
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

INSIDE DISCRETE-EVENT SIMULATION SOFTWARE:
HOW IT WORKS AND WHY IT MATTERS

Thomas J. Schriber

The University of Michigan
Business Information Technology

Ann Arbor, MI 48109-1234, U.S.A.

 Daniel T. Brunner

Kiva Systems, Inc.
225 Wildwood Avenue

Woburn, MA 01801-2025, U.S.A.

ABSTRACT

This paper provides simulation practitioners and consum-
ers with a grounding in how discrete-event simulation
software works. Topics include discrete-event systems; en-
tities, resources, control elements and operations; simula-
tion runs; entity states; entity lists; and entity-list manage-
ment. The implementation of these generic ideas in
AutoMod, SLX, and Extend is described. The paper con-
cludes with several examples of “why it matters” for mod-
elers to know how their simulation software works, includ-
ing coverage of SIMAN (Arena), ProModel, and GPSS/H
as well as the other three tools.

1 INTRODUCTION

In this section we discuss the motivation for developing
this paper, and comment on the paper’s structure and the
terminology and conventions used in the paper.

1.1 Background

A “black box” approach is often taken in teaching and
learning discrete-event simulation software. The external
characteristics of the software are studied, but the founda-
tion on which the software is based is ignored or is touched
on only briefly. (This might be attributable to a lack of
time or of appropriate written material.) Choices made in
implementation of the foundation might not be studied at
all and related to step-by-step model execution. The mod-
eler therefore might not be able to think things through
when faced with such needs as developing good ap-
proaches for modeling complex situations, using interac-
tive tools to come to ab understanding of error conditions
arising during model development, and using interactive
tools to verify that complex system logic has been modeled
correctly. The objective of this paper, then, is to describe
the logical underpinnings of discrete-event simulation and
illustrate this material in terms of various implementations
of discrete-event simulation software.

1181-4244-0501-7/06/$20.00 ©2006 IEEE
This paper is a revised version of an identically named
paper from the 1996 Winter Simulation Conference
(Schriber and Brunner 1996). The 1996 paper covered the
entity-list management rules and “why it matters” for
SIMAN (the language underlying Arena), ProModel, and
GPSS/H. An expanded version of the 1996 material con-
taining figures, flow charts, and additional explanation can
be found in Schriber and Brunner (1998).

1.2 Structure of the Paper

In Sections 2, 3 and 4 we comment on the nature of dis-
crete-event simulation; basic simulation constructs such as
entities, resources, control elements, and operations; and
model execution. Sections 5 and 6 deal with entity states
and entity management data structures. Section 7 discusses
three specific implementations of entity management rules.
Section 8 explores various aspects of “why it matters.”

1.3 Terminology and Conventions

Throughout this paper we use terms that we define as well
as terms reserved by the developers of particular simula-
tion tools. Terms we define are boldfaced on first use.
Tool-specific terms are Capitalized or, where appropriate,
are spelled out in ALL CAPS.

2 ABOUT DISCRETE-EVENT SIMULATION

This section introduces the transaction-flow world view
which serves as the basis for the paper, and then discusses
the nature of discrete-event simulation and the logical chal-
lenges inherent in developing discrete-event simulation
languages.

2.1 The Transaction-Flow World View

The “transaction-flow world view” often provides the basis
for discrete-event simulation. In this world view, a system
is visualized as consisting of discrete units of traffic that

Schriber and Brunner

move (“flow”) from point to point in the system while
competing with each other for the use of scarce resources.
The units of traffic are sometimes called “transactions,”
giving rise to the phrase “transaction flow.”

Numerous systems fit the preceding description. In-
cluded are many manufacturing, material handling, trans-
portation, health care, civil, natural resource, communica-
tion, defense, and information processing systems, and
queuing systems in general.

2.2 The Nature of Discrete-Event Simulation

A discrete-event simulation is one in which the state of a
model changes at only a discrete, but possibly random, set
of simulated time points, called event times. Two or more
traffic units often have to be manipulated at one and the
same time point. Such “simultaneous” movement of traffic
at a time point is achieved by manipulating units of traffic
serially at that time point. This often leads to logical com-
plexities in discrete-event simulation because it raises
questions about the order in which two or more units of
traffic are to be manipulated at one time point.

2.3 Discrete-Event Modeling Languages

The challenges faced by a modeler escalate for the de-
signer of a modeling language. The designer must take the
logical requirements of discrete-event simulation into ac-
count in a generalized way. Choices and tradeoffs exist. As
a result, although discrete-event simulation languages are
similar in broad terms, they can and typically do differ in
subtle but important particulars.

3 ENTITIES, RESOURCES, CONTROL
ELEMENTS, AND OPERATIONS

The term entity is used here to designate a unit of traffic (a
“transaction”). Entities instigate and respond to events. An
event is a happening that changes the state of a model (or
system). In a model of an order-filling system, for exam-
ple, the arrival of an order, which is an event, might be
simulated by bringing an entity into the model.

There are two possible types of entities, here referred
to as external entities and internal entities. External enti-
ties are those whose creation and movement is explicitly
arranged for by the modeler. In contrast, internal entities
are created and manipulated implicitly by the simulation
software itself. For example, internal entities might be used
in some languages to simulate machine failures, whereas
external entities might be used to simulate the use of ma-
chines.

The term resource designates a system element that
provides service (such as a drill, an automated guided ve-
hicle, or space in an input buffer). The users of resources
are usually entities. (For example, a work-in-process entity
119
claims space in an input buffer, then captures an automated
guided vehicle to move it to the input buffer.) Resources
are usually capacity-limited, so entities compete for their
use and sometimes must wait to use them, experiencing de-
lay as a result.

The term control element designates a construct that
supports other types of delay or logical alternatives based
on a system’s state. Control elements can take the form of
switches, counters, user data values, and system data val-
ues built into the modeling tool. Complex control may rely
on truth-valued expressions that use arithmetic and/or Boo-
lean combinations of control elements.

