
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

SPREADSHEET SIMULATION

Andrew F. Seila

Terry College of Business

The University of Georgia

Athens, GA 30602-6273, U.S.A.
ABSTRACT

“Spreadsheet simulation” refers to the use of a spreadsheet

as a platform for representing simulation models and per-

forming simulation experiments. This tutorial explains the

reasons for using this platform for simulation, discusses

why this is frequently an efficient way to build simulation

models and execute them, describes how to setup a spread-

sheet simulation, and finally examines some limitations on

the use of spreadsheets for simulation.

1 INTRODUCTION

A simulation is a sampling experiment that is done on the

computer (Fishman 1996). At the core of any (stochastic)

simulation is a model that involves quantities whose values

are unpredictable and therefore must be sampled from an

appropriate population. The model is represented using a

computer program, and the program actually samples the

random variables, performs the computations of the model

and reports the outcome, usually in the form of one or more

numerical values. All simulation models fit this description.

Spreadsheet simulation simply involves using a spreadsheet

to represent the model, do the sampling, perform the model

computations and report the results.

The idea of an electronic spreadsheet for storing infor-

mation and performing calculations dates back to Mattesich

(1961) when computers were mainframes, but spreadsheets

as we know them are a product of the microcomputer age.

The earliest spreadsheet, VisiCalc, had limited functionality

but introduced the world to the concept of the interactive

electronic spreadsheet, i.e., a program that stores data and

computations in a rectangular array of cells and allows

the user to manipulate the values and formulas interac-

tively. Later spreadsheets such as Lotus 1-2-3TM, Microsoft

ExcelTM and Quattro ProTM greatly expanded the features

and developed the spreadsheet into an effective modeling,

prototyping, analysis and presentation tool.
111-4244-0501-7/06/$20.00 ©2006 IEEE
Today, spreadsheets are available for all of the major

desktop operating systems: Windows, Unix/Linux and Mac

OS. Since Mac OS X is a derivative of BSD Unix, all of the

Unix spreadsheets (as well as other software) will eventually

be available for this platform. The most prevalent spread-

sheet today is Microsoft ExcelTM, which is part of Microsoft

OfficeTM. Most other spreadsheets operate similarly and

have similar features as ExcelTM. In this paper, we will

refer to ExcelTM menus and other features. However, the

concepts and techniques to be discussed apply to virtually

all other spreadsheets.

Spreadsheets are used by many people. Since the idea

of the spreadsheet started in the context of accounting, it is

natural that they are widely used in business. Most business

users, however, employ a very small subset of the available

features. Engineers have been slow to adopt spreadsheets

as a computation and analysis platform, perhaps because

they have been trained to use other software tools such as

MATLABTM that were written specifically for mathematical

modeling. These tools are very powerful and can certainly

be used to develop a broad range of simulation models, but

in many cases a spreadsheet is simpler and more intuitive

to use.

2 WHY USE A SPREADSHEET FOR SIMULATION

MODELING?

We will use the term simulation platform to refer to the soft-

ware environment used to develop, test and run a simulation

experiment. First, let’s examine what features a simulation

platform needs. Following is a list of the capabilities that

must be available:

1. A way to represent mathematical and logical rela-

tionships among variables in the form of compu-

tations and assignment of values, and algorithms

that describe how to do a series of computations.

Seila
2. A way to generate uniformly distributed pseudoran-

dom numbers and use them to sample observations

from various distributions.

3. A means to repeat the computations of the model,

thus implementing replications.

This list is minimal, but these are the necessary capa-

bilities for the platform to be used for simulation. Most

spreadsheets have these features. The following useful fea-

tures are also available in most spreadsheets to make the

process quick and reliable:

1. A large number of functions to do mathematical,

statistical, database, date/time, financial and other

calculations.

2. Database representations and database access.

3. Charting and graphing.

4. Display and documentation features such as fonts,

colors and geometric shapes to improve presenta-

tion.

5. Automation through scripting languages such as

VBA (in the case of ExcelTM).

The table structure of spreadsheets allows the developer

to organize the computations and outputs in a natural and

intuitive manner. Spreadsheets are ubiquitous - almost ev-

erybody has one - and file formats are standardized, so files

written by one spreadsheet can be imported by others. This

feature will be greatly enhanced with the adoption of open

document standards for file formats by most spreadsheet

publishers, including Microsoft. Spreadsheets have become

a standardized platform to represent computations. As a re-

sult, developers and users can easily pass simulation models

from one to another. For these reasons, the spreadsheet is

an attractive platform for simulation.

