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ABSTRACT 

This paper provides simulation practitioners and consum-
ers with a grounding in how discrete-event simulation 
software works. Topics include discrete-event systems; en-
tities, resources, control elements and operations; simula-
tion runs; entity states; entity lists; and entity-list manage-
ment. The implementation of these generic ideas in 
AutoMod, SLX, and Extend is described. The paper con-
cludes with several examples of “why it matters” for mod-
elers to know how their simulation software works, includ-
ing coverage of SIMAN (Arena), ProModel, and GPSS/H 
as well as the other three tools. 

1 INTRODUCTION 

In this section we discuss the motivation for developing 
this paper, and comment on the paper’s structure and the 
terminology and conventions used in the paper. 

1.1 Background 

A “black box” approach is often taken in teaching and 
learning discrete-event simulation software. The external 
characteristics of the software are studied, but the founda-
tion on which the software is based is ignored or is touched 
on only briefly. (This might be attributable to a lack of 
time or of appropriate written material.) Choices made in 
implementation of the foundation might not be studied at 
all and related to step-by-step model execution. The mod-
eler therefore might not be able to think things through 
when faced with such needs as developing good ap-
proaches for modeling complex situations, using interac-
tive tools to come to ab understanding of error conditions 
arising during model development, and using interactive 
tools to verify that complex system logic has been modeled 
correctly. The objective of this paper, then, is to describe 
the logical underpinnings of discrete-event simulation and 
illustrate this material in terms of various implementations 
of discrete-event simulation software. 
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This paper is a revised version of an identically named 
paper from the 1996 Winter Simulation Conference 
(Schriber and Brunner 1996). The 1996 paper covered the 
entity-list management rules and “why it matters” for 
SIMAN (the language underlying Arena), ProModel, and 
GPSS/H. An expanded version of the 1996 material con-
taining figures, flow charts, and additional explanation can 
be found in Schriber and Brunner (1998). 

1.2 Structure of the Paper 

In Sections 2, 3 and 4 we comment on the nature of dis-
crete-event simulation; basic simulation constructs such as 
entities, resources, control elements, and operations; and 
model execution. Sections 5 and 6 deal with entity states 
and entity management data structures. Section 7 discusses 
three specific implementations of entity management rules. 
Section 8 explores various aspects of “why it matters.” 

1.3 Terminology and Conventions 

Throughout this paper we use terms that we define as well 
as terms reserved by the developers of particular simula-
tion tools. Terms we define are boldfaced on first use. 
Tool-specific terms are Capitalized or, where appropriate, 
are spelled out in ALL CAPS.  

2 ABOUT DISCRETE-EVENT SIMULATION 

This section introduces the transaction-flow world view 
which serves as the basis for the paper, and then discusses 
the nature of discrete-event simulation and the logical chal-
lenges inherent in developing discrete-event simulation 
languages. 

2.1 The Transaction-Flow World View 

The “transaction-flow world view” often provides the basis 
for discrete-event simulation. In this world view, a system 
is visualized as consisting of discrete units of traffic that 
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move (“flow”) from point to point in the system while 
competing with each other for the use of scarce resources. 
The units of traffic are sometimes called “transactions,” 
giving rise to the phrase “transaction flow.” 

Numerous systems fit the preceding description. In-
cluded are many manufacturing, material handling, trans-
portation, health care, civil, natural resource, communica-
tion, defense, and information processing systems, and 
queuing systems in general. 

2.2 The Nature of Discrete-Event Simulation 

A discrete-event simulation is one in which the state of a 
model changes at only a discrete, but possibly random, set 
of simulated time points, called event times. Two or more 
traffic units often have to be manipulated at one and the 
same time point. Such “simultaneous” movement of traffic 
at a time point is achieved by manipulating units of traffic 
serially at that time point. This often leads to logical com-
plexities in discrete-event simulation because it raises 
questions about the order in which two or more units of 
traffic are to be manipulated at one time point. 

2.3 Discrete-Event Modeling Languages 

The challenges faced by a modeler escalate for the de-
signer of a modeling language. The designer must take the 
logical requirements of discrete-event simulation into ac-
count in a generalized way. Choices and tradeoffs exist. As 
a result, although discrete-event simulation languages are 
similar in broad terms, they can and typically do differ in 
subtle but important particulars. 

3 ENTITIES, RESOURCES, CONTROL 
ELEMENTS, AND OPERATIONS 

The term entity is used here to designate a unit of traffic (a 
“transaction”). Entities instigate and respond to events. An 
event is a happening that changes the state of a model (or 
system). In a model of an order-filling system, for exam-
ple, the arrival of an order, which is an event, might be 
simulated by bringing an entity into the model. 

There are two possible types of entities, here referred 
to as external entities and internal entities. External enti-
ties are those whose creation and movement is explicitly 
arranged for by the modeler. In contrast, internal entities 
are created and manipulated implicitly by the simulation 
software itself. For example, internal entities might be used 
in some languages to simulate machine failures, whereas 
external entities might be used to simulate the use of ma-
chines. 

The term resource designates a system element that 
provides service (such as a drill, an automated guided ve-
hicle, or space in an input buffer). The users of resources 
are usually entities. (For example, a work-in-process entity 
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claims space in an input buffer, then captures an automated 
guided vehicle to move it to the input buffer.) Resources 
are usually capacity-limited, so entities compete for their 
use and sometimes must wait to use them, experiencing de-
lay as a result. 

