission among the

nodes by clustering the agents which communicate heavily

with each other. Assuming that an agent is a graph node,

and that a data transmission between agents is a graph

edge, this problem can be formulated as a Maximum-Flow

and Minimum-Cut Problem. In this paper we present an

efficient algorithm to find an approximate solution. Our

algorithm is reliable, simple, and needs little computation.

We demonstrate its beneficial effects with some experiments.

1 INTRODUCTION

There are various methodologies used to understand various

phenomena in the real world. Mathematical analysis, con-

tinuous simulations like the finite element method (which

is very popular in physics), and Discrete-Event Simulation

are some of these methodologies. Agent-Based Simulation

(ABS) is receiving attention as a very powerful tool to un-

derstand various kind of complex systems. In recent years

the importance of large-scale ABS systems that can handle

phenomena such as a complex social simulation, workforce

simulation, and so on is increasing.

There is substantial public research on and development

investment in ABS. These systems include Repast by the

University of Chicago and Argonne National Laboratory,

Swarm by the Santa Fe Research Institute, MASON by

George Mason University, and SOARS by the Tokyo Institute

of Technology, among others. In particular, MASON and

SOARS focus on large-scale ABS. MASON is designed
9191-4244-0501-7/06/$20.00 ©2006 IEEE
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Figure 1: The Design of Our ABS Framework

to handle millions of agents. SOARS aims to support PC

clusters and grid computers for large-scale ABS.

In this paper, we describe our prototyping of a simulation

system that can handle a large number of agents on a large

computer system, such as a multi-node supercomputer or a

grid computer.

2 ARCHITECTURE OF FRAMEWORK FOR A

LARGE-SCALE ABS

We developed a large-scale ABS framework on BlueGene,

which is a multi-node supercomputer from IBM. This system

consists of many nodes. Each node has CPUs, memory,

and other resources as a minimum computation unit. These

nodes are connected to each other with fast networks such

as gigabit Ethernet.

Figure 1 shows the design of our ABS framework. In our

framework, each agent has a procedure and some variables.

Each node handles a subset of all of the agents. Each agent

communicates with the same node’s agents by using shared

memory, and each agent communicate with other nodes’

agents by using sockets (over a fast network such as gigabit

Ethernet). There is a large difference in communications

speed between the same node’s agents and other nodes’

agents. ABS works through these communications between

agents.
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Figure 2: Estimated Computation Times

3 PERFORMANCE BOTTLENECK

Under the general design in which each node handles a

subset of all of the agents, transmissions occur among

the nodes. When the number of transmissions among the

agents is large, the transmission costs seriously affect the

performance of the simulations. In a general ABS, there

are few situations in which all of the agents communicate

with all of the other agents. The assumption that each agent

communicates only with certain agents doesn’t limit the

problems that can be simulated. It is possible to reduce the

amount of data transmission among the nodes by clustering

the agents which communicate heavily with each other.

Agents dynamically change their communication part-

ners as a simulation runs. We need an iterative clustering

algorithm to keep communication costs low in cases like

this.

Figure 2 shows the roughly estimated computation times

for ABS based on measured results from BlueGene’s network

performance. We assumed that a single step of computation

for an agent is 2 millisecond and one unit of transmission

from an agent is 1 byte per time step. The x-axis shows

the number of nodes and the y-axis shows the estimated

computation times. The lower curve is for 100,000 agents,

and the upper one is for 3,000,000 agents. For one node,

transmission occurs only inside that node. When there are

two nodes, transmission occurs between those nodes. Two

nodes takes a longer time than one node in spite of the

assumption that the amount of transmission by each agent is

only 1 byte per time step. We see that transmissions among

nodes seriously affect the performance of simulations.

There has been research on load-balancing of network

costs in distributed systems. Bononi et al. investigated a

load-balanced parallel and distributed simulation system.

Their practical experience demonstrated that a speed-up in

the simulation of parallel and distributed systems is achiev-

able. Theodoropoulos and Birmingham proposed a load-
920
balanced Interest Management mechanism on a distributed

system.