There are a number of publications that discuss spread-

sheet simulation. See Winston (1996) and Seila, Ceric, and

Tadikamalla (2003), Chapters 2 through 4 for very readable

tutorials.

3 WHEN SHOULD YOU USE A SPREADSHEET

TO DO SIMULATION?

Certain modeling situations lend themselves well to imple-

mentation in a spreadsheet. Indeed, any set of calculations

in a spreadsheet can be considered a model. Usually, these

models have parameters or variables whose true values are

unknown and thus assumed values are used.

3.1 Stochastic Models

In some cases, unknown parameters such as the interest rate

at a future time or the demand for a product are actually

random variables whose value cannot be predicted, i.e., the
12
models are stochastic models. Many stochastic models in

finance (including real estate and insurance), logistics and

engineering can be conveniently setup in a spreadsheet for

simulation. Spreadsheets are frequently used by actuaries,

for example, to evaluate insurance rating methods. Consider,

for example, an inventory model in which the demand for

the product is stochastic. In order to evaluate a particular

replenishment policy, this value must be sampled when

the simulation experiment is run. An experiment would

consist of sampling demand for the product and applying

the inventory policy over a long period of time to compute

observations of the periodic costs resulting from excess

inventory and shortages associated with the policy. These

observations would then be used to estimate the mean cost

for the policy. The experiment would be repeated for

several policies to find the inventory policy that produces

the minimum mean cost. This is a typical stochastic model

that can be analyzed using simulation and will be used

as an example later in this paper. Interesting spreadsheet

implementations of queueing simulations have also been

developed (Grossman 1999).

3.2 Sensitivity Analysis for Spreadsheet Models

Another situation where spreadsheet simulation is useful

involves doing a “what-if” or sensitivity analysis for models

having parameters that are unknown but not necessarily

random. It is often the case in spreadsheet models that

modelers want to determine how sensitive the performance

measure is to variations in these parameters. For example,

in a model that concerns the leasing or purchase of a piece

of real estate, the mortgage interest rate at the time the

contract is signed is an unknown parameter. The present

value of each decision (lease vs. buy) will depend upon

this parameter value and the decision maker would like to

know how sensitive the present value of the policy is to the

interest rate. If only one or two parameters are involved,

modelers can use the “Table” command of the “Data” menu

to evaluate the performance measure when each parameter

value in a collection of possible values is substituted into

the model. ExcelTM and other spreadsheets will support

this calculation with one unknown parameter and many

performance measures, or with two unknown parameters

and one performance measure. For example, one could

vary the interest rate from 5.5% to 11.0% in steps of .5%

and use each value to compute the present value of the

lease decision and the present value of the buy decision.

Or, one could vary the interest rate and also vary the value

of the property over a discrete set of values, and for each

combination of these two values, compute the difference

between the present values of the two decisions.

Real spreadsheet models normally have many unknown

parameters, as well as multiple performance measures. This

type of what-if analysis can become unwieldy when the

Seila
model has more than a few parameters. For example, sup-

pose that the number of unknown parameters in the model

is 10, and the number of possible values for each of these

parameters is 3, denoting the minimum, most likely and

maximum values. Then, the number of substitutions and

recalculations that must be performed in order to assess

all combinations of these possible values is 310 = 59,049.

Clearly, this is possible only if the process of recalcula-

tion is automated, and then it is rather time-consuming. If

the number of parameters increases to just 15, the number

of recalculations grows to about 14 million, an infeasible

computational task on most desktop systems. The solution

to this conundrum is simulation. By sampling these un-

known values from appropriate distributions, one can do

a “what-if” analysis on a model with a large number of

unknown parameters. In fact, 1000 replications generally

produces enough observations to assess the variation in the

output measures, regardless of the number of combinations

of values of unknown parameters. Thus, simulation is a

useful technique when the number of unknown parameters

is moderate or large.

The mechanics of setting up and running a spreadsheet

simulation are very much the same in both of these cases,

but there is one important difference in the way the output

data are analyzed: When simulating a stochastic model, you

are usually interested in using the output data to estimate an

unknown performance measure for the model; when doing

sensitivity analysis, you are interested in using the output

data to assess the amount of variation in one or more output

quantities.