The term control element designates a construct that 
supports other types of delay or logical alternatives based 
on a system’s state. Control elements can take the form of 
switches, counters, user data values, and system data val-
ues built into the modeling tool. Complex control may rely 
on truth-valued expressions that use arithmetic and/or Boo-
lean combinations of control elements. 

An operation is a step carried out by or on an entity 
while it moves through a system. The operations applicable 
to a ship at a harbor might be these: arrive at the harbor; 
request a berth; capture a berth; request a tugboat; capture 
a tugboat; get pulled into the berth; free the tugboat; load 
cargo; request a tugboat; get pulled out of the berth; free 
the berth; get pulled into open water; free the tugboat; de-
part. 

4 OVERVIEW OF MODEL EXECUTION 

We now review the concepts of experiments, then replica-
tions, and then simulation runs, concluding this section 
with discussion of the anatomy of a run. 

4.1 Experiments, Replications, and Runs 

A simulation project is comprised of experiments. Ex-
periments are differentiated by the use of alternatives in a 
model’s logic and/or data. An alternate part-sequencing 
rule might be tried, for example, in the model of a produc-
tion system, and/or the quantity of various types of ma-
chines might be varied. Or the number of loading and 
unloading berths in a harbor might be varied. 

Each experiment consists of one or more replications 
(trials). A replication is a simulation that uses the experi-
ment’s model logic and data but its own unique set of ran-
dom numbers, and so produces unique statistical results 
which can be analyzed in a set of such replications. 

A replication consists of initializing the model, run-
ning it until a run-ending condition is met, and reporting 
results. This “running it” phase is called a run. 

4.2 Inside a Run 

During a run the simulation clock (an internally managed, 
stored data value) tracks the passage of simulated time (as 
distinct from wall-clock time). The clock advances (auto-
matically) in discrete steps (typically of unequal size) dur-
ing the run. After all possible actions have been taken at a 
given simulated time, the clock is advanced to the time of 
the next earliest event. Then the appropriate actions are 
carried out at this new simulated time, etc. 
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The execution of a run therefore takes the form of a 
two-phase loop: “carry out all possible actions at the cur-
rent simulated time,” followed by “advance the simulated 
clock,” with these two phases repeated again and again un-
til a (usually modeler-specified) run-ending condition is 
met. The two phases are here respectively called the Entity 
Movement Phase (EMP) and the Clock Update Phase 
(CUP). 

5 ENTITY STATES 

Entities migrate from state to state while they work their 
way through a model. There are five entity states, as de-
tailed below. 

5.1 The Active State 

The Active State is the state of the currently moving en-
tity. Only one entity moves at any instant of wall-clock 
time. This entity progresses through its operations nonstop 
until it encounters a delay of one type or other. It then mi-
grates to an alternative state. Some other entity then be-
comes the next active entity. And so on. 

5.2 The Ready State 

During an Entity Movement Phase there may be more than 
one entity ready to move, and yet entities can only move 
(be in the Active State) one-by-one. The Ready State is 
the state of entities waiting to enter the Active State during 
the current Entity Movement Phase. 

5.3 The Time-Delayed State 

The Time-Delayed State is the state of entities waiting for 
a known future simulated time to be reached so that they 
can then (re)enter the Ready State. A “part” entity is in a 
Time-Delayed State, for example, while waiting for the fu-
ture simulated time at which an operation being performed 
on it by a machine will come to an end.  

5.4 The Condition-Delayed State 

The Condition-Delayed State is the state of entities de-
layed until some specified condition comes about, e.g., a 
“part” entity might wait in the Condition-Delayed State un-
til its turn comes to use a machine. Condition-Delayed en-
tities are removed automatically from the Condition-
Delayed state when conditions permit. 

5.5 The Dormant State 

Sometimes it is desirable to put entities into a state from 
which no escape will be triggered automatically by 
changes in model conditions. We call this state the Dor-
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mant State. Dormant-State entities rely on modeler-
supplied logic to transfer them from the Dormant State to 
the Ready State. Job-ticket entities might be put into a 
Dormant State, for example, until an operator entity de-
cides which job-ticket to pull next, with consequent trans-
fer of the job ticket to the Ready State. 

6 ENTITY MANAGEMENT STRUCTURES 

In our generic model, simulation software uses the follow-
ing lists to organize entities in the five entity states. 

6.1 The Active Entity 

The active entity is resident on an unnamed “list” consist-
ing only of the active entity. The Active-State entity moves 
nonstop until encountering an operation that puts it into 
another state (transfers it to another list) or removes it from 
the model. A Ready-State entity then becomes the next Ac-
tive-State entity. Eventually there is no possibility of fur-
ther action at the current time. The EMP then ends and a 
Clock Update Phase begins. 

6.2 The Current Events List 

Entities in the Ready State are kept in a single list called 
the current events list (CEL). Entities migrate to the CEL 
from the future events list, from delay lists, and from 
user-managed lists. (Each of these latter lists is described 
below). In addition, entities cloned from the Active-State 
entity usually start their existence on the CEL.  

CEL Entities are generally ranked in FIFO order. 
Some software tools provide a built-in entity Priority at-
tribute used to group Entities on the CEL in priority order. 

6.3 The Future Events List 

Entities in the Time-Delayed State belong to a single list 
into which they are inserted at the beginning of their time-
based delay. This list, called the future events list (FEL) 
here, is usually ranked by increasing entity move time. 
(Move time is the simulated time at which an entity is 
scheduled to try to move again.) At the time of entity inser-
tion into the FEL, the entity’s move time is calculated by 
adding the value of the simulation clock to the known 
(sampled) duration of the time-based delay.  