An operation is a step carried out by or on an entity
while it moves through a system. The operations applicable
to a ship at a harbor might be these: arrive at the harbor;
request a berth; capture a berth; request a tugboat; capture
a tugboat; get pulled into the berth; free the tugboat; load
cargo; request a tugboat; get pulled out of the berth; free
the berth; get pulled into open water; free the tugboat; de-
part.

4 OVERVIEW OF MODEL EXECUTION

We now review the concepts of experiments, then replica-
tions, and then simulation runs, concluding this section
with discussion of the anatomy of a run.

4.1 Experiments, Replications, and Runs

A simulation project is comprised of experiments. Ex-
periments are differentiated by the use of alternatives in a
model’s logic and/or data. An alternate part-sequencing
rule might be tried, for example, in the model of a produc-
tion system, and/or the quantity of various types of ma-
chines might be varied. Or the number of loading and
unloading berths in a harbor might be varied.

Each experiment consists of one or more replications
(trials). A replication is a simulation that uses the experi-
ment’s model logic and data but its own unique set of ran-
dom numbers, and so produces unique statistical results
which can be analyzed in a set of such replications.

A replication consists of initializing the model, run-
ning it until a run-ending condition is met, and reporting
results. This “running it” phase is called a run.

4.2 Inside a Run

During a run the simulation clock (an internally managed,
stored data value) tracks the passage of simulated time (as
distinct from wall-clock time). The clock advances (auto-
matically) in discrete steps (typically of unequal size) dur-
ing the run. After all possible actions have been taken at a
given simulated time, the clock is advanced to the time of
the next earliest event. Then the appropriate actions are
carried out at this new simulated time, etc.

Schriber and Brunner

The execution of a run therefore takes the form of a
two-phase loop: “carry out all possible actions at the cur-
rent simulated time,” followed by “advance the simulated
clock,” with these two phases repeated again and again un-
til a (usually modeler-specified) run-ending condition is
met. The two phases are here respectively called the Entity
Movement Phase (EMP) and the Clock Update Phase
(CUP).

5 ENTITY STATES

Entities migrate from state to state while they work their
way through a model. There are five entity states, as de-
tailed below.

5.1 The Active State

The Active State is the state of the currently moving en-
tity. Only one entity moves at any instant of wall-clock
time. This entity progresses through its operations nonstop
until it encounters a delay of one type or other. It then mi-
grates to an alternative state. Some other entity then be-
comes the next active entity. And so on.

5.2 The Ready State

During an Entity Movement Phase there may be more than
one entity ready to move, and yet entities can only move
(be in the Active State) one-by-one. The Ready State is
the state of entities waiting to enter the Active State during
the current Entity Movement Phase.

5.3 The Time-Delayed State

The Time-Delayed State is the state of entities waiting for
a known future simulated time to be reached so that they
can then (re)enter the Ready State. A “part” entity is in a
Time-Delayed State, for example, while waiting for the fu-
ture simulated time at which an operation being performed
on it by a machine will come to an end.

5.4 The Condition-Delayed State

The Condition-Delayed State is the state of entities de-
layed until some specified condition comes about, e.g., a
“part” entity might wait in the Condition-Delayed State un-
til its turn comes to use a machine. Condition-Delayed en-
tities are removed automatically from the Condition-
Delayed state when conditions permit.

5.5 The Dormant State

Sometimes it is desirable to put entities into a state from
which no escape will be triggered automatically by
changes in model conditions. We call this state the Dor-
120
mant State. Dormant-State entities rely on modeler-
supplied logic to transfer them from the Dormant State to
the Ready State. Job-ticket entities might be put into a
Dormant State, for example, until an operator entity de-
cides which job-ticket to pull next, with consequent trans-
fer of the job ticket to the Ready State.

6 ENTITY MANAGEMENT STRUCTURES

In our generic model, simulation software uses the follow-
ing lists to organize entities in the five entity states.

6.1 The Active Entity

The active entity is resident on an unnamed “list” consist-
ing only of the active entity. The Active-State entity moves
nonstop until encountering an operation that puts it into
another state (transfers it to another list) or removes it from
the model. A Ready-State entity then becomes the next Ac-
tive-State entity. Eventually there is no possibility of fur-
ther action at the current time. The EMP then ends and a
Clock Update Phase begins.

6.2 The Current Events List

Entities in the Ready State are kept in a single list called
the current events list (CEL). Entities migrate to the CEL
from the future events list, from delay lists, and from
user-managed lists. (Each of these latter lists is described
below). In addition, entities cloned from the Active-State
entity usually start their existence on the CEL.

CEL Entities are generally ranked in FIFO order.
Some software tools provide a built-in entity Priority at-
tribute used to group Entities on the CEL in priority order.

6.3 The Future Events List

Entities in the Time-Delayed State belong to a single list
into which they are inserted at the beginning of their time-
based delay. This list, called the future events list (FEL)
here, is usually ranked by increasing entity move time.
(Move time is the simulated time at which an entity is
scheduled to try to move again.) At the time of entity inser-
tion into the FEL, the entity’s move time is calculated by
adding the value of the simulation clock to the known
(sampled) duration of the time-based delay.

After an Entity Movement Phase is over, the Clock
Update Phase sets (advances) the clock’s value to the move
time of the FEL’s highest ranked (smallest move time) en-
tity. This entity is then transferred from the FEL to the
CEL, migrating from the Time-Delayed State to the Ready
State and setting the stage for the next EMP to begin.

The preceding statement assumes there are not other
entities on the FEL whose move time matches the clock’s
updated value. In the case of move-time ties, some tools

Schriber and Brunner

will transfer all the time-tied entities from the FEL to the
CEL during a single CUP, whereas other tools take a “only
one entity transfer per CUP” approach.

Languages that work with internal entities usually use
the FEL to support the timing requirements of these enti-
ties. The FEL is typically comprised both of external and
internal entities in such languages.

