Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

AS SIMPLE AS POSSIBLE, BUT NO SIMPLER:
A GENTLE INTRODUCTION TO SIMULATION MODELING

Paul J. Sanchez

Operations Research Department
Naval Postgraduate School
Monterey, CA 93943, U.S.A.

ABSTRACT

We start with basic terminology and concepts of modeling,
and decompose the art of modeling as a process. This
overview of the process helps clarify when we should or
should not use simulation models. We discuss some com-
mon missteps made by many inexperienced modelers, and
propose a concrete approach for avoiding those mistakes.
After a quick review of event graphs, which are a very
straightforward notation for discrete event systems, we il-
lustrate how an event graph can be translated quite directly
to a computer program with the aid of a surprisingly simple
library. The resulting programs are easy to implement and
computationally are extremely efficient. The first half of
the paper focuses principles of modeling, and should be
of general interest. The second half will be of interest
to students, teachers, and readers who wish to know how
simulation models work and how to implement them from
the ground up.

1 BACKGROUND & TERMINOLOGY

We use models in an attempt to gain understanding and
insights about some aspect of the real world. Attempts
to model reality assume a priori the existence of some
type of “ground truth,” which impartial and omniscient
observers would agree upon. Let’s start off by considering
the universe—the universe, for our purposes, is the set of
everything in existence over all time. While there are many
fascinating possibilities for discussion about the totality of
the universe, we set our sights much lower in this paper,
observing that there is a much greater chance of finding
consensus when we focus our attention locally in time and
space. We will start our study of models at the level of a
system. There are many excellent resources available for
those who wish to study the topic of modeling in greater
depth. See, for example, Law and Kelton (2000), Banks
et al. (2005), Weinberg (2001), or Nise (2004).

1-4244-0501-7/06/$20.00 ©2006 IEEE

We define a system to be a set of elements which
interact or interrelate in some fashion. Elements which
have no relationship to other elements which we classify as
members of the system cannot affect the system’s elements,
and thus are irrelevant to our goal of studying the system.
The elements that make up the system are often referred to
as entities. Note that the entities which comprise a system
need not be tangible. For instance, we can talk about a
queueing system, which is made up of customers, a queue,
and a server. The customers and server are physical entities,
but the queue itself is a concept. In some cultures, people
waiting for a bus mimic the concept by standing in a row.
Howeyver, there are some cultures where no line forms but
it is considered improper to board the bus until everybody
who was there before you has done so.

Systems can exhibit set ownership or membership with
regard to other systems. In other words, a given system
can be made up of sub-systems, and/or may in turn be a
sub-system within a larger framework.

A model is a system which we use as a surrogate for
another system. There can be many reasons for using a
model. For instance, models can enable us to study how a
prospective system will work before the real system has even
been built. In many cases, the cost of building and studying
a model is a small fraction of the cost of experimenting
with the real system. Models can also be used to mitigate
risk—it is far safer to teach a pilot how to cope with wind
sheer during landing on a flight simulator than by going
out and practicing real landings in wind sheer conditions.
Another benefit is a model’s ability to scale time or space in
a favorable manner—with a flight simulator we can create
wind sheer conditions on demand, rather than flying around
“hoping” to encounter them.

Models come in many varieties. These can include
but are not limited to physical duplicates (with or without
scaling) such as wind tunnel mockups; “clockwork’ and cam
devices such as the Antikythera mechanism (de Solla Price
1959) or fire control computers on pre-digital battleships;
mathematical equations such as the equations of motion



Sdnchez

found in a typical physics text; analog circuitry such as
that found in old stationary flight simulators; or computer
programs such as the ones used in modern flight simulators.
A computer simulation is a model which happens to be
a computer program. Throughout the remainder of this
paper we will use the word “simulation” to mean computer
simulation, but you should be aware that this may be a source
of miscommunication when dealing with people from other
disciplines.

In all cases, models have a common purpose—to mimic
or describe the behavior of the system being modeled. In
most cases models simplify or abstract the real system to
reduce cost and/or focus on essential characteristics. In
fact, most of the examples in the previous paragraph work
by producing a system which mimics the behavior in an
input/output sense, but not the actual workings of the system
being studied. We should judge a model’s quality by how
well its outputs conform to observations of reality, rather
than by the amount of detail included in the model.