After an Entity Movement Phase is over, the Clock 
Update Phase sets (advances) the clock’s value to the move 
time of the FEL’s highest ranked (smallest move time) en-
tity. This entity is then transferred from the FEL to the 
CEL, migrating from the Time-Delayed State to the Ready 
State and setting the stage for the next EMP to begin.  

The preceding statement assumes there are not other 
entities on the FEL whose move time matches the clock’s 
updated value. In the case of move-time ties, some tools 
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will transfer all the time-tied entities from the FEL to the 
CEL during a single CUP, whereas other tools take a “only 
one entity transfer per CUP” approach. 

Languages that work with internal entities usually use 
the FEL to support the timing requirements of these enti-
ties. The FEL is typically comprised both of external and 
internal entities in such languages. 

6.4 Delay Lists 

Delay lists are lists of entities in the Condition-Delayed 
State. These entities are waiting for a condition to come 
about (e.g., waiting their turn to use a machine) so they can 
be transferred automatically into the Ready State on the 
current events list. Delay lists, which are generally created 
automatically by the simulation software, are managed by 
using related waiting or polled waiting.  

If a delay can be related easily to model events that 
might resolve the condition, then related waiting can be 
used to manage the delay list. For example, suppose a ma-
chine’s status changes from busy to idle. In response, the 
software can automatically remove the next waiting entity 
from the appropriate delay list and put it in the Ready State 
on the current events list. Related waiting is the prevalent 
approach used to manage conditional delays.  

If the delay condition is too complex to be related eas-
ily to events that might resolve it, polled waiting can be 
used. With polled waiting the software checks routinely to 
see if entities can be transferred from one or more delay 
lists to the Ready State. Complex delay conditions for 
which polled waiting can be useful include Boolean com-
binations of state changes, e.g., a part supply runs low or 
an output bin needs to be emptied. 

6.5 User-Managed Lists 

User-managed lists are lists of entities in the Dormant 
State. The modeler must take steps to establish such lists 
and much more often than not must provide the logic 
needed to transfer entities to and from the lists. (Except for 
very simple one-line, one-server service points in a system, 
the underlying software has no way to know why entities 
have been put into user-managed lists in the first place, and 
therefore has no plausible basis for automatically removing 
entities from such lists.) 

7 IMPLEMENTATION IN THREE TOOLS 

The tools chosen for commentary on implementation par-
ticulars are AutoMod, Version 9 (Phillips 1997); SLX, Re-
lease 1 (Henriksen 2000); and Extend, Version 4.1 (Krahl 
and Lamperti 1997). A previous version of this paper 
(Schriber and Brunner 1996) covered SIMAN (Pegden, 
Shannon and Sadowski 1995), ProModel (ProModel Cor-
poration 1995), and GPSS/H (Henriksen and Crain 2000) 
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in similar detail. These six are among more than forty tools 
reported in 2005 for discrete-event simulation (Swain 
2005). Some other tools might be better suited than any of 
these for particular modeling activities, but we think that 
these tools are representative. 

7.1 AutoMod 

AutoMod equivalents for the preceding generic terms are 
given in Table 1. For example, AutoMod uses Actions to 
specify operations for Loads. 
 

Table 1: AutoMod Terminology 
Generic Term AutoMod Equivalent 
External Entity Load 
Internal Entity Logical Load 
Resource Resource; Queue; Block 
Control Element Counter; 

Process Traffic Limit 
Operation Action 
Current Events List Current Event List 
Future Events List Future Event List  
Delay List Delay List; 

Condition Delay List; 
Load Ready List 

User-Managed List Order List 

7.1.1 The Current Event List  

The current events list is named the Current Event List in 
AutoMod. Cloned Loads, Loads leaving the Future Event 
List due to a clock update, and Loads ordered off Order 
Lists are placed immediately on the CEL. The insertion 
rule is to rank first by priority (priority is a built-in attrib-
ute of every Load) and then FIFO within priority. 

When the CEL becomes empty, the Condition Delay 
List (see below) is checked, and Loads may be transferred 
from there to the CEL. This continues until the CEL is 
empty and no more Loads can be transferred, at which 
point the EMP is over and a CUP is initiated. 

7.1.2 The Future Event List 

The AutoMod Future Event List (FEL) is like future events 
lists in other tools. Loads arrive on the FEL in the Time-
Delayed State by executing a WAIT FOR statement. 
AutoMod allows the specification of time units (day, hr, 
min, sec) in a WAIT FOR statement. 

The AutoMod CUP removes multiple Loads from the 
FEL if they are tied for the earliest move time, inserting 
them one by one into their appropriate place on the CEL. 
 There are also internal entities in AutoMod, called 
Logical Loads that do things such as wait on the FEL to 
trigger scheduled shift breaks. 
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7.1.3 Delay Lists 

Delay Lists (DL) are lists of Loads waiting to claim capac-
ity provided by a finite-capacity element (a resource or 
control element such as an individual Resource, Queue, 
Block, Counter, or Process). Each finite capacity element 
within the model has one DL associated with it. 

The waiting that results from this mechanism is related 
waiting. Whenever capacity is freed, one Load from the 
head of the element’s DL is tentatively placed on the CEL 
(but a placeholder is left on the DL). When that Load is 
encountered during the EMP, it tries to claim the requested 
capacity. If it fails (for example because it wants two units 
but only one is free), it is returned to the DL in its original 
place. 

