Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

EFFICIENT AGENT-BASED SIMULATION FRAMEWORK FOR MULTI-NODE SUPERCOMPUTERS

Toshihiro Takahashi
Hideyuki Mizuta

Tokyo Research Laboratory
IBM Research
Shimotsuruma 1623-14, Yamato-shi
Kanagawa-ken 234-8502, JAPAN

ABSTRACT

In recent years the importance of a large-scale Agent-Based
Simulation(ABS) that can handle large complex systems is
increasing. We developed a large-scale ABS framework on
BlueGene, which is a multi-node supercomputer. The ABS
processes the agents’ communications. When the number
of transmissions among the agents is large, the transmission
costs seriously affect the performance of the simulation. It
is possible to reduce the amount of transmission among the
nodes by clustering the agents which communicate heavily
with each other. Assuming that an agent is a graph node,
and that a data transmission between agents is a graph
edge, this problem can be formulated as a Maximum-Flow
and Minimum-Cut Problem. In this paper we present an
efficient algorithm to find an approximate solution. Our
algorithm is reliable, simple, and needs little computation.
We demonstrate its beneficial effects with some experiments.

1 INTRODUCTION

There are various methodologies used to understand various
phenomena in the real world. Mathematical analysis, con-
tinuous simulations like the finite element method (which
is very popular in physics), and Discrete-Event Simulation
are some of these methodologies. Agent-Based Simulation
(ABY) is receiving attention as a very powerful tool to un-
derstand various kind of complex systems. In recent years
the importance of large-scale ABS systems that can handle
phenomena such as a complex social simulation, workforce
simulation, and so on is increasing.

There is substantial public research on and development
investment in ABS. These systems include Repast by the
University of Chicago and Argonne National Laboratory,
Swarm by the Santa Fe Research Institute, MASON by
George Mason University, and SOARS by the Tokyo Institute
of Technology, among others. In particular, MASON and
SOARS focus on large-scale ABS. MASON is designed

1-4244-0501-7/06/$20.00 ©2006 IEEE

919

node node

agent < agent «—— > agent
agent

/| LS

agent «—» agent «—— > agent

Figure 1: The Design of Our ABS Framework

to handle millions of agents. SOARS aims to support PC
clusters and grid computers for large-scale ABS.

In this paper, we describe our prototyping of a simulation
system that can handle a large number of agents on a large
computer system, such as a multi-node supercomputer or a
grid computer.

2 ARCHITECTURE OF FRAMEWORK FOR A
LARGE-SCALE ABS

We developed a large-scale ABS framework on BlueGene,
which is a multi-node supercomputer from IBM. This system
consists of many nodes. Each node has CPUs, memory,
and other resources as a minimum computation unit. These
nodes are connected to each other with fast networks such
as gigabit Ethernet.

Figure 1 shows the design of our ABS framework. In our
framework, each agent has a procedure and some variables.
Each node handles a subset of all of the agents. Each agent
communicates with the same node’s agents by using shared
memory, and each agent communicate with other nodes’
agents by using sockets (over a fast network such as gigabit
Ethernet). There is a large difference in communications
speed between the same node’s agents and other nodes’
agents. ABS works through these communications between
agents.

Takahashi and Mizuta

computation t

1 3 5 7 9 11131517 19 21 23 25 27 29 31
the number of node

Figure 2: Estimated Computation Times

3 PERFORMANCE BOTTLENECK

Under the general design in which each node handles a
subset of all of the agents, transmissions occur among
the nodes. When the number of transmissions among the
agents is large, the transmission costs seriously affect the
performance of the simulations. In a general ABS, there
are few situations in which all of the agents communicate
with all of the other agents. The assumption that each agent
communicates only with certain agents doesn’t limit the
problems that can be simulated. It is possible to reduce the
amount of data transmission among the nodes by clustering
the agents which communicate heavily with each other.

Agents dynamically change their communication part-
ners as a simulation runs. We need an iterative clustering
algorithm to keep communication costs low in cases like
this.

Figure 2 shows the roughly estimated computation times
for ABS based on measured results from BlueGene’s network
performance. We assumed that a single step of computation
for an agent is 2 millisecond and one unit of transmission
from an agent is 1 byte per time step. The x-axis shows
the number of nodes and the y-axis shows the estimated
computation times. The lower curve is for 100,000 agents,
and the upper one is for 3,000,000 agents. For one node,
transmission occurs only inside that node. When there are
two nodes, transmission occurs between those nodes. Two
nodes takes a longer time than one node in spite of the
assumption that the amount of transmission by each agent is
only 1 byte per time step. We see that transmissions among
nodes seriously affect the performance of simulations.