6.4 Delay Lists

Delay lists are lists of entities in the Condition-Delayed
State. These entities are waiting for a condition to come
about (e.g., waiting their turn to use a machine) so they can
be transferred automatically into the Ready State on the
current events list. Delay lists, which are generally created
automatically by the simulation software, are managed by
using related waiting or polled waiting.

If a delay can be related easily to model events that
might resolve the condition, then related waiting can be
used to manage the delay list. For example, suppose a ma-
chine’s status changes from busy to idle. In response, the
software can automatically remove the next waiting entity
from the appropriate delay list and put it in the Ready State
on the current events list. Related waiting is the prevalent
approach used to manage conditional delays.

If the delay condition is too complex to be related eas-
ily to events that might resolve it, polled waiting can be
used. With polled waiting the software checks routinely to
see if entities can be transferred from one or more delay
lists to the Ready State. Complex delay conditions for
which polled waiting can be useful include Boolean com-
binations of state changes, e.g., a part supply runs low or
an output bin needs to be emptied.

6.5 User-Managed Lists

User-managed lists are lists of entities in the Dormant
State. The modeler must take steps to establish such lists
and much more often than not must provide the logic
needed to transfer entities to and from the lists. (Except for
very simple one-line, one-server service points in a system,
the underlying software has no way to know why entities
have been put into user-managed lists in the first place, and
therefore has no plausible basis for automatically removing
entities from such lists.)

7 IMPLEMENTATION IN THREE TOOLS

The tools chosen for commentary on implementation par-
ticulars are AutoMod, Version 9 (Phillips 1997); SLX, Re-
lease 1 (Henriksen 2000); and Extend, Version 4.1 (Krahl
and Lamperti 1997). A previous version of this paper
(Schriber and Brunner 1996) covered SIMAN (Pegden,
Shannon and Sadowski 1995), ProModel (ProModel Cor-
poration 1995), and GPSS/H (Henriksen and Crain 2000)
121
in similar detail. These six are among more than forty tools
reported in 2005 for discrete-event simulation (Swain
2005). Some other tools might be better suited than any of
these for particular modeling activities, but we think that
these tools are representative.

7.1 AutoMod

AutoMod equivalents for the preceding generic terms are
given in Table 1. For example, AutoMod uses Actions to
specify operations for Loads.

Table 1: AutoMod Terminology
Generic Term AutoMod Equivalent
External Entity Load
Internal Entity Logical Load
Resource Resource; Queue; Block
Control Element Counter;

Process Traffic Limit
Operation Action
Current Events List Current Event List
Future Events List Future Event List
Delay List Delay List;

Condition Delay List;
Load Ready List

User-Managed List Order List

7.1.1 The Current Event List

The current events list is named the Current Event List in
AutoMod. Cloned Loads, Loads leaving the Future Event
List due to a clock update, and Loads ordered off Order
Lists are placed immediately on the CEL. The insertion
rule is to rank first by priority (priority is a built-in attrib-
ute of every Load) and then FIFO within priority.

When the CEL becomes empty, the Condition Delay
List (see below) is checked, and Loads may be transferred
from there to the CEL. This continues until the CEL is
empty and no more Loads can be transferred, at which
point the EMP is over and a CUP is initiated.

7.1.2 The Future Event List

The AutoMod Future Event List (FEL) is like future events
lists in other tools. Loads arrive on the FEL in the Time-
Delayed State by executing a WAIT FOR statement.
AutoMod allows the specification of time units (day, hr,
min, sec) in a WAIT FOR statement.

The AutoMod CUP removes multiple Loads from the
FEL if they are tied for the earliest move time, inserting
them one by one into their appropriate place on the CEL.
 There are also internal entities in AutoMod, called
Logical Loads that do things such as wait on the FEL to
trigger scheduled shift breaks.

Schriber and Brunner

7.1.3 Delay Lists

Delay Lists (DL) are lists of Loads waiting to claim capac-
ity provided by a finite-capacity element (a resource or
control element such as an individual Resource, Queue,
Block, Counter, or Process). Each finite capacity element
within the model has one DL associated with it.

The waiting that results from this mechanism is related
waiting. Whenever capacity is freed, one Load from the
head of the element’s DL is tentatively placed on the CEL
(but a placeholder is left on the DL). When that Load is
encountered during the EMP, it tries to claim the requested
capacity. If it fails (for example because it wants two units
but only one is free), it is returned to the DL in its original
place.

Immediately after this evaluation, if there is still any
unused capacity, the next Load on the DL is placed on the
CEL. Processing of the active Load then continues. After
each time a tentatively placed Load is evaluated during the
EMP, the existence of available capacity will cause another
Load to be removed from the DL.

7.1.4 The Condition Delay List

For conditional waiting other than the five cases described
above, AutoMod has a WAIT UNTIL statement that re-
sults in polled waiting. WAIT UNTIL conditions can be
compounded using Boolean operators. If a Load executes a
WAIT UNTIL and the condition is false, the Load is
placed on a single global AutoMod list called the Condi-
tion Delay List (CDL).

After the Current Events List has been emptied, but
before the simulation clock is updated, all Loads on the
Condition Delay List are moved to the Current Events List
(actually, the Condition Delay List “becomes” the Current
Events List) if there has been a state change for at least one
element of the same general type (e.g. Queue) for which
any Load on the Condition Delay list is waiting. (This
mechanism is primarily “polled,” where the polling process
is triggered by the change of at least one element of the
same general type.

If the Current Events List is now non-empty, the En-
tity Movement Phase resumes. If the condition for which a
CEL Load is waiting is not yet satisfied, AutoMod moves
that Load from the Current Event List back to the Condi-
tion Delay List. The Condition Delay List in some cases
may be emptied multiple times during one Entity Move-
ment Phase until eventually the Current Event List has
been emptied without having triggered a state change re-
lated to any Load on the Condition Delay List. A Clock
Update Phase then occurs.