Immediately after this evaluation, if there is still any 
unused capacity, the next Load on the DL is placed on the 
CEL. Processing of the active Load then continues. After 
each time a tentatively placed Load is evaluated during the 
EMP, the existence of available capacity will cause another 
Load to be removed from the DL. 

7.1.4 The Condition Delay List 

For conditional waiting other than the five cases described 
above, AutoMod has a WAIT UNTIL statement that re-
sults in polled waiting. WAIT UNTIL conditions can be 
compounded using Boolean operators. If a Load executes a 
WAIT UNTIL and the condition is false, the Load is 
placed on a single global AutoMod list called the Condi-
tion Delay List (CDL). 

After the Current Events List has been emptied, but 
before the simulation clock is updated, all Loads on the 
Condition Delay List are moved to the Current Events List 
(actually, the Condition Delay List “becomes” the Current 
Events List) if there has been a state change for at least one 
element of the same general type (e.g. Queue) for which 
any Load on the Condition Delay list is waiting. (This 
mechanism is primarily “polled,” where the polling process 
is triggered by the change of at least one element of the 
same general type. 

If the Current Events List is now non-empty, the En-
tity Movement Phase resumes. If the condition for which a 
CEL Load is waiting is not yet satisfied, AutoMod moves 
that Load from the Current Event List back to the Condi-
tion Delay List. The Condition Delay List in some cases 
may be emptied multiple times during one Entity Move-
ment Phase until eventually the Current Event List has 
been emptied without having triggered a state change re-
lated to any Load on the Condition Delay List. A Clock 
Update Phase then occurs. 

Because of the potential for repetitive list migration 
with WAIT UNTIL, AutoMod’s vendor encourages the use 
of Order Lists or other explicit control mechanisms to 
manage complex waiting. 
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7.1.5 Order Lists 

AutoMod implements the Dormant State with Order Lists, 
which are user-managed lists of Loads. After a Load puts 
itself onto an Order List (by executing a WAIT TO BE 
ORDERED Action), it can only be removed by another 
Load (or another active model element such as a Vehicle) 
which executes an ORDER Action. An ORDER Action 
may specify a quantity of Loads, or a condition that must 
be satisfied for a given Load if that Load is to be ordered, 
or both. Loads successfully ordered are placed immediately 
on the CEL (one at a time according to how they were cho-
sen from the Order List, and ranked on the CEL FIFO by 
priority). 

Order Lists can achieve performance improvements 
over CDL waiting because Order Lists are never scanned 
except on explicit request. 

AutoMod Order Lists offer several interesting wrin-
kles, including: the ability for an ordering Load to place a 
back order if the ORDER quantity is not satisfied; the abil-
ity for a Load on an Order List to be ordered to continue 
(to the next Action) instead of to a Process (this feature is 
useful for control handshaking); and the ability to have a 
function called for each Load on the Order List (by using 
the ORDER…SATISFYING Action). 

7.1.6 Other Lists 

AutoMod has a number of material handling constructs 
that are integrated with Load movement. For vehicle sys-
tems there are three other types of lists. Loads on Load 
Ready Lists (LRL) (one list per vehicle system) are waiting 
to be picked up by a vehicle. Loads claimed (but not yet 
picked up) by a vehicle reside on the vehicle’s Vehicle 
Claim List (VCL). Claimed loads that have been picked up 
reside on the vehicle’s Vehicle Onboard List (VOL). The 
vehicle then becomes the active “load” and moves among 
AutoMod’s lists (FEL, CEL, and possibly DLs) instead of 
the Load. 

7.2 SLX 

SLX is a hierarchical language in which the built-in primi-
tives are at a lower level than most simulation languages, 
facilitating user (or developer) definition of the behavior of 
many system elements. This design philosophy allows the 
SLX developer to create higher-level modeling tools 
whose constructs have precisely defined b modifiable be-
havior. 

Equivalents for the generic terms for users of low-
level SLX are given in Table 2. For example, SLX uses 
Control Variables to act as Control Elements. The “con-
trol” modifier can be attached to a Variable of any data 
type (integer, real, string, etc.).  A Control Variable can be 
global, or it can be a local Variable declared in an Object’s 
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Class definition. (A Class-declared Variable is analogous 
to an attribute in other tools.) 

Note that SLX has two types of Objects: Active and 
Passive. An Active Object is distinguished from a Passive 
Object by the presence of actions – executable Statements 
– in an Active Object’s Class definition. (Even without ac-
tions, Passive Objects are useful in their own right, func-
tioning as user-defined complex data structures.) 
 

Table 2: SLX Terminology (Low-level) 
Generic Term SLX Equivalent 
External Entity Active Object and its Puck(s) 
Internal Entity none 
Resource Control Variable 
Control Element Control Variable 
Operation Statement 
Current Events List Current Events Chain 
Future Events List Future Events List  
Delay List Delay List 
User-Managed List Set (see section 7.2.4) 

 
Table 3 shows how higher-level tools based on SLX 

might exploit the definitional capabilities of SLX. 
 

Table 3: Tools Based on SLX 
Generic Term SLX Equivalent 
Resource Active or Passive Object 
Control Element Active or Passive Object 
Operation User-defined Statement 
Delay List User-defined based on Set 
User-Managed List User-defined based on Set 

7.2.1 The Current Events Chain  

The current events list is named the Current Events Chain 
(CEC) in SLX. The members of the CEC are given the in-
teresting name Puck. 