There has been research on load-balancing of network
costs in distributed systems. Bononi et al. investigated a
load-balanced parallel and distributed simulation system.
Their practical experience demonstrated that a speed-up in
the simulation of parallel and distributed systems is achiev-
able. Theodoropoulos and Birmingham proposed a load-

920

balanced Interest Management mechanism on a distributed
system.

Assuming that an agent is a graph node, a data transmis-
sion between agents is a graph edge, and if the number of
nodes in a multi-node supercomputer is two, then this prob-
lem can be formulated as a clustering problem that divides
these graph nodes into two clusters to minimize the total
number of graph edges spanning both clusters. This problem
is called the Maximum-Flow and Minimum-Cut Problem.
The well known Push-Relabel algorithm for the Maximum-
Flow-Minimum-Cut Problem runs in O(n? x m!/?) time,
where n is the number of graph nodes and m is the number
of graph edges. This complexity is unrealistic for millions
of agents. In addition, sophisticated algorithms which clus-
ter the graph nodes into three or more clusters have been
little investigated.

4 OPTIMIZATION OF TRANSMISSION COSTS

The problem tackled here is how to minimize the amount of
transmission among nodes. Our simple idea is that each node
observes how many messages each agent that belongs to the
node sends to other nodes, and exchanges subsets of agents
with the other nodes based on this observed information.

A is defined as a set of agents. C is defined as a set
of nodes. By C A is defined as the subset of agents which
belongs to node k € C. S(i, k) is defined as the number of
transmissions between agent ¢ € A and node k € C. The
procedure for node k is as follows:

Record S(i, k') for Vi € By, and V&' € C.
Obtain AR(i, k, k") for Vi € By and V&' € C,
where AR(i,k, k') is defined as

AR(i, k, k') = S(i, k) — S(i, k). (1)
AR(i, k, k") represents the difference in the number

of transmissions among the nodes when the agent
i moves from node k to k'

e Obtain k/,,.(i,k) € C for Yi € By, where
k..o (i, k) is defined as
k. uu(iy k) = argmax AR(i, k, k'). (2)
k/

e Add i to Bpool(k, k), (i, k)) C A for Vi € By,
where Bpool(k, kl,,..(i,k)) is a set of candidates
of agents to be sent to node k. (i, k)

e Set n(k, k') for V&', where n(k, k') is the number
of agents to send from node k to k. We set the
value for n(k,%’) in advance here. Usualy this
number is relatively small to the number of agents
which each node handles. Only if the number of

agents which belong to Bpool(k, k') is less than

Takahashi and Mizuta

this predetermined number, n(k, k') is set to the
number of agents which belong to Bpool(k, k).
e Receive n(k’, k) and obtain m(k, k') for V&', where
m(k, k') is defined as
m(k, k) = min(n(k, k'), n(k’,k)). (3)
e Send the top n(k, k') of agents from Bpool(k, k')

to k' for V&'
e Receive agents from k' for Vk'.

Each node executes these steps continuously. The amount
of data transmitted among nodes decreases gradually.

5 BEHAVIOR OF OUR ALGORITHM

We modeled some typical agent behaviors that appear fre-
quently in ABS and experimented with these models.

5.1 Basic Model

The first experimental model used the following parameters:

The number of nodes is two.

e 1,000 agents are randomly allocated on [0,1) X
[0,1) in two dimensional space.

e Each agent sends messages only to agents within
a distance of 0.1.
The size of an agent’s message is 1 byte.

e The maximum number of agents to exchange is 1.

Figure 3 shows the status of agents allocated in two
dimensional space. As the simulation progresses, we can see
that agents are divided into two nodes. Figure 4 shows the
amount of data transmitted. The amount of data transmitted
between the two nodes decreased from 8,997 bytes to 1,132
bytes. The amount of data transmitted within each node
increased from 8,964 and 9,034 bytes to 15,912 and 17,816
bytes. It took about 220 time steps to converge.

5.2 Multi-Exchange Model

The second model is almost the same as the basic model,
but the maximum number of agents to exchange is 5.

Figure 5 shows the status of the agents. Figure 6
shows the amount of data transmitted. The amount of data
transmitted between the two nodes decreased from 8,997
bytes to 1,059 bytes. It takes about 50 time steps to converge.
In this case, the speed of convergence is about five times
faster than for the first model. We can see that the speed
of convergence can be adjusted by changing the maximum
number of agents to be exchanged.