Because of the potential for repetitive list migration
with WAIT UNTIL, AutoMod’s vendor encourages the use
of Order Lists or other explicit control mechanisms to
manage complex waiting.
122
7.1.5 Order Lists

AutoMod implements the Dormant State with Order Lists,
which are user-managed lists of Loads. After a Load puts
itself onto an Order List (by executing a WAIT TO BE
ORDERED Action), it can only be removed by another
Load (or another active model element such as a Vehicle)
which executes an ORDER Action. An ORDER Action
may specify a quantity of Loads, or a condition that must
be satisfied for a given Load if that Load is to be ordered,
or both. Loads successfully ordered are placed immediately
on the CEL (one at a time according to how they were cho-
sen from the Order List, and ranked on the CEL FIFO by
priority).

Order Lists can achieve performance improvements
over CDL waiting because Order Lists are never scanned
except on explicit request.

AutoMod Order Lists offer several interesting wrin-
kles, including: the ability for an ordering Load to place a
back order if the ORDER quantity is not satisfied; the abil-
ity for a Load on an Order List to be ordered to continue
(to the next Action) instead of to a Process (this feature is
useful for control handshaking); and the ability to have a
function called for each Load on the Order List (by using
the ORDER…SATISFYING Action).

7.1.6 Other Lists

AutoMod has a number of material handling constructs
that are integrated with Load movement. For vehicle sys-
tems there are three other types of lists. Loads on Load
Ready Lists (LRL) (one list per vehicle system) are waiting
to be picked up by a vehicle. Loads claimed (but not yet
picked up) by a vehicle reside on the vehicle’s Vehicle
Claim List (VCL). Claimed loads that have been picked up
reside on the vehicle’s Vehicle Onboard List (VOL). The
vehicle then becomes the active “load” and moves among
AutoMod’s lists (FEL, CEL, and possibly DLs) instead of
the Load.

7.2 SLX

SLX is a hierarchical language in which the built-in primi-
tives are at a lower level than most simulation languages,
facilitating user (or developer) definition of the behavior of
many system elements. This design philosophy allows the
SLX developer to create higher-level modeling tools
whose constructs have precisely defined b modifiable be-
havior.

Equivalents for the generic terms for users of low-
level SLX are given in Table 2. For example, SLX uses
Control Variables to act as Control Elements. The “con-
trol” modifier can be attached to a Variable of any data
type (integer, real, string, etc.). A Control Variable can be
global, or it can be a local Variable declared in an Object’s

Schriber and Brunner

Class definition. (A Class-declared Variable is analogous
to an attribute in other tools.)

Note that SLX has two types of Objects: Active and
Passive. An Active Object is distinguished from a Passive
Object by the presence of actions – executable Statements
– in an Active Object’s Class definition. (Even without ac-
tions, Passive Objects are useful in their own right, func-
tioning as user-defined complex data structures.)

Table 2: SLX Terminology (Low-level)
Generic Term SLX Equivalent
External Entity Active Object and its Puck(s)
Internal Entity none
Resource Control Variable
Control Element Control Variable
Operation Statement
Current Events List Current Events Chain
Future Events List Future Events List
Delay List Delay List
User-Managed List Set (see section 7.2.4)

Table 3 shows how higher-level tools based on SLX

might exploit the definitional capabilities of SLX.

Table 3: Tools Based on SLX
Generic Term SLX Equivalent
Resource Active or Passive Object
Control Element Active or Passive Object
Operation User-defined Statement
Delay List User-defined based on Set
User-Managed List User-defined based on Set

7.2.1 The Current Events Chain

The current events list is named the Current Events Chain
(CEC) in SLX. The members of the CEC are given the in-
teresting name Puck.

What is a Puck? SLX dissociates the concept of an Ac-
tive Object (with its associated local data) from a Puck,
which is the “moving entity” that executes the actions, car-
ries its own entity scheduling data, and migrates from list
to list. The effect of this dissociation is that a single Object
can “own” more than one Puck. All Pucks owned by a sin-
gle Object share the Object’s local data (attributes). For
example, one application of this “local parallelism” feature
(as compared with the “global parallelism” offered by
CLONE or SPLIT actions in other languages) is the use of
a second Puck to simulate a balk time while the original
Puck is waiting for some condition. (If the condition comes
about before the balk time has elapsed, no balking occurs;
otherwise, balking does occur.)

Activating a new Object creates one Puck and
launches that Puck into action. In many cases no additional
123
Pucks are ever created, and the combination of an Active
Object and its Puck forms the equivalent to an entity in the
terminology of this paper. (Passive Objects have no actions
and therefore own no Pucks.)

Newly activated Pucks, Pucks leaving the FEL due to
a clock update, and reactivated Pucks (see 7.2.4) are placed
immediately on the CEC. The CEC is ranked FIFO by pri-
ority. The SLX CEC is empty when an EMP ends.

7.2.2 The Future Events List

The SLX Future Events List (FEL) is like future events
lists in other tools. Pucks arrive on the FEL in the Time-
Delayed State by executing an ADVANCE statement.

The SLX CUP will remove multiple Pucks from the
FEC if they are tied for the earliest move time, inserting
them one by one into their appropriate place on the CEC.

Because the SLX kernel functionality does not include
downtimes or even repetitive Puck generation (scheduled
arrivals), all activity on the SLX FEL unfolds as specified
by the developer of the SLX model. More generally, if a
user is using a model (or is using a model builder) that con-
tains higher-level primitives defined by a developer,
chances are that all kinds of things are going on behind the
scenes, hidden from the higher-level user’s view.

7.2.3 Delay Lists

Delay Lists (DL) are lists of Pucks waiting (via WAIT
UNTIL) for state changes in any combination of Control
Variables and the simulation clock value. A Puck waiting
for a compound condition involving two or more Control
Variables is listed on more than one DL. All higher-level
constructs defined by developers can use this mechanism.
Each Control Variable (which may be a local Variable, in
which case there is one for each Object in the Class) has a
separate DL associated with it.