4 HOW DO YOU SETUP A SPREADSHEET

SIMULATION?

The cells in a spreadsheet model can be classified by their

contents:

• Inputs to the model. These cells can contain pa-

rameters that are part of the model, such as unit

costs or mean demand. The contents can also be

sampled values of the random variables that rep-

resent uncertain quantities in the model such as

demand or price paid, or they can be assumed

values of unknown parameters when one is doing

a sensitivity analysis.

• Intermediate computations. These cells contain

formulas that have the calculations that define the

model. For example, in an inventory model, they

might compute the inventory levels or backlogs at

the end of each period. These computations define

the transformations that convert the model’s inputs

to the outputs.

• Outputs from the model. These cells contain the

observations on quantities of interest one seeks
1

from the model. For example, in an inventory

model, these observations could be the costs in-

curred during each period.

Most models that can be organized in this way can

be simulated in a spreadsheet. The following steps are

described in more detail in Chapter 2 of Seila, Ceric, and

Tadikamalla (2003). A simple inventory model will be used

to illustrate the process.

4.1 An Inventory Model

Consider a single period inventory model where a quantity

of a good will be purchased to satisfy a stochastic demand

whose distribution is known. As an example, we could be

placing an order for the number of hot dogs for a baseball

game. Demand will be determined by many unpredictable

factors, but data from past games shows that it has an

Erlang distribution with parameters 4.0 and 2. This random

variable has mean 8.0. We experience costs of ce = $60
per case for an excess (if the amount ordered is greater

than demand) and cs = $160 per case for a shortage (if the

amount on hand is less than the demand). Let D represent

the demand - a random variable - and x represent the number

of cases ordered - a decision variable. We can order cases

in fractional amounts. Then, the realized cost, after we have

attempted to satisfy demand, is

Y = ce(x−D) if x > D,

cs(D− x) if x ≤ D.

We want to simulate this model in order to estimate the

expected cost, given a specific order amount, x. If we do

this for several values of x, we can select the order amount

that provides the minimum cost.

4.2 Setup the Model

The first step is to build the model in the spreadsheet using

fixed values for all parameters and other inputs, including

those that will be sampled. This enables us to check the

computations and assure the correctness of the model trans-

formations before the simulation-specific components are

added. In our example, we would create the model with

a specific value for demand, which is the only stochastic

quantity in the model. Figure 1 shows a portion of the

spreadsheet containing the model at this stage. Cells D4

and D5 contain the cost parameters, ce and cs, respectively.

Cell D7 has the order amount, which is 9 in this case. Cells

D9 and E9 have the two parameters for the distribution of

demand - the mean and “stages” parameter for the Erlang

distribution. The value in cell E9 is not used at the moment,

but we entered it now so it all parameters will be available

at the next step. Cell D12 contains the (assumed) demand,
3

eila
S

Figure 1: Basic Inventory Model

which we set to the value in cell D9 for the moment. Then,

the cost is computed in cell D11 using the formula

=IF(D12<D7,D4*(D7-D12),D5*(D12-D7)).

We can put values in cell D7 that are greater than and less

than the values in cell D9 to check the computations and

assure that they are correct.

Second, add the random variate generators, i.e., replace

the values in the cells that represent sampled quantities

with formulas that sample these values from appropriate

distributions. Appropriate formulas can be found in any

reference on random variate generation. See (Cheng 1998)

for example. Spreadsheet add-ins for simulation, which

we will discuss in a later section, also include formulas

for sampling from various distributions. At this point, all

random variates can be resampled when the spreadsheet

is recalculated. In the inventory example in Figure 1, the

formula in cell D12, which contains the demand, is replaced

by the formula

=D9/2*dGammaDev(E9)

to sample demand from an Erlang distribution. The specific

function used here, dGammaDev(), comes from the Pop-

Tools add-in, which will be discussed in Section 5. Each

time the spreadsheet is recalculated by pressing the F9 key,

the contents of cell D12, the demand, is resampled and thus

changes. The new value of demand is then used to compute

the cost in cell E12. Thus, each press of the F9 key produces

a new replication for the simulation, and therefore, a new

observation of the cost in cell E12.