921

time = 240 time = 280

Figure 3: The State of Agents in the Basic Model

5.3 Multi-Node Model

The third model is almost the same as the basic model, but
the number of nodes is 4. Many multi-node supercomputers
have three or more nodes. We investigated behavior of our
algorithm when there are three or more nodes.

Figure 7 shows the status of the agents. Figure 8
shows the amount of data transmitted. The amount of data
transmitted between nodes decreased from about 2,100 bytes
to about 500 bytes. We see good results when the number
of nodes is 4.

5.4 Random Walk Model

The fourth model is almost the same as the multi-exchange
model, but each agent also moves a short distance in a
random direction in each step. Agents slowly change their
communication partners.

Figure 9 shows the status of the agents. Figure 10
shows the amount of data transmitted. We can see that
the amount of data transmitted is kept low in spite of the
agents’ movements.

Takahashi and Mizuta

nodet - nodet ———
node1 - node2
20 - node2 - node2 - b
5
S 15
3
=4
o
2 10
=
(2]
5
5 - -
0 L L L \7777” 7”7\7 7777777777
0 50 100 150 200 250 300
time
Figure 4: The Amount of Data Transmitted in the Basic
Model

time = 40 time = 60

Figure 5: The State of Agents in the Multi-Exchange Model

nodé1 - node1‘ —
nodet - node2 -
20 node2 - node2 - b
S =
S 15[T E
=
c
o
8 10 | 4
£
(2]
C
g
5 - -
O Il Il Il Il 7777\ 777777777 \7 77777777
0 10 20 30 40 50 60 70
time

Figure 6: The Amount of Data Transmitted in the Multi-
Exchange Model

922

%] ?j

oA

&
¥

e

By %

o @ od

time = 40

Figure 7: The State of Agents in the Multi-Node Model

T T
nodet - nodel ——

10 | nodel -node2 - T
nodel - node3 --------
node1 - node4 P
node2 - node2 -
—~ 81 node2-node3 1
8 node2 - node4 ------- [R—
=4 node3 - node3 - ETT
3 node3 - node4 - —
S 6 [node4 - node4 7
2
£
2 4 i
g
2 Frees . a
0 Il Il Il Il - 1
0 10 20 30 40 50 60 70
time

Figure 8: The Amount of Data Transmitted in the Multi-
Node Model

6 ONLINE AUCTION MODEL

The fifth model is a more practical model, based on a dynamic
online auction model using ABS that was developed by
Mizuta and Steiglitz. We ported this online auction model
into our framework and investigated the effectiveness of our
algorithm.

In our online auction model some auctions start at
random and each auction is open for a certain period.
Bidders can participate in multiple auctions at the same
time, watch the auctions’ statuses and bid according to
their strategies. In our framework we designed both the
auctions and the bidders as agents, so the transmissions
occur as agents for the bidders to communicate with the
auction agents. The number of nodes was two.

Figure 11 shows the status of the agents. A box shows
an auction, and an oval shows a bidder. Each bidder par-
ticipating in an auction is connected to that auction by an

Takahashi and Mizuta

time = 240 time = 280

Figure 9: The State of Agents in the Random Walk Model

edge. In this figure, some agents participate in only one
auction, and others participate in two or more auctions. The
light bidders belong to node 1 and the dark ones belong
to node 2. We can see that the agents perticipating in the
same auction tend to belong to the same node. The agents
are effectively separated into two nodes, even though this
graph changes as the simulation progresses.

Figure 12 shows the amount of data transmitted when
our algorithm is used. Figure 13 shows the amount of data
transmitted without our algorithm. We can see that the
amount of data transmitted is kept low in spite of a change
in the agents’ behaviors.

7 CONCLUSION

We had quite positive results with a very fast executable
algorithm that obtains an approximate solution for graph
clustering. Our iterative algorithm is simple and needs little
computation time. Each node observes the transmissions
of only its own agents and needs no complex negotiations
with other nodes. The implementation of this algorithm is
quite easy. These features are great advantages.

923

node1'- node1 T
node1 - node2
node2 - node2 -------- |

20

(9]

o

transmission (x1000)

300
time

Figure 10: The Amount of Data Transmitted in the Random
Walk Model

Figure 11: The State of Agents in the Online Auction Model

Takahashi and Mizuta

400

node1‘— nodet
node1 - node2

350 |- node2 - node2

transmission

0 I I I I I

0 200 400 600

time

800 1000 1200

Figure 12: The Amount of Data Transmitted in the Online
Auction Model (with Our Algorithm)

node1‘- nodet
node1 - node2
node2 - node2

350 F node? - riode2 --------

300 b

250 -

transmission

400 600

time

1000 1200

Figure 13: The Amount of Data Transmitted in the Online
Auction Model (without Our Algorithm)

This algorithm is expandable to multiple clustering
problems without any difficulties.