What is a Puck? SLX dissociates the concept of an Ac-
tive Object (with its associated local data) from a Puck, 
which is the “moving entity” that executes the actions, car-
ries its own entity scheduling data, and migrates from list 
to list. The effect of this dissociation is that a single Object 
can “own” more than one Puck. All Pucks owned by a sin-
gle Object share the Object’s local data (attributes). For 
example, one application of this “local parallelism” feature 
(as compared with the “global parallelism” offered by 
CLONE or SPLIT actions in other languages) is the use of 
a second Puck to simulate a balk time while the original 
Puck is waiting for some condition. (If the condition comes 
about before the balk time has elapsed, no balking occurs; 
otherwise, balking does occur.) 

Activating a new Object creates one Puck and 
launches that Puck into action. In many cases no additional  
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Pucks are ever created, and the combination of an Active 
Object and its Puck forms the equivalent to an entity in the 
terminology of this paper. (Passive Objects have no actions 
and therefore own no Pucks.) 

Newly activated Pucks, Pucks leaving the FEL due to 
a clock update, and reactivated Pucks (see 7.2.4) are placed 
immediately on the CEC. The CEC is ranked FIFO by pri-
ority. The SLX CEC is empty when an EMP ends. 

7.2.2 The Future Events List 

The SLX Future Events List (FEL) is like future events 
lists in other tools. Pucks arrive on the FEL in the Time-
Delayed State by executing an ADVANCE statement. 

The SLX CUP will remove multiple Pucks from the 
FEC if they are tied for the earliest move time, inserting 
them one by one into their appropriate place on the CEC. 

Because the SLX kernel functionality does not include 
downtimes or even repetitive Puck generation (scheduled 
arrivals), all activity on the SLX FEL unfolds as specified 
by the developer of the SLX model. More generally, if a 
user is using a model (or is using a model builder) that con-
tains higher-level primitives defined by a developer, 
chances are that all kinds of things are going on behind the 
scenes, hidden from the higher-level user’s view. 

7.2.3 Delay Lists 

Delay Lists (DL) are lists of Pucks waiting (via WAIT 
UNTIL) for state changes in any combination of Control 
Variables and the simulation clock value. A Puck waiting 
for a compound condition involving two or more Control 
Variables is listed on more than one DL. All higher-level 
constructs defined by developers can use this mechanism. 
Each Control Variable (which may be a local Variable, in 
which case there is one for each Object in the Class) has a 
separate DL associated with it. 

A DL is ranked by order of insertion. All pucks on a 
DL are removed whenever the associated Control Variable 
changes value and are inserted one at a time into the CEC. 
Removed Pucks that are waiting on compound conditions 
are also tentatively removed from each of the other Delay 
Lists to which they belong. As these Pucks are encountered 
on the CEC during the EMP, those failing to pass their 
WAIT UNTIL are returned to the Delay List(s) for those 
Control Variables still contributing to the falseness of the 
condition. 

For conditions that include a clock reference, the Puck 
is inserted if necessary into the FEL, subject to early re-
moval from the FEL if the condition becomes true due to 
other Control Variable changes. 

This low-level related waiting mechanism based on 
Control Variables is the default SLX approach to modeling 
all types of simple or compound Condition-Delayed states. 
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7.2.4 Sets and User-Managed Waiting 

SLX handles the Dormant State in a unique way. Instead of 
moving the Puck from the active state to a user-managed 
list and suspending it, all in the same operation, SLX 
breaks this operation into two pieces. 

First, the Puck should join a Set, but joining a Set does 
not automatically suspend the Puck. A Puck can belong to 
any number of Sets. Set membership merely provides any 
other Puck with access to the member Puck. 

To go into the Dormant state, a Puck executes a WAIT 
statement. It then is suspended indefinitely, outside of any 
particular list, until another Puck identifies the waiting 
Puck and executes a REACTIVATE statement for it. Often 
the REACTIVATEing Puck is scanning a Set to find the 
Puck to REACTIVATE, but a Set is not exactly the same 
as a user-managed list in our terminology. A Dormant-state 
Puck might be a member of no Sets (as long as a pointer to 
it has been stashed somewhere) or of one or more Sets. 

An SLX developer can easily define a user-managed 
list construct, using Sets, WAIT, and REACTIVATE as 
building blocks, that mimics those of other languages or 
offer unique features of its own. 

7.3 Extend 

Extend uses a message-based architecture for discrete-
event simulation. Various types of messages are used to 
schedule events, propel Items (Entities) through a model, 
enforce the logic incorporated into a model, and force 
computation. The senders and receivers of messages are 
Blocks (Operations), including the Executive Block (mas-
ter controller). In Extend, it is Block execution that is 
scheduled. (When a Block executes, for example, this can 
trigger the sending of messages back and forth among 
Blocks, with the effect of logically propelling an Item 
along its Block-based path in a model.) 

Extend equivalents for the terms introduced in the ear-
lier generic discussion are summarized in Table 4. 

7.3.1 Blocks 

Blocks are Extend’s basic modeling construct. Each Block 
has an icon, message-passing connectors, dialog capability, 
and behavior-defining code. Residence Blocks can hold 
Items while simulated time goes by, whereas Passing 
Blocks cannot. (Items go through Passing Blocks in zero 
simulated time.) Models can be constructed by selecting 
pre-programmed Blocks from Extend’s Block libraries. 
The modeler can also modify the source code given for li-
brary Blocks. (All Blocks in the base version of Extend are 
open source.) Finally, the modeler can create customized 
Blocks from scratch (user-programmed Blocks) using de-
velopment tools that Extend provides. 
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Table 4: Extend Terminology 
Generic Term Extend Equivalent 
External Entity Item 
Internal Entity none 
Resource Resource; Resource Pool; 

generally, any Block with a 
limited capacity 

Control Element Block Dialog 
Operation Block 
Current Events List Next Times Array

and Current Events Array 
Future Events List Time Array 
Delay List List of Items Resident in a

Pre-Programmed Block 
User-Managed List List of Items Resident in a 

User-Programmed Block 

7.3.2 The Time Array  

Extend uses a Time Array to schedule future Block execu-
tions. For a given model, the Time Array contains exactly 
one element for each Block whose execution can poten-
tially be scheduled. A Block’s Time Array element records 
the earliest future time for which execution of that Block 
has been scheduled.  