Third, identify the “output data” for the model. Actu-

ally, the modeler should know these desired performance

measures when the model is created. For example, in an

inventory model, you might use the mean cost per pe-

riod as a performance measure, so the output data for the
14
model would be the costs incurred in each period. Here,

you want to identify those cells that contain the values of

these performance measures. At this point, you can watch

the values of these cells change (i.e., being sampled) each

time the spreadsheet is recalculated. Since our example is

a single-period inventory model and we want to estimate

the the mean cost, the output data is just the contents of

cell E12, the observed cost for the replication. Note that in

more elaborate models, you could have several performance

measures.

4.3 Create the Simulation Run

It is useful to distinguish two types of simulation exper-

iments: (1) static simulations that are run in a series of

independent, identical replications and produce indepen-

dent, identically distributed output observations, and (2)

dynamic simulations that are run in one long replication

and produce a time series of dependent observations. The

setup is different for each of these.

Where independent replications are performed, the

model computations are usually contained in some region

or group of regions of the spreadsheet. Since a recalcu-

lation produces a replication, we need to do a series of

recalculations of the spreadsheet and save the outputs after

each recalculation to perform the replications. There are

several ways to accomplish this. If the model computations

can be placed in a single row, we can just copy this row

the appropriate number of times and all replications are

displayed at once.

Figure 2 shows a portion of the inventory model with

replications added in columns C, D and E. These were created

by simply entering the first replication number in cell C12,

then copying the range C12:E12 down an additional 199

rows to create 200 replications.

Figure 2: Inventory Model with Replications

Seila
If the computations in the model are more involved

and cannot be placed on a single row, we can use the

Table command in the Data menu to tell the spreadsheet to

go through an iterative recalculation, storing the values of

the outputs after each recalculation. To use the Data-Table

command, you must frst create a rectangular range of cells

to hold the model outputs. Start by creating a column of

numbers having values from 1 to the number of replications

you will perform. ExcelTM and most other spreadsheets

have an easy way to create a column or row of consecutive

numbers. Above each adjacent column to the right, place a

formula that will produce the value of a specific output. The

design is for each row of this table to contain the replication

number in the first column and the outputs, i.e., observations

on each performance measure, for that replication in the

adjacent columns.

To actually run the replications, select the Data menu,

then select the Table option. This command was originally

created to perform “what-if” scenarios as described above by

substituting each value in the first column into a specific cell,

recalculating the spreadsheet, and recording the values of

other cells that depend upon the substituted value adjacent

to the substituted value. In our case, each cell in the

first column of the data table just contains a replication

number, and the replication number is not actually used

in recalculation. However, the recalculation will cause all

random variate sampling formulas to re-execute, producing

a new observation for each random variate and thus new

observations for all outputs that are statistically independent

of those for all other replications. The Data-Table command

presents a dialog asking where you want to put the input

value. Click in the field labelled “Column Input Cell” and

select any unused cell, then click “OK”. The data table

containing the replications will fill quickly. When it is

finished, each column of this table except the left-most will

contain all of the observations on a specific performance

measure. You might need to press the Recalculate key, F9,

to compute the new values in the table. It is not difficult

to do thousands, or even tens of thousands, of replications

in this way.

In a dynamic simulation, the output values are observed

periodically over time or in sequence. For example, in an

inventory model, the costs incurred might be observed at

the end of each week. In addition, each output observation

will depend in some way on the previous outputs. If each

period’s computations can be placed in a single row, then the

next period’s computations are constructed from the contents

of the cells in the previous row. Once the computations

for a representative set of periods are setup, i.e., once a

representative row is entered, the row(s) can be copied, thus

extending the time span of the model and producing the

desired number of periodic observations. As a result, the

sequence of dependent output observations in the simulation

will be contained in one or more columns of the spreadsheet.
15
Chapter 4 of Seila, Ceric, and Tadikamalla (2003) has some

examples of dynamic models implemented in a spreadsheet.

4.4 Analyze the Data

Each simulation has its own data analysis requirements

(Alexopoulos and Seila 1998). For stochastic models, anal-

ysis normally involves applying statistical procedures to

compute estimates of population parameters as well as con-

fidence intervals for these estimates. When the objective

is sensitivity analysis,the data analysis seeks to determine

the likely range of values of the output data. This can

involve computing extreme values of the data such as quan-

tiles and graphically displaying the distribution of the data.