Assuming that an agent is a graph node, a data transmis-

sion between agents is a graph edge, and if the number of

nodes in a multi-node supercomputer is two, then this prob-

lem can be formulated as a clustering problem that divides

these graph nodes into two clusters to minimize the total

number of graph edges spanning both clusters. This problem

is called the Maximum-Flow and Minimum-Cut Problem.

The well known Push-Relabel algorithm for the Maximum-

Flow-Minimum-Cut Problem runs in O(n2 × m1/2) time,

where n is the number of graph nodes and m is the number

of graph edges. This complexity is unrealistic for millions

of agents. In addition, sophisticated algorithms which clus-

ter the graph nodes into three or more clusters have been

little investigated.

4 OPTIMIZATION OF TRANSMISSION COSTS

The problem tackled here is how to minimize the amount of

transmission among nodes. Our simple idea is that each node

observes how many messages each agent that belongs to the

node sends to other nodes, and exchanges subsets of agents

with the other nodes based on this observed information.

A is defined as a set of agents. C is defined as a set

of nodes. Bk ⊂ A is defined as the subset of agents which

belongs to node k ∈ C. S(i, k) is defined as the number of

transmissions between agent i ∈ A and node k ∈ C. The

procedure for node k is as follows:

• Record S(i, k′) for ∀i ∈ Bk and ∀k′ ∈ C.

• Obtain ∆R(i, k, k′) for ∀i ∈ Bk and ∀k′ ∈ C,

where ∆R(i, k, k′) is defined as

∆R(i, k, k′) = S(i, k) − S(i, k′). (1)

∆R(i, k, k′) represents the difference in the number

of transmissions among the nodes when the agent

i moves from node k to k′.

• Obtain k′

max(i, k) ∈ C for ∀i ∈ Bk, where

k′

max(i, k) is defined as

k′

max(i, k) = argmax
k′

∆R(i, k, k′). (2)

• Add i to Bpool(k, k′

max(i, k)) ⊂ A for ∀i ∈ Bk,

where Bpool(k, k′

max(i, k)) is a set of candidates

of agents to be sent to node k′

max(i, k)
• Set n(k, k′) for ∀k′, where n(k, k′) is the number

of agents to send from node k to k′. We set the

value for n(k, k′) in advance here. Usualy this

number is relatively small to the number of agents

which each node handles. Only if the number of

agents which belong to Bpool(k, k′) is less than
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this predetermined number, n(k, k′) is set to the

number of agents which belong to Bpool(k, k′).
• Receive n(k′, k) and obtain m(k, k′) for ∀k′, where

m(k, k′) is defined as

m(k, k′) = min(n(k, k′), n(k′, k)). (3)

• Send the top n(k, k′) of agents from Bpool(k, k′)
to k′ for ∀k′.

• Receive agents from k′ for ∀k′.

Each node executes these steps continuously. The amount

of data transmitted among nodes decreases gradually.

5 BEHAVIOR OF OUR ALGORITHM

We modeled some typical agent behaviors that appear fre-

quently in ABS and experimented with these models.

5.1 Basic Model

The first experimental model used the following parameters:

• The number of nodes is two.

• 1,000 agents are randomly allocated on [0, 1) ×
[0, 1) in two dimensional space.

• Each agent sends messages only to agents within

a distance of 0.1.

• The size of an agent’s message is 1 byte.

• The maximum number of agents to exchange is 1.

Figure 3 shows the status of agents allocated in two

dimensional space. As the simulation progresses, we can see

that agents are divided into two nodes. Figure 4 shows the

amount of data transmitted. The amount of data transmitted

between the two nodes decreased from 8,997 bytes to 1,132

bytes. The amount of data transmitted within each node

increased from 8,964 and 9,034 bytes to 15,912 and 17,816

bytes. It took about 220 time steps to converge.

5.2 Multi-Exchange Model

The second model is almost the same as the basic model,

but the maximum number of agents to exchange is 5.