Blocks not currently scheduled for future execution 
are temporarily “blacked out” by recording arbitrarily large 
time values for them in the Time Array. 

Residence Blocks that can hold multiple Items manage 
the corresponding event times internally, with only the ear-
liest of the Block’s event times kept in the Time Array. 

Block execution can result in scheduling future Block 
executions. For example, if messages are passed that result 
in an Item entering a unit-capacity Residence Block de-
signed to hold the Item until a sampled amount of simu-
lated time has elapsed, then the Time Array entry for that 
Block will have its value set accordingly.  

Because the number of Blocks in a given model is 
constant, the Time Array is of fixed and relatively small 
size. Because of its small size, the Time Array is searched 
to find imminent event time; it is not kept in sort order. 

7.3.3 The Next Times and Current Events Arrays 

The Next Times Array is used to manage the execution of 
Blocks whose execution has been scheduled via the Time 
Array. The Next Times Array is populated just prior to a 
Block Execution Phase (Extend’s equivalent of an Entity 
Movement Phase) as follows. At each Clock Update Phase, 
the Time Array is searched to find the earliest future time 
at which a Block execution has been scheduled. Identifiers 
for the corresponding Block (or Blocks, in case of time 
ties) is (or are) then put into the Next Times Array. The 
Block Execution Phase (BEP) then begins, with the Execu-
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tive messaging the most highly qualified Block in the Next 
Times array to start its execution. 

The Current Events Array is used to manage the re-
sumption of execution of Blocks whose execution has been 
temporarily suspended during the course of a Block Execu-
tion Phase. For example, suppose a Block sends a message, 
and the receiving Block replies (returns control) immedi-
ately to the sending Block (even though the receiving 
Block still has to do additional processing at the simulated 
time in question). In this case, the receiving Block’s identi-
fier is added to the Current Events Array. When the send-
ing Block is finished executing, the Executive messages 
the most highly qualified Block in the Current Events Ar-
ray to resume its execution. Eventually, the Current Events 
Array becomes empty. Then the Executive turns again to 
the Next Times Array, messaging its most highly qualified 
Block to start executing.  

During a Block Execution Phase, it is possible for 
Blocks to schedule themselves to be executed at the cur-
rent simulated time (that is, during the ongoing BEP). The 
Current Events Array comes into play here, too, to manage 
the execution of Blocks in such cases.  

For example, if a capacity-constrained Block becomes 
non-full as a result of some other Block’s execution, the 
non-full Block puts its identifier into the Current Events 
Array. The Executive will later (but at the same simulated 
time) message the Block to start executing. The Block will 
then try to pull into itself Items (if any) that have been 
waiting to enter the Block. (In Extend, Items can be both 
pulled and pushed through a model.) 

When the Current Events Array and the Next Times 
Array both become empty, this brings Extend’s Block 
Execution Phase to an end. Then the next CUP and BEP 
take place, repeating until a simulation-ending condition is 
satisfied. 

7.3.4 Delay Lists 

Delay lists are comprised of Items delayed in Residence 
Blocks, waiting their turn to be pulled or pushed into their 
next Block(s). Message passing is used to accomplish the 
pulling and pushing when model conditions permit. Extend 
provides related-waiting management of delay lists based 
on user-specified FIFO, LIFO, Priority, Attribute, Reneg-
ing, and Matching alternatives. 

Waiting for the resolution of compound conditions is 
normally achieved in Extend by appropriately combining 
Blocks and exploiting Extend’s message-based architec-
ture. We view this here as a form of related waiting, be-
cause it is a change in one of the underlying values that 
triggers a re-evaluation of the condition that brought about 
the waiting in the first place.  

In version 6 the Extend developers re-implemented a 
form of polled waiting that had existed in some earlier ver-
sions but had been removed for performance reasons. The 
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Activity Service block (which prevents items from passing 
through if the demand connector is false, and allows items 
to pass through freely if the demand connector is true) now 
has an option for it to check its demand connector on every 
simulation event. This is done after the future and current 
events have been processed. 

7.3.5 User-Managed Lists 

The modeler can work with user-programmed Blocks to 
create and manage lists of the modeler’s own design. The 
code for custom blocks can be written to achieve the mod-
eler’s objectives in this regard, just as the code for Ex-
tend’s pre-programmed Blocks has been written to specify 
the behavior of those Blocks. Extend provides functions 
that can be used by Blocks to share lists (arrays) with other 
Blocks, further supporting customized list management in 
models. 

8 WHY IT MATTERS 

In Sections 8.1-8.5 we describe situations that reveal some 
practical differences in implementation particulars among 
SIMAN, ProModel (Version 3), GPSS/H, AutoMod, SLX, 
and Extend. These differences reflect differing implemen-
tation choices made by the software designers.  