Most spreadsheets have formulas for computing the sam-

ple mean, sample variance and quantiles of well known

distributions such as the normal distribution, so the usual

confidence interval formulas can be applied. Spreadsheets

also have a rich selection of other statistical computations

such as regression analysis and quantile computation, which

can be applied too. The tutorial on output data analysis in

this Proceedings can provide additional information about

applying statistical procedures to simulation data.

Figure 3 shows the inventory example with a simple

data analysis in the range G2:H9. In this case, we are just

computing a confidence interval for the mean. All formulas

used in H2:H9 are standard Excel statistical formulas.

Figure 3: Inventory Model with Data Analysis

4.5 Evaluate Decisions

For the single period inventory model which we are using as

an example, our objective is to find the order quantity that

minimizes the mean cost. Finding this value will require that

we repeat the entire simulation experiment using various

values for the order quantity, which is in cell D7. This is

another place to use the Data-Table command. The result

is shown in Figure 4, in the range G11:I25. First, we

created the sequence of order amount values in the range

eila
S

Figure 4: Order Quantity Evaluation

G13:G25. Then, we placed formulas =H5 and =H7 in cells

H12 and I12, respectively, to copy the estimates of the mean

and sampling error of the mean to these cells. Finally, we

selected the range G12:H25 and invoked the Table command

of the Data menu to produce the Table dialog in Figure 4.

In the field labelled “Column Input Cell”, we entered D7

to indicate that each value in the range G12:G25 should be

placed into D7 before recalculating the spreadsheet. Upon

clicking OK in the Table dialog, we get a table resembling

that in Figure 4. Since this is a simulation, each spreadsheet

will show different values in this table. We can examine

the values in this table, but they are much easier to interpret

if we display them graphically.

Presentation generally includes some tables and graphs.

Spreadsheets have extensive facilities that easily produce

these types of presentations in high quality. The types of

graphs or other displays will, of course, depend upon the

data analysis and the objectives of the modeling effort.

Figure 5 shows a graph of the results in Figure 4. From

this graph, you can not only identify the order quantity that

minimizes cost, but also you can see that the cost is not

very sensitive to the order quantity when it is close to the

optimal value.

It is important to note that in this example, we have

implemented a simulation model, run replications, collected

output data, analyzed the output data to estimate the required

parameters of the model and used the model to automate

the evaluation of a series of decisions. With the exception

of the formula for generating random variates, the entire

process was done using built-in ExcelTM features.

This and some additional spreadsheet simulation mod-

els can be found at <http://www.terry.uga.edu/

˜seila/spreadsheetSim>. These models illustrate

the concepts and techniques just discussed and demonstrate

how to implement and run dynamic simulations using a

spreadsheet.
16
Figure 5: Graph of Expected Cost Versus Order Quantity

5 SIMULATION ADD-INS FOR SPREADSHEETS

The process of developing and running a simulation in

a spreadsheet can be simplified somewhat by using one

of the available add-in packages for ExcelTM. @RISKTM

(<http://www.palisade.com>) and Crystal BallTM

(<http://www.decisioneering.com>) are com-

mercial packages. PopTools (<http://www.cse.

csiro.au/poptools/>) is a free ExcelTM add-in. An-

other free add-in for ExcelTM called SIMTOOLS.XLA

by Professor Roger Myerson is available at <http:

//home.uchicago.edu/˜rmyerson>. These pack-

ages provide several features that are not included in the

basic spreadsheet:

• Random number generation using documented and

tested algorithms.

• Extensive functions for generating random variates

from a variety of distributions.

• Features to automate the setup and running of the

simulation experiment.

• Features to automate analysis and presentation of

the output data from the simulation experiment.

• Optimization procedures for the model.

The random number function, which is called

“RAND()” in most spreadsheets, produces a pseudo ran-

dom sample from a uniform distribution between 0 and 1.

Unfortunately, many spreadsheet publishers do not docu-

ment the algorithm used in RAND(). Frequently, these are

just the functions that are distributed as part of the C or

C++ compiler. Research has shown that some algorithms

for generating random numbers have better statistical prop-

erties than others (Fishman 1996, L’Ecuyer 1998). Thus,

using the built-in RAND() function carries some risk that

the random numbers will not behave as truly independent,

Seila
random numbers. In @RISKTM, Crystal BallTM, and Pop-

Tools, the random number generators have been tested and

documented, and therefore are recommended over RAND().