Figure 5 shows the status of the agents. Figure 6

shows the amount of data transmitted. The amount of data

transmitted between the two nodes decreased from 8,997

bytes to 1,059 bytes. It takes about 50 time steps to converge.

In this case, the speed of convergence is about five times

faster than for the first model. We can see that the speed

of convergence can be adjusted by changing the maximum

number of agents to be exchanged.
92
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time = 160 time = 200
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Figure 3: The State of Agents in the Basic Model

5.3 Multi-Node Model

The third model is almost the same as the basic model, but

the number of nodes is 4. Many multi-node supercomputers

have three or more nodes. We investigated behavior of our

algorithm when there are three or more nodes.

Figure 7 shows the status of the agents. Figure 8

shows the amount of data transmitted. The amount of data

transmitted between nodes decreased from about 2,100 bytes

to about 500 bytes. We see good results when the number

of nodes is 4.

5.4 Random Walk Model

The fourth model is almost the same as the multi-exchange

model, but each agent also moves a short distance in a

random direction in each step. Agents slowly change their

communication partners.

Figure 9 shows the status of the agents. Figure 10

shows the amount of data transmitted. We can see that

the amount of data transmitted is kept low in spite of the

agents’ movements.
1
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Figure 4: The Amount of Data Transmitted in the Basic

Model
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Figure 5: The State of Agents in the Multi-Exchange Model
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Figure 6: The Amount of Data Transmitted in the Multi-

Exchange Model
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Figure 7: The State of Agents in the Multi-Node Model
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Figure 8: The Amount of Data Transmitted in the Multi-

Node Model

6 ONLINE AUCTION MODEL

The fifth model is a more practical model, based on a dynamic

online auction model using ABS that was developed by

Mizuta and Steiglitz. We ported this online auction model

into our framework and investigated the effectiveness of our

algorithm.

In our online auction model some auctions start at

random and each auction is open for a certain period.

Bidders can participate in multiple auctions at the same

time, watch the auctions’ statuses and bid according to

their strategies. In our framework we designed both the

auctions and the bidders as agents, so the transmissions

occur as agents for the bidders to communicate with the

auction agents. The number of nodes was two.

Figure 11 shows the status of the agents. A box shows

an auction, and an oval shows a bidder. Each bidder par-

ticipating in an auction is connected to that auction by an
22
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Figure 9: The State of Agents in the Random Walk Model

edge. In this figure, some agents participate in only one

auction, and others participate in two or more auctions. The

light bidders belong to node 1 and the dark ones belong

to node 2. We can see that the agents perticipating in the

same auction tend to belong to the same node. The agents

are effectively separated into two nodes, even though this

graph changes as the simulation progresses.

Figure 12 shows the amount of data transmitted when

our algorithm is used. Figure 13 shows the amount of data

transmitted without our algorithm. We can see that the

amount of data transmitted is kept low in spite of a change

in the agents’ behaviors.

7 CONCLUSION

We had quite positive results with a very fast executable

algorithm that obtains an approximate solution for graph

clustering. Our iterative algorithm is simple and needs little

computation time. Each node observes the transmissions

of only its own agents and needs no complex negotiations

with other nodes. The implementation of this algorithm is

quite easy. These features are great advantages.
9
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Figure 11: The State of Agents in the Online Auction Model
23



nd Mizuta
Takahashi a

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  200  400  600  800  1000  1200

tr
a
n
s
m

is
s
io

n

time

node1 - node1
node1 - node2
node2 - node2
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Auction Model (with Our Algorithm)
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Figure 13: The Amount of Data Transmitted in the Online

Auction Model (without Our Algorithm)

This algorithm is expandable to multiple clustering

problems without any difficulties.

The situation when agents slowly change their commu-

nication partners is rarely seen in generic graph clustering

problems, but appears frequently in ABS. This algorithm

is very efficient in this situation. If the speed of agents’

movements is variable, we maight be able to handle this

problem by adjusting the maximum number of agents to

exchange or by increasing the step size of this algorithm.