A DL is ranked by order of insertion. All pucks on a
DL are removed whenever the associated Control Variable
changes value and are inserted one at a time into the CEC.
Removed Pucks that are waiting on compound conditions
are also tentatively removed from each of the other Delay
Lists to which they belong. As these Pucks are encountered
on the CEC during the EMP, those failing to pass their
WAIT UNTIL are returned to the Delay List(s) for those
Control Variables still contributing to the falseness of the
condition.

For conditions that include a clock reference, the Puck
is inserted if necessary into the FEL, subject to early re-
moval from the FEL if the condition becomes true due to
other Control Variable changes.

This low-level related waiting mechanism based on
Control Variables is the default SLX approach to modeling
all types of simple or compound Condition-Delayed states.

Schriber and Brunner

7.2.4 Sets and User-Managed Waiting

SLX handles the Dormant State in a unique way. Instead of
moving the Puck from the active state to a user-managed
list and suspending it, all in the same operation, SLX
breaks this operation into two pieces.

First, the Puck should join a Set, but joining a Set does
not automatically suspend the Puck. A Puck can belong to
any number of Sets. Set membership merely provides any
other Puck with access to the member Puck.

To go into the Dormant state, a Puck executes a WAIT
statement. It then is suspended indefinitely, outside of any
particular list, until another Puck identifies the waiting
Puck and executes a REACTIVATE statement for it. Often
the REACTIVATEing Puck is scanning a Set to find the
Puck to REACTIVATE, but a Set is not exactly the same
as a user-managed list in our terminology. A Dormant-state
Puck might be a member of no Sets (as long as a pointer to
it has been stashed somewhere) or of one or more Sets.

An SLX developer can easily define a user-managed
list construct, using Sets, WAIT, and REACTIVATE as
building blocks, that mimics those of other languages or
offer unique features of its own.

7.3 Extend

Extend uses a message-based architecture for discrete-
event simulation. Various types of messages are used to
schedule events, propel Items (Entities) through a model,
enforce the logic incorporated into a model, and force
computation. The senders and receivers of messages are
Blocks (Operations), including the Executive Block (mas-
ter controller). In Extend, it is Block execution that is
scheduled. (When a Block executes, for example, this can
trigger the sending of messages back and forth among
Blocks, with the effect of logically propelling an Item
along its Block-based path in a model.)

Extend equivalents for the terms introduced in the ear-
lier generic discussion are summarized in Table 4.

7.3.1 Blocks

Blocks are Extend’s basic modeling construct. Each Block
has an icon, message-passing connectors, dialog capability,
and behavior-defining code. Residence Blocks can hold
Items while simulated time goes by, whereas Passing
Blocks cannot. (Items go through Passing Blocks in zero
simulated time.) Models can be constructed by selecting
pre-programmed Blocks from Extend’s Block libraries.
The modeler can also modify the source code given for li-
brary Blocks. (All Blocks in the base version of Extend are
open source.) Finally, the modeler can create customized
Blocks from scratch (user-programmed Blocks) using de-
velopment tools that Extend provides.

124
Table 4: Extend Terminology
Generic Term Extend Equivalent
External Entity Item
Internal Entity none
Resource Resource; Resource Pool;

generally, any Block with a
limited capacity

Control Element Block Dialog
Operation Block
Current Events List Next Times Array

and Current Events Array
Future Events List Time Array
Delay List List of Items Resident in a

Pre-Programmed Block
User-Managed List List of Items Resident in a

User-Programmed Block

7.3.2 The Time Array

Extend uses a Time Array to schedule future Block execu-
tions. For a given model, the Time Array contains exactly
one element for each Block whose execution can poten-
tially be scheduled. A Block’s Time Array element records
the earliest future time for which execution of that Block
has been scheduled.

Blocks not currently scheduled for future execution
are temporarily “blacked out” by recording arbitrarily large
time values for them in the Time Array.

Residence Blocks that can hold multiple Items manage
the corresponding event times internally, with only the ear-
liest of the Block’s event times kept in the Time Array.

Block execution can result in scheduling future Block
executions. For example, if messages are passed that result
in an Item entering a unit-capacity Residence Block de-
signed to hold the Item until a sampled amount of simu-
lated time has elapsed, then the Time Array entry for that
Block will have its value set accordingly.

Because the number of Blocks in a given model is
constant, the Time Array is of fixed and relatively small
size. Because of its small size, the Time Array is searched
to find imminent event time; it is not kept in sort order.

7.3.3 The Next Times and Current Events Arrays

The Next Times Array is used to manage the execution of
Blocks whose execution has been scheduled via the Time
Array. The Next Times Array is populated just prior to a
Block Execution Phase (Extend’s equivalent of an Entity
Movement Phase) as follows. At each Clock Update Phase,
the Time Array is searched to find the earliest future time
at which a Block execution has been scheduled. Identifiers
for the corresponding Block (or Blocks, in case of time
ties) is (or are) then put into the Next Times Array. The
Block Execution Phase (BEP) then begins, with the Execu-

Schriber and Brunner

tive messaging the most highly qualified Block in the Next
Times array to start its execution.

The Current Events Array is used to manage the re-
sumption of execution of Blocks whose execution has been
temporarily suspended during the course of a Block Execu-
tion Phase. For example, suppose a Block sends a message,
and the receiving Block replies (returns control) immedi-
ately to the sending Block (even though the receiving
Block still has to do additional processing at the simulated
time in question). In this case, the receiving Block’s identi-
fier is added to the Current Events Array. When the send-
ing Block is finished executing, the Executive messages
the most highly qualified Block in the Current Events Ar-
ray to resume its execution. Eventually, the Current Events
Array becomes empty. Then the Executive turns again to
the Next Times Array, messaging its most highly qualified
Block to start executing.