It is easy to write functions that generate observations

from some distributions such as the triangular, exponential

and normal distributions, starting from independent uniform

random variates (Cheng 1998). However, observations from

some distributions such as the Gamma and Weibull are

difficult or impossible to generate using just the built-in

functions of the spreadsheet. These add-ins provide easy,

intuitive functions for all common distributions.

If you use the Data-Table method described above to

run replications, some effort is required to set it up and the

method uses space in the spreadsheet to store the results.

These packages implement their own iterative procedure to

run replications and store the resulting summary statistics

or raw data. Often, you do not need to store all of the

raw data. Only summary statistics are needed. Thus, these

add-ins can simplify the problems of setting up and running

simulations, and analyzing the output. Examples of the

use of these add-ins can be found on their websites and

examples of the use of @RISKTM for financial modeling

can be found in Chapter 3 of (Seila, Ceric, and Tadikamalla

2003).

6 WHEN SHOULD YOU NOT USE A

SPREADSHEET FOR SIMULATION?

Spreadsheets are powerful, convenient tools for simulation

modeling, but they do have four important limitations.

(1) Only simple data structures are available in spread-

sheets. The spreadsheet consists of a group of pages, or

worksheets, each of which has a table consisting of rows and

columns of cells. Each cell can contain data or a formula.

One can treat a column or row of cells as a vector, and

a two-dimensional range of cells can be treated as a two-

dimensional array, or matrix. In some simulation models,

more elaborate data structures such as lists and trees are

needed. One case in point is that of discrete event simula-

tion, where lists are needed for the event list and waiting

lines. These structures can be built in a spreadsheet, but

they are contrived and inefficient.

(2) Complex algorithms are difficult to implement. For

the most part, formulas in spreadsheet cells are static compu-

tations that are executed once when the cell is recalculated.

Spreadsheets do not have convenient facilities to implement

a while-loop or a for-loop. These can also be implemented,

but the implementation is often inefficient and inflexible. For

example, if a computation needs to be done 10 times, it can

be implemented in a column or row of 10 cells. But, what

if it needs to be done 100,000 times? Most spreadsheets do

not allow a column this long. Moreover, how would you

implement a loop that must be executed until a particular

value is obtained? For example, in an actuarial ruin model,
17
the value of the firm is computed until it becomes negative.

Since you do not know the maximum number of periods to

guarantee ruin (it might even be infinite), you do not know

how many cells to include. VBA in ExcelTM can be used to

implement more complex logic, but this is a more advanced

tool that is seldom used by casual spreadsheet users. So,

models that require complex loops and other conditional

computations may not work well in a spreadsheet.

(3) Spreadsheets are slower than some alternatives.

Consider what a spreadsheet must do to recalculate. For-

mulas are stored in “source code.” That is, the spreadsheet

must interpret the formula before it can be executed. This

interpretation action normally takes much longer than the

execution. Some spreadsheets are sophisiticated enough

to store the executable code so the interpretation does not

have to be repeated each time, but it is nevertheless a much

less efficient setup than one would have with a compiled

language. Moreover, spreadsheets use much more of the

computer’s resources to support the elaborate user inter-

face and provide all of the features. Thus, spreadsheets are

inefficient in their use of memory. A model that is very

large and/or requires long simulation runs would need to

be programmed in a compiled language in order to execute

in a feasible length of time or use a reasonable amount of

main memory.

(4) Data storage is limited. Since the output data

must be stored in the spreadsheet, usually in a column,

the length of the output series is limited by the maximum

column length. In many spreadsheets, column lengths can

be tens of thousands or even hundreds of thousands of

cells. However, some models such as those that evaluate

the reliability of highly reliable systems, require very large

sample sizes - in the millions of observations. There are

ways to circumvent this restriction. One could use multiple

columns to store output data for the same performance

measure, or one could accumulate sample statistics without

actually storing the raw data. All of these solutions require

a more complex approach to the simulation and result in

more inefficiency in the execution of the simulation. When

this is the case, it is appropriate to ask if another platform

would be a better solution.

These four limitations seem to restrict considerably the

range of models that can be implemented in a spreadsheet.