None of the alternative approaches mentioned is either 
intrinsically “right” or “wrong.” The modeler simply must 
be aware of the alternative in effect in the simulation soft-
ware being used and work with it to produce the desired 
outcome. (If a modeler is unaware of the alternative in ef-
fect, it is possible to mis-model a situation and perhaps not 
become aware of this mis-modeling.) 

In Section 8.6, we comment on how knowledge of 
software internals is needed to make effective use of soft-
ware checkout tools. 

Finally, in Section 8.7, we point out that knowledge of 
internals aids in understanding performance monitoring. 

8.1 Trying to Re-capture a Resource Immediately 

Suppose a part releases a machine, then immediately at-
tempts to re-capture the machine. The modeler might – or 
might not – want a more highly qualified waiting part, if 
any, to be the next to capture the machine. 

Of interest here is the order of events following the 
giving up of a resource. There are at least three alterna-
tives: (1) Coupled with the giving up of the resource is the 
immediate choosing of the next user of the resource, with-
out the releasing entity having yet become a contender for 
the resource. (2) The choosing of the next user of the re-
source is deferred until the releasing entity has become a 
contender. (3) “Neither of the above;” that is, without pay-
ing heed to other contenders, the releasing entity recaptures 
the resource immediately. 
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SIMAN and Extend implement (1). ProModel imple-
ments (2). GPSS/H and AutoMod implement (3) by de-
fault. In SLX, using a low-level Control Variable as the re-
source state, the result is also (3). (However, developers 
could implement higher-level resource constructs in SLX 
that behave in any of the three ways.) 

8.2 The First in Line is Still Delayed 

Suppose two Condition-Delayed entities are waiting in a 
list because no units of a particular resource are idle. Sup-
pose the first entity needs two units of the resource, 
whereas the second entity only needs one unit. Now as-
sume that one unit of the resource becomes idle. The needs 
of the first list entity cannot yet be satisfied, but the needs 
of the second entity can. What will happen?  

There are at least three possible alternatives: (1) Nei-
ther entity claims the idle resource unit. (2) The first entity 
claims the one idle resource unit and waits for a second 
unit. (3) The second entity claims the idle resource unit and 
goes on its way. 

As in Section 8.1, each of these alternatives comes 
into play in the tools considered here. SIMAN (SEIZE) and 
ProModel (GET or USE) implement (1) and (2) respec-
tively, by default. AutoMod (GET or USE), GPSS/H 
(ENTER or TEST), and SLX (WAIT UNTIL on a Control 
Variable) implement (3) by default. Extend also imple-
ments (3) by default. But Extend gives the modeler the 
choice of locally implementing (1) for resources specified 
by the modeler. The modeler does this by checking an 
“Only allocate resource pool to the highest ranked Item” 
option for each such resource. 

8.3 Yielding Control Temporarily 

Suppose the active entity wants to give control to one or 
more Ready-State entities, but then needs to become the 
active entity again before the simulation clock has been 
advanced. This might be useful, for example, if the active 
entity has opened a switch permitting a set of other entities 
to move past a point in the model, and then needs to re-
close the switch after the forward movement of the other 
entities has been accomplished. (Perhaps a group of identi-
cally flavored cartons of ice cream is to be transferred from 
an accumulation point to a conveyor leading to a one-
flavor-per-box packing operation.) 

In SIMAN and AutoMod, the effect can be accom-
plished approximately with a DELAY (SIMAN) or WAIT 
FOR (AutoMod) that puts the active entity into a Time-
Delayed State for an arbitrarily short but non-zero simu-
lated time. 

In ProModel, “WAIT 0” can be used to put the active 
entity back on the FEL. It will be returned later (at the 
same simulated time) by the CUP to the Active State. 
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In GPSS/H, the active Transaction (“Xact”) can exe-
cute a YIELD Block to shift from the Active State to the 
Ready State and restart the CEC scan. Higher-priority (and 
higher-ranked same priority) Xacts on the CEC can then 
try to become active, one by one, before the control-
yielding Xact itself again becomes active at the same simu-
lated time. (A “PRIORITY PR,YIELD” Block can alterna-
tively be used in order to reposition the just-active Xact 
behind equal-priority Xacts on the CEC prior to restarting 
the scan.) 

In SLX there is also a YIELD statement. A normal 
YIELD shifts the active Puck to the back of its priority 
class on the CEC and picks up the next Puck. It is also pos-
sible to YIELD to a specific other Puck that is on the CEC, 
in which case the active Puck is not shifted. 

In Extend, a message is sent out the appropriate Block 
connector when an Item moves into or out of a Block. This 
message will propagate to other connected Blocks, perhaps 
changing system status or moving Items from one Block to 
another as a result. When the originating Block eventually 
receives the reply, it continues processing the original 
Item. Hence, “yield and then eventually resume” is part of 
the fabric of Extend’s message-based architecture.  

8.4 Conditions Involving the Clock 

Every language provides a time-delay capability for FEL 
waiting. This works well when an entity needs to wait until 
a known clock value has been reached. But what if an en-
tity needs to wait for a compound condition involving the 
clock, such as “wait until my input buffer is empty or it is 
exactly 5:00 PM?” 

A typical approach to this is to clone a dummy 
(“shadow”) entity to do the time-based waiting. Manage-
ment of such dummy entities can be cumbersome, particu-
larly for very complex rules. ProModel does not use polled 
waiting, so a dummy entity would be the best approach 
available. (Otherwise, the condition would not be checked 
until the other component of the compound condition had a 
value change.) Extend also does not use polled waiting, so 
a similar situation applies for Extend. In the Extend archi-
tecture this is best described as the use of an additional 
Block (for example, an Input Data Block) that can schedule 
an event at the specified time, at which point a message 
would be sent to the waiting Block. 