REFERENCES

Banicescu, I., and V. Velusamy. 2002. Load Balancing

Highly Irregular Computations with the Adaptive Fac-

toring. Proceedings of the 16th International Parallel

and Distributed Processing Symposium.
924
Bononi, L., G. D’Angelo, and L. Donatiello. 2003. HLA-

based adaptive distributed simulation of wireless mo-

bile systems. Proceedings of the 17th ACM/IEEE/SCS

Workshop on Parallel and Distributed Simulation.

Bononi, L., M. Bracuto, G. D’Angelo, and L. Donatiello.

2004. A New Adaptive Middleware for Parallel and

Distributed Simulation of Dynamically Interacting Sys-

tems. Proceedings of the 8th IEEE International Sym-

posium on Distributed Simulation and Real Time Ap-

plications.

Chavez, A., A. Moukas, and P. Maes. 1997. Challenger: A

multiagent system for distributed resource allocation.

Proceedings of the First International Conference on

Autonomous Agents.

Deguchi, H., H. Tanuma, and T. Shimizu. 2004 SOARS:

Spot Oriented Agent Role Simulator - Design and Agent

Based Dynamical System -. Proceedings of the Third

International Workshop on Agent-based Approaches in

Economic and Social Complex Systems, 49-56.

Goldberg, A. V., and S. Rao. 1997. Beyond the flow decom-

position barrier. Proceedings of the 38th IEEE Annual

Symposium on Foundations of Computer Science, 2-11.

Goldberg, A. V., and R. E. Tarjan. 1988. A new approach

to the maximum flow problem. J.Assoc.Comp.Mach.,

35:921-940.

Logan, B., and G. Theodoropoulos. 2000. Dynamic interest

management in the distributed simulation of agentbased

systems Proceedings of the Tenth Conference on AI,

Simulation and Planning, Society for Computer Sim-

ulation International and ACM SIGSIM, pp. 45–50.

Logan, B., and G. Theodoropoulos. 2001. The distributed

simulation of multiagent systems Proc. of the IEEE,

Vol.89, Issue 2.

Mizuta, H., and K. Steiglitz. 2000. Agent-Based Simulation

of Dynamic On-Line Auctions. Proceedings of the 2000

Winter Simulation Conference.

Nowe, A., and K. Verbeeck. 1999. Distributed Rein-

forcement learning, Loadbased Routing a case study.

Proceedings of the Neural, Symbolic and Reinforcement

Methods for sequence Learning Workshop.

Parent, J., K. Verbeeck, and J. Lemeire. 2002. Adaptive

Load Balancing of Parallel Applications with Reinforce-

ment Learning on Heterogeneous Networks. DCABES.

Schaerf, A., Y. Shoham, and M. Tennenholtz. 1995. Adap-

tive Load Balancing: A Study in Multi-Agent Learning.

Journal of Artificial Intelligence Research.

MASON. [Online]. Available: 〈http://cs.gmu.edu/
∼eclab/projects/mason/〉.

Repast. [Online]. Available:

〈http://repast.sourceforge.net/〉.
Swarm. [Online]. Available:

〈http://www.swarm.org/〉.



Takahashi and Mizuta
AUTHOR BIOGRAPHIES

TOSHIHIRO TAKAHASHI is a researcher at the Tokyo

Research Laboratory of IBM Japan. He received a B.S.

degree in mathematics from Waseda University, and a M.S.

degree in computer science from Waseda University. His

e-mail address is 〈e30137@jp.ibm.com〉.

HIDEYUKI MIZUTA is a researcher at the Tokyo Research

Laboratory of IBM Japan. He received B.S., M.S. and Ph.D.

degrees in physics from the University of Tokyo. He is a

member of IPSJ and ACM SIGSIM. His research interests

include dynamic socioeconomic systems with heterogeneous

agents. His e-mail address is 〈e28193@jp.ibm.com〉.
925


	MAIN MENU
	PREVIOUS MENU
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