However, many models are not subject to these restrictions,

and they are often done to get “quick and dirty” results. This

can be the case in many business models where a manager

or system engineer wants to estimate a parameter to plus-

or-minus 10 percent, for example. This is the place where a

spreadsheet really earns its bars. Prototypes can be quickly

built and run in a spreadsheet. If the prototype shows that

the simulation does not work well in the spreadsheet, then

it can be moved to a more appropriate platform.

Seila
7 CONCLUSIONS

Simulation modeling is used in only a very small percentage

of situations where it can provide valuable information for

decision making. The reasons for this underutilization are

many. Sometimes, the managers or analysts are not familiar

with specialized simulation software. Spreadsheets provide

an easily-used platform for simulation that is already on the

desktop of all analysts, engineers, managers, administrators

and others who need to model and simulate problems. Since

spreadsheets have powerful functions for doing sophisticated

computations and excellent graphing features for displaying

the results, they can be used in the entire process from

analyzing input data to developing the model to analyzing

and presenting the simulation results.

If the model is already implemented in a spreadsheet,

managers can experiment with the model and evaluate al-

ternative without having to involve simulation specialists.

Many simulations do not need to be extensive. They are

designed to provide ball-park estimates and to show gen-

eral system behavior. This is often true of financial models.

These models can usually be implemented most efficiently

in a spreadsheet. Simulation problems for which spread-

sheets are a useful platform also include prototype models

which are relatively small and designed to provide a proof of

concept. Simulation is also a useful tool to do a sensitivity

analysis for any spreadsheet model that has parameters that

are unknown or whose vaues can change.

Commercial and free spreadsheets are continuing to be

developed. Future versions will undoubtedly allow larger

worksheets and perform computations more efficiently. As

computing power continues to grow, the limitations to

spreadsheet simulation will be removed and this platform

will be even more attractive. ExcelTM comes bundled with

an optimization tool (solver). Perhaps there will be a time

when it also comes bundled with a simulation tool!

REFERENCES

Alexopoulos, C., and A. F. Seila. 1998. Output data analysis.

In Handbook of Simulation: Principles, Methodology,

Advances, Applications, and Practice, ed. J. Banks.

New York: John Wiley.

Cheng, R. C. H. 1998. Random variate generation. In

Handbook of Simulation: Principles, Methodology, Ad-

vances, Applications, and Practice, ed. J. Banks. New

York: John Wiley.

Fishman, G. S. 1996. Monte carlo concepts, algorithms and

applications. New York: Springer.

Grossman, T. A. 1999. Spreadsheet modeling and simulation

improves understanding of queues. Interfaces 29 (3):

99–103.

L’Ecuyer, P. 1998. Random number generation. In Handbook

of Simulation: Principles, Methodology, Advances, Ap-
18
plications, and Practice, ed. J. Banks. New York: John

Wiley.

Mattesich, R. 1961. Budgeting models and system simula-

tion. The Accounting Review 36:384–397.

Seila, A. F., V. Ceric, and P. Tadikamalla. 2003. Applied sim-

ulation modeling. Belmont, California: Brooks-Cole.

Winston, W. L. 1996. Simulation modeling using @risk.

Belmont, California: Duxbury.

AUTHOR BIOGRAPHY

ANDREW F. SEILA is a Professor Emeritus in the De-

partment of Management Information Systems in the Terry

College of Business at the University of Georgia. He has

been involved with simulation teaching and research for

more than 30 years, and has attended the Winter Simulation

Conference since 1977, serving as Program Chair for the

1994 meeting in Orlando. Dr. Seila is a Fulbright Fellow and

recognized authority on the use of spreadsheets for model

representation and simulation. His professional interests

include statistical methodology for simulation, modeling

methodology and simulation applications, especially those

in healthcare and finance. He is the author of over 50 refer-

eed papers and co-authored the chapter on output analysis

in the Handbook of Simulation. He has been a consultant

to numerous businesses, consulting firms and public institu-

tions. In recent years, Dr. Seila has expanded his interests

to Internet Technology. He developed the Internet Technol-

ogy Program at the University of Georgia and directed it

from 1999 to 2002 and 2003 to 2006. His e-mail address

is <seila@uga.edu>.

	MAIN MENU
	PREVIOUS MENU
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