Even when a polled waiting mechanism is present, if a 
single entity tries to wait on a compound condition involv-
ing the clock, a similar problem can arise. This is because 
the next polling time may not match the target clock time. 
SIMAN and AutoMod detect the truth of compound condi-
tions through their end-of-EMP polling mechanisms. 
GPSS/H also detects the truth through its version of polled 
waiting (refusal-mode TEST). But in the absence of a 
clone that waits on the FEL until exactly 5:00 PM (i.e., the  
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same approach as that recommended above with ProModel 
and Extend), all three of those tools are subject to the pos-
sibility that the first EMP that finds the condition true oc-
curs when the clock has a value greater than 5:00 PM. 
(Also, in the case of AutoMod, the condition is not guaran-
teed to be checked at the end of the first EMP after 5:00 
PM. See the second paragraph of Section 7.1.4.) 

SLX recognizes the clock as a related wait-until target. 
A WAIT UNTIL using a future clock value in a way that 
contributes to the falseness of the condition will cause the 
Puck to be scheduled onto the FEL to force an EMP at the 
precise time referenced. This solves the greater-than-the-
desired-time problem. Note that this Puck may also be 
waiting on one or more delay lists. 

8.5 Mixed-Mode Waiting 

Suppose many entities are waiting to capture a particular 
resource, while a user-defined controller entity is waiting 
for the condition “shift status is off-shift and number wait-
ing is less than six and resource is not currently in use” to 
take some action (such as shutting the resource down, in 
languages that allow user-defined entities to shut down re-
sources; or printing a status message). How can we guaran-
tee that the controller will be able to cut in front of the 
waiting entities at the appropriate instant (before the re-
source is recaptured)? 

One way to handle this would be through entity priori-
ties, in languages that offer this mechanism. However, as 
described below, that may not work even if the controller 
has higher priority than any other entity. 

The key issue is the method used to implement the 
waiting. If it is “related” for the entities waiting to capture 
the resource and “polled” for the controller entity waiting 
for the compound condition, things can get complicated. 
(This is what we mean by the term “mixed-mode wait-
ing.”) Every time the resource becomes free, a new entity 
will be selected from a delay list immediately in SIMAN 
and via the CEL in AutoMod, in both cases preceding the 
end-of-EMP checking for polled wait conditions (and 
thereby ignoring the entity priority of the controller). There 
are many ways to work around this if desired, such as us-
ing a different type of operation to force a polled wait for 
entities wishing to use the resource. 

In GPSS/H, using a high-priority controller Transac-
tion at a refusal-mode TEST Block, the controller waits at 
the front of the CEC. The Facility RELEASE will trigger a 
CEC scan restart and the controller will do its job. 

In ProModel there is no polled waiting but there can 
be related waiting on compound conditions involving 
Variables. Variables would have to be defined and manipu-
lated for each element of the Boolean condition and, to as-
sure equal competition, the entities waiting to capture the 
resource might also have to use WAIT UNTIL instead of 
GET or USE. Another possibility with ProModel would be 
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to have the entity that frees the resource do some state-
checking right away (in effect becoming a surrogate for the 
controller). This is possible because of the deferred-
selection method used by ProModel (see Section 8.2). 

In the related waiting of SLX, a Puck awaiting a com-
pound condition will be registered on the delay lists of 
those (and only those) Control Variables that are contribut-
ing to the falseness of the condition at the time it is evalu-
ated. The SLX architecture (in which only global or local 
Control Variables and the clock can be referenced in any 
sort of conditional wait at the lowest level) assures that 
there will already be Variables underlying the state 
changes being monitored. The model developer needs only 
to be sure they are defined as Control Variables. 

As with ProModel and SLX, Extend would use related 
waiting to detect and immediately respond to a change in 
the compound condition. The desired effect is achieved in 
Extend by use of a Program Block, which can be used to 
issue a message to create a controller Item with its priority 
set to a value that assures it will be processed before other 
Items are processed at a specified simulated time. This 
Item would wait in Extend’s related-waiting fashion (using 
connectors to monitor the state changes). 

8.6 Interactive Model Verification 

We now comment briefly on why a detailed understanding 
of “how simulation software works” supports interactive 
probing of simulation-model behavior. 

In general, simulation models can be run interactively 
or in batch mode. Interactive runs are of use in checking 
out (verifying) model logic during model building and in 
troubleshooting a model when execution errors occur. 
Batch mode is then used to make production runs. 

Interactive runs put a magnifying glass on a simulation 
model while it executes. The modeler can follow the active 
entity step by step and display the current and future events 
lists and the delay and user-managed lists as well as other 
aspects of the model. These activities yield valuable in-
sights into model behavior for the modeler who knows the 
underlying concepts. Without such knowledge, the modeler 
might not take full advantage of the interactive tools pro-
vided by the software or, worse yet, might even avoid us-
ing the tools.  

8.7 Performance Issues 

Simulation experiments can consume substantial amounts 
of computer time. Other things equal (including the model 
builder’s skill), computer-time requirements depend on the 
design and implementation of the software used to build 
models. This dependency can be understood with knowl-
edge of “how simulation software works.” For example, 
consider user-managed lists vs. related waiting in models 
in which large numbers of entities contend for a resource. 
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Performance is an important enough issue to motivate 
some simulation software designers to supply performance 
profilers which, for example, can produce histograms 
showing where CPU time is spent during model execution 
(e.g., SLX). 
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