During a Block Execution Phase, it is possible for
Blocks to schedule themselves to be executed at the cur-
rent simulated time (that is, during the ongoing BEP). The
Current Events Array comes into play here, too, to manage
the execution of Blocks in such cases.

For example, if a capacity-constrained Block becomes
non-full as a result of some other Block’s execution, the
non-full Block puts its identifier into the Current Events
Array. The Executive will later (but at the same simulated
time) message the Block to start executing. The Block will
then try to pull into itself Items (if any) that have been
waiting to enter the Block. (In Extend, Items can be both
pulled and pushed through a model.)

When the Current Events Array and the Next Times
Array both become empty, this brings Extend’s Block
Execution Phase to an end. Then the next CUP and BEP
take place, repeating until a simulation-ending condition is
satisfied.

7.3.4 Delay Lists

Delay lists are comprised of Items delayed in Residence
Blocks, waiting their turn to be pulled or pushed into their
next Block(s). Message passing is used to accomplish the
pulling and pushing when model conditions permit. Extend
provides related-waiting management of delay lists based
on user-specified FIFO, LIFO, Priority, Attribute, Reneg-
ing, and Matching alternatives.

Waiting for the resolution of compound conditions is
normally achieved in Extend by appropriately combining
Blocks and exploiting Extend’s message-based architec-
ture. We view this here as a form of related waiting, be-
cause it is a change in one of the underlying values that
triggers a re-evaluation of the condition that brought about
the waiting in the first place.

In version 6 the Extend developers re-implemented a
form of polled waiting that had existed in some earlier ver-
sions but had been removed for performance reasons. The
125
Activity Service block (which prevents items from passing
through if the demand connector is false, and allows items
to pass through freely if the demand connector is true) now
has an option for it to check its demand connector on every
simulation event. This is done after the future and current
events have been processed.

7.3.5 User-Managed Lists

The modeler can work with user-programmed Blocks to
create and manage lists of the modeler’s own design. The
code for custom blocks can be written to achieve the mod-
eler’s objectives in this regard, just as the code for Ex-
tend’s pre-programmed Blocks has been written to specify
the behavior of those Blocks. Extend provides functions
that can be used by Blocks to share lists (arrays) with other
Blocks, further supporting customized list management in
models.

8 WHY IT MATTERS

In Sections 8.1-8.5 we describe situations that reveal some
practical differences in implementation particulars among
SIMAN, ProModel (Version 3), GPSS/H, AutoMod, SLX,
and Extend. These differences reflect differing implemen-
tation choices made by the software designers.

None of the alternative approaches mentioned is either
intrinsically “right” or “wrong.” The modeler simply must
be aware of the alternative in effect in the simulation soft-
ware being used and work with it to produce the desired
outcome. (If a modeler is unaware of the alternative in ef-
fect, it is possible to mis-model a situation and perhaps not
become aware of this mis-modeling.)

In Section 8.6, we comment on how knowledge of
software internals is needed to make effective use of soft-
ware checkout tools.

Finally, in Section 8.7, we point out that knowledge of
internals aids in understanding performance monitoring.

8.1 Trying to Re-capture a Resource Immediately

Suppose a part releases a machine, then immediately at-
tempts to re-capture the machine. The modeler might – or
might not – want a more highly qualified waiting part, if
any, to be the next to capture the machine.

Of interest here is the order of events following the
giving up of a resource. There are at least three alterna-
tives: (1) Coupled with the giving up of the resource is the
immediate choosing of the next user of the resource, with-
out the releasing entity having yet become a contender for
the resource. (2) The choosing of the next user of the re-
source is deferred until the releasing entity has become a
contender. (3) “Neither of the above;” that is, without pay-
ing heed to other contenders, the releasing entity recaptures
the resource immediately.

Schriber and Brunner

SIMAN and Extend implement (1). ProModel imple-
ments (2). GPSS/H and AutoMod implement (3) by de-
fault. In SLX, using a low-level Control Variable as the re-
source state, the result is also (3). (However, developers
could implement higher-level resource constructs in SLX
that behave in any of the three ways.)

8.2 The First in Line is Still Delayed

Suppose two Condition-Delayed entities are waiting in a
list because no units of a particular resource are idle. Sup-
pose the first entity needs two units of the resource,
whereas the second entity only needs one unit. Now as-
sume that one unit of the resource becomes idle. The needs
of the first list entity cannot yet be satisfied, but the needs
of the second entity can. What will happen?

There are at least three possible alternatives: (1) Nei-
ther entity claims the idle resource unit. (2) The first entity
claims the one idle resource unit and waits for a second
unit. (3) The second entity claims the idle resource unit and
goes on its way.

As in Section 8.1, each of these alternatives comes
into play in the tools considered here. SIMAN (SEIZE) and
ProModel (GET or USE) implement (1) and (2) respec-
tively, by default. AutoMod (GET or USE), GPSS/H
(ENTER or TEST), and SLX (WAIT UNTIL on a Control
Variable) implement (3) by default. Extend also imple-
ments (3) by default. But Extend gives the modeler the
choice of locally implementing (1) for resources specified
by the modeler. The modeler does this by checking an
“Only allocate resource pool to the highest ranked Item”
option for each such resource.

8.3 Yielding Control Temporarily

Suppose the active entity wants to give control to one or
more Ready-State entities, but then needs to become the
active entity again before the simulation clock has been
advanced. This might be useful, for example, if the active
entity has opened a switch permitting a set of other entities
to move past a point in the model, and then needs to re-
close the switch after the forward movement of the other
entities has been accomplished. (Perhaps a group of identi-
cally flavored cartons of ice cream is to be transferred from
an accumulation point to a conveyor leading to a one-
flavor-per-box packing operation.)

In SIMAN and AutoMod, the effect can be accom-
plished approximately with a DELAY (SIMAN) or WAIT
FOR (AutoMod) that puts the active entity into a Time-
Delayed State for an arbitrarily short but non-zero simu-
lated time.