The situation when agents slowly change their commu-
nication partners is rarely seen in generic graph clustering
problems, but appears frequently in ABS. This algorithm
is very efficient in this situation. If the speed of agents’
movements is variable, we maight be able to handle this
problem by adjusting the maximum number of agents to
exchange or by increasing the step size of this algorithm.

REFERENCES

Banicescu, 1., and V. Velusamy. 2002. Load Balancing
Highly Irregular Computations with the Adaptive Fac-
toring. Proceedings of the 16th International Parallel
and Distributed Processing Symposium.

924

Bononi, L., G. D’Angelo, and L. Donatiello. 2003. HLA-
based adaptive distributed simulation of wireless mo-
bile systems. Proceedings of the 17th ACM/IEEE/SCS
Workshop on Parallel and Distributed Simulation.

Bononi, L., M. Bracuto, G. D’Angelo, and L. Donatiello.
2004. A New Adaptive Middleware for Parallel and
Distributed Simulation of Dynamically Interacting Sys-
tems. Proceedings of the 8th IEEE International Sym-
posium on Distributed Simulation and Real Time Ap-
plications.

Chavez, A., A. Moukas, and P. Maes. 1997. Challenger: A
multiagent system for distributed resource allocation.
Proceedings of the First International Conference on
Autonomous Agents.

Deguchi, H., H. Tanuma, and T. Shimizu. 2004 SOARS:
Spot Oriented Agent Role Simulator - Design and Agent
Based Dynamical System -. Proceedings of the Third
International Workshop on Agent-based Approaches in
Economic and Social Complex Systems, 49-56.

Goldberg, A. V., and S. Rao. 1997. Beyond the flow decom-
position barrier. Proceedings of the 38th IEEE Annual
Symposium on Foundations of Computer Science, 2-11.

Goldberg, A. V., and R. E. Tarjan. 1988. A new approach
to the maximum flow problem. J.Assoc.Comp.Mach.,
35:921-940.

Logan, B., and G. Theodoropoulos. 2000. Dynamic interest
management in the distributed simulation of agentbased
systems Proceedings of the Tenth Conference on Al,
Simulation and Planning, Society for Computer Sim-
ulation International and ACM SIGSIM, pp. 45-50.

Logan, B., and G. Theodoropoulos. 2001. The distributed
simulation of multiagent systems Proc. of the IEEE,
Vol.89, Issue 2.

Mizuta, H., and K. Steiglitz. 2000. Agent-Based Simulation
of Dynamic On-Line Auctions. Proceedings of the 2000
Winter Simulation Conference.

Nowe, A., and K. Verbeeck. 1999. Distributed Rein-
forcement learning, Loadbased Routing a case study.
Proceedings of the Neural, Symbolic and Reinforcement
Methods for sequence Learning Workshop.

Parent, J., K. Verbeeck, and J. Lemeire. 2002. Adaptive
Load Balancing of Parallel Applications with Reinforce-
ment Learning on Heterogeneous Networks. DCABES.

Schaerf, A., Y. Shoham, and M. Tennenholtz. 1995. Adap-
tive Load Balancing: A Study in Multi-Agent Learning.
Journal of Artificial Intelligence Research.

MASON. [Online]. Available: (http://cs.gmu.edu/
~eclab/projects/mason/).

Repast. [Online]. Available:
(http://repast.sourceforge.net/).

Swarm. [Online]. Available:
(http://www.swarm.org/).

Takahashi and Mizuta
AUTHOR BIOGRAPHIES

TOSHIHIRO TAKAHASHI is a researcher at the Tokyo
Research Laboratory of IBM Japan. He received a B.S.
degree in mathematics from Waseda University, and a M.S.
degree in computer science from Waseda University. His
e-mail address is (€30137@jp.ibm.com).

HIDEYUKIMIZUTA is aresearcher at the Tokyo Research
Laboratory of IBM Japan. He received B.S., M.S. and Ph.D.
degrees in physics from the University of Tokyo. He is a
member of IPSJ and ACM SIGSIM. His research interests
include dynamic socioeconomic systems with heterogeneous
agents. His e-mail address is (€28193@jp.ibm.com).

925

	MAIN MENU
	PREVIOUS MENU
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