In ProModel, “WAIT 0” can be used to put the active
entity back on the FEL. It will be returned later (at the
same simulated time) by the CUP to the Active State.
126
In GPSS/H, the active Transaction (“Xact”) can exe-
cute a YIELD Block to shift from the Active State to the
Ready State and restart the CEC scan. Higher-priority (and
higher-ranked same priority) Xacts on the CEC can then
try to become active, one by one, before the control-
yielding Xact itself again becomes active at the same simu-
lated time. (A “PRIORITY PR,YIELD” Block can alterna-
tively be used in order to reposition the just-active Xact
behind equal-priority Xacts on the CEC prior to restarting
the scan.)

In SLX there is also a YIELD statement. A normal
YIELD shifts the active Puck to the back of its priority
class on the CEC and picks up the next Puck. It is also pos-
sible to YIELD to a specific other Puck that is on the CEC,
in which case the active Puck is not shifted.

In Extend, a message is sent out the appropriate Block
connector when an Item moves into or out of a Block. This
message will propagate to other connected Blocks, perhaps
changing system status or moving Items from one Block to
another as a result. When the originating Block eventually
receives the reply, it continues processing the original
Item. Hence, “yield and then eventually resume” is part of
the fabric of Extend’s message-based architecture.

8.4 Conditions Involving the Clock

Every language provides a time-delay capability for FEL
waiting. This works well when an entity needs to wait until
a known clock value has been reached. But what if an en-
tity needs to wait for a compound condition involving the
clock, such as “wait until my input buffer is empty or it is
exactly 5:00 PM?”

A typical approach to this is to clone a dummy
(“shadow”) entity to do the time-based waiting. Manage-
ment of such dummy entities can be cumbersome, particu-
larly for very complex rules. ProModel does not use polled
waiting, so a dummy entity would be the best approach
available. (Otherwise, the condition would not be checked
until the other component of the compound condition had a
value change.) Extend also does not use polled waiting, so
a similar situation applies for Extend. In the Extend archi-
tecture this is best described as the use of an additional
Block (for example, an Input Data Block) that can schedule
an event at the specified time, at which point a message
would be sent to the waiting Block.

Even when a polled waiting mechanism is present, if a
single entity tries to wait on a compound condition involv-
ing the clock, a similar problem can arise. This is because
the next polling time may not match the target clock time.
SIMAN and AutoMod detect the truth of compound condi-
tions through their end-of-EMP polling mechanisms.
GPSS/H also detects the truth through its version of polled
waiting (refusal-mode TEST). But in the absence of a
clone that waits on the FEL until exactly 5:00 PM (i.e., the

Schriber and Brunner

same approach as that recommended above with ProModel
and Extend), all three of those tools are subject to the pos-
sibility that the first EMP that finds the condition true oc-
curs when the clock has a value greater than 5:00 PM.
(Also, in the case of AutoMod, the condition is not guaran-
teed to be checked at the end of the first EMP after 5:00
PM. See the second paragraph of Section 7.1.4.)

SLX recognizes the clock as a related wait-until target.
A WAIT UNTIL using a future clock value in a way that
contributes to the falseness of the condition will cause the
Puck to be scheduled onto the FEL to force an EMP at the
precise time referenced. This solves the greater-than-the-
desired-time problem. Note that this Puck may also be
waiting on one or more delay lists.

8.5 Mixed-Mode Waiting

Suppose many entities are waiting to capture a particular
resource, while a user-defined controller entity is waiting
for the condition “shift status is off-shift and number wait-
ing is less than six and resource is not currently in use” to
take some action (such as shutting the resource down, in
languages that allow user-defined entities to shut down re-
sources; or printing a status message). How can we guaran-
tee that the controller will be able to cut in front of the
waiting entities at the appropriate instant (before the re-
source is recaptured)?

One way to handle this would be through entity priori-
ties, in languages that offer this mechanism. However, as
described below, that may not work even if the controller
has higher priority than any other entity.

The key issue is the method used to implement the
waiting. If it is “related” for the entities waiting to capture
the resource and “polled” for the controller entity waiting
for the compound condition, things can get complicated.
(This is what we mean by the term “mixed-mode wait-
ing.”) Every time the resource becomes free, a new entity
will be selected from a delay list immediately in SIMAN
and via the CEL in AutoMod, in both cases preceding the
end-of-EMP checking for polled wait conditions (and
thereby ignoring the entity priority of the controller). There
are many ways to work around this if desired, such as us-
ing a different type of operation to force a polled wait for
entities wishing to use the resource.

In GPSS/H, using a high-priority controller Transac-
tion at a refusal-mode TEST Block, the controller waits at
the front of the CEC. The Facility RELEASE will trigger a
CEC scan restart and the controller will do its job.

In ProModel there is no polled waiting but there can
be related waiting on compound conditions involving
Variables. Variables would have to be defined and manipu-
lated for each element of the Boolean condition and, to as-
sure equal competition, the entities waiting to capture the
resource might also have to use WAIT UNTIL instead of
GET or USE. Another possibility with ProModel would be
127
to have the entity that frees the resource do some state-
checking right away (in effect becoming a surrogate for the
controller). This is possible because of the deferred-
selection method used by ProModel (see Section 8.2).

In the related waiting of SLX, a Puck awaiting a com-
pound condition will be registered on the delay lists of
those (and only those) Control Variables that are contribut-
ing to the falseness of the condition at the time it is evalu-
ated. The SLX architecture (in which only global or local
Control Variables and the clock can be referenced in any
sort of conditional wait at the lowest level) assures that
there will already be Variables underlying the state
changes being monitored. The model developer needs only
to be sure they are defined as Control Variables.

As with ProModel and SLX, Extend would use related
waiting to detect and immediately respond to a change in
the compound condition. The desired effect is achieved in
Extend by use of a Program Block, which can be used to
issue a message to create a controller Item with its priority
set to a value that assures it will be processed before other
Items are processed at a specified simulated time. This
Item would wait in Extend’s related-waiting fashion (using
connectors to monitor the state changes).

8.6 Interactive Model Verification

We now comment briefly on why a detailed understanding
of “how simulation software works” supports interactive
probing of simulation-model behavior.

In general, simulation models can be run interactively
or in batch mode. Interactive runs are of use in checking
out (verifying) model logic during model building and in
troubleshooting a model when execution errors occur.
Batch mode is then used to make production runs.

Interactive runs put a magnifying glass on a simulation
model while it executes. The modeler can follow the active
entity step by step and display the current and future events
lists and the delay and user-managed lists as well as other
aspects of the model. These activities yield valuable in-
sights into model behavior for the modeler who knows the
underlying concepts. Without such knowledge, the modeler
might not take full advantage of the interactive tools pro-
vided by the software or, worse yet, might even avoid us-
ing the tools.

8.7 Performance Issues

Simulation experiments can consume substantial amounts
of computer time. Other things equal (including the model
builder’s skill), computer-time requirements depend on the
design and implementation of the software used to build
models. This dependency can be understood with knowl-
edge of “how simulation software works.” For example,
consider user-managed lists vs. related waiting in models
in which large numbers of entities contend for a resource.

Schriber and Brunner

asp?id=000119900

.

Performance is an important enough issue to motivate
some simulation software designers to supply performance
profilers which, for example, can produce histograms
showing where CPU time is spent during model execution
(e.g., SLX).

ACKNOWLEDGMENTS

Much of the information in this paper was derived from
conversations with software-vendor personnel. The authors
gratefully acknowledge the support provided over time by
David T. Sturrock, Deborah A. Sadowski, C. Dennis Peg-
den and Vivek Bapat (SIMAN); Charles Harrell (Pro-
Model); Kenneth Farnsworth and Tyler Phillips (Auto-
Mod); Robert C. Crain and James O. Henriksen (GPSS/H
and SLX); and David Krahl (Extend).

REFERENCES

Henriksen, J. O. 2000. SLX: The X is for Extensibility. In
Proceedings of the 2000 Winter Simulation Confer-
ence, ed. J. A. Joines, R. R. Barton, K. Kang, and P.
A. Fishwick, 183-190. Piscataway, NJ: Institute of
Electrical and Electronics Engineers.

Henriksen, J. O., and R. C. Crain. 2000. GPSS/H: A 23-
year retrospective view. In Proceedings of the 2000
Winter Simulation Conference, ed. J. A. Joines, R. R.
Barton, K. Kang, and P. A. Fishwick, 177-182. Pis-
cataway, NJ: Institute of Electrical and Electronics
Engineers.

Krahl, D., and J. S. Lamperti. 1997. A Message-Based
Discrete Event Simulation Architecture. In Proceed-
ings of the 1997 Winter Simulation Conference, ed. S.
Andradottir et al., 1361-1367. Piscataway, NJ: Insti-
tute of Electrical and Electronics Engineers.

Pegden, C. D., R. E. Shannon, and R. P. Sadowski. 1995.
Introduction to Simulation Using SIMAN. New York:
McGraw-Hill.

Phillips, T. 1997. Know your AutoMod Current Events. In
AutoFlash newsletter, 10(7). Bountiful, UT: Auto-
Simulations, Inc.

ProModel Corporation. 1995. ProModel Version 3 User’s
Guide. Orem, UT: ProModel Corporation.

Schriber, T. J., and D. T. Brunner. 1996. Inside Simu-
lation Software: How It Works and Why It Matters. In
Proceedings of the 1996 Winter Simulation Confer-
ence, ed. J. Charnes, D. Morrice, D. Brunner, and J.
Swain, 23-30. Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Schriber, T. J. and D. T. Brunner. 1998. How Discrete-
Event Simulation Software Works. Chapter 24 in
Handbook of Simulation: Principles, Methodology,
Advances, Applications, and Practice, ed. J. Banks.
New York, New York: John Wiley & Sons.
12
Swain, J. J. 2005. Discrete event simulation software tools:
gaming reality. OR/MS Today 32(6): 44-47. Baltimore,
Maryland: INFORMS.

AUTHOR BIOGRAPHIES

DANIEL T. BRUNNER is VP of System Analysis at
Kiva Systems, Inc., a provider of innovative material han-
dling systems for order fulfillment and warehousing. He
holds a B.S.E.E. from Purdue University and an MBA
from The University of Michigan. He has served as the
Winter Simulation Conference Business Chair and General
Chair and as the Transportation Applications Track Coor-
dinator. He is a member of ACM/SIGSIM. His e-mail and
web addresses are: <dbrunner@kivasystems.com>
and <http://www.kivasystems.com>.

THOMAS J. SCHRIBER is a Professor of Business In-
formation Technology at The University of Michigan. He
is a recipient of the INFORMS Simulation Society’s Dis-
tinguished Service Award, and of its Lifetime Professional
Achievement Award. He is a Fellow and Charter Member
of the Decision Sciences Institute, and is listed in Who’s
Who in America. He has been a Winter Simulation Con-
ference Program Chair and served ten years on the WSC
Board of Directors, chairing the board for two years. He is
a member of ASIM (the German-language simulation soci-
ety), the Decision Sciences Institute, the Institute of Indus-
trial Engineers, and the Institute for Operations Research
and Management Science. His e-mail and web addresses
are: <schriber@umich.edu> and http://www.
bus.umich.edu/FacultyBios/FacultyBio.
8

mailto:dbrunner@kivasystems.com
http://www.kivasystems.com/
mailto:schriber@umich.edu
http://www.bus.umich.edu/FacultyBios/FacultyBio.asp?id=000119900
http://www.bus.umich.edu/FacultyBios/FacultyBio.asp?id=000119900

	MAIN MENU
	PREVIOUS MENU
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