In practice we like models which are comprised of model
entities similar to those in the real system, and which interact
and change in ways which correspond to the interactions
and changes observed or expected in the real system. The
totality of all entities and all of their attributes is the state
of the system, so we seek to model the real system by
specifying when and how the model state should change so
as to correspond to state changes in the real system. If the
real system is deterministic (i.e., has no random elements),
we try to produce state trajectories which are similar to those
of the real system. If the real system is stochastic, we do
not need to match state trajectories directly. Instead, we try
to produce state trajectories which are plausible realizations
of what might be seen in the real system.

A model should be created to address a specific set of
questions. Some people believe that it is possible to build
a completely general model, which could later be used to
answer any question. At first glance this is appealing, but
after a little bit of thought it should be obvious that the
only way to achieve this would be to have the model state
space be as large as the real system’s state. Only a replica
of the original system, complete in every detail, would have
the ability to answer any and every unanticipated question
about the system. This is the very antithesis of modeling,
since the purpose of modeling is to simplify and abstract
to gain insights.

2 AN OVERVIEW OF THE MODELING PROCESS

In practice, modeling is an iterative process with feedback.
We start by considering the real-world situation we wish
to know more about. In stage 1 of the modeling process
we should try to identify what is meant by the system
of interest. For instance, suppose we want to model the
operations of a manufacturing plant which makes small

boats. In reality there may be airplanes or Canadian geese
which fly overhead, but unless we’re concerned about the
impact of plane crashes or organic pollution we should
not consider these to be elements of the system. Similarly,
while raw materials, customer purchase orders, weather, and
marketing strategies will undoubtedly have an impact on our
system, if we are trying to figure out a good shop-floor layout
these can be represented as exogenous inputs, i.e., inputs
which are determined by forces outside the system. For
example, we need a stream of weather data which is similar
to what we might observe in reality, but we don’t need a
physics-based weather module which mimics atmospheric
heat transfer, humidity, convection, solar reflectivity, etc.
An historical trace of past weather patterns or a random
variate generator which adequately mimics the distribution
of observed weather will more than likely suffice. At the
end of the stage 1 process, we have a descriptive model.

Once we have decided on the scope of our model, we
will proceed to the next phase. In stage 2, we try to rigorously
describe the behaviors and interactions of all of the entities
which comprise the system. This can be accomplished
in a variety of ways, many of which are mathematical in
nature. We might describe the system as a set of differential
equations, or as a set of constraints and objectives in some
optimization formulation, or use distribution modeling from
probability or stochastic processes. We refer to the result
as a formal model.

We would like to find analytical solutions to the formal
model if it is possible to do so. If our formal model has
a high degree of conformance with the real world system
being modeled, analytic models and their solutions would
allow us to obtain insights and draw inferences about the real
system (see Figure 1). It is all too often the case, however,
that in our quest for a good model we add components
which make the formal model intractible. For example, we
can and should find analytic solutions for queueing systems
where arrival and service distributions are exponential with
constant rates. Adding real-world features in the form
of other distributions, non-homogeneous (possibly state-
dependent) arrival and service rates, customers jockeying
or balking, servers taking breaks, machinery breaking down,
and so on, will very quickly put us into the realm of models
which cannot be solved analytically.

This is one of the places where simulation might enter
the process. In many cases we can describe the behaviors in
a system algorithmically, producing a computer simulation
as our model. If the simulation model uses randomness
as part of the modeling process, its output is a random
variable. A very common (and extremely serious!) mistake
that first-time simulators make is to run a stochastic model
one time and believe that they have found “the answer.”
The proper way to describe or analyze a stochastic system
is with statistics. In other words, we must build a statistical



Sdnchez

Inference

Formal
Model

Description

Figure 1: A Model Yields Insights & Inferences

model of the computer model we built from the formal
model. The resulting process is illustrated in Figure 2.

Feedback enters the modeling process in the form of
verification and validation (Sargent 2003). Verification con-
stitutes a feedback loop between the computer model and
the formal model in Figure 2. In essence it attempts to
address the question “does my computer program do what
I meant it to do?” The formal model is the expression
of your intent. Verification corresponds to the computer
science task of debugging, which is considered a very hard
problem indeed. However, validation poses an even more
challenging question—"“does my computer program mimic
reality adequately?” Validation constitutes a feedback loop
between the computer model and reality. It should be clear
that the verification feedback loop is contained within the
validation loop, i.e., you cannot talk about validating a
model until you believe that it properly reflects your intent.
In general you can expect to go through multiple iterations
of verification and validation before you are satisfied with
your model.

In both Figures 1 and 2 the solid arrows represent
phases in the modeling process in which we move from one
stage to another, with all of the associated simplifications,
assumptions, and distortions that are introduced by the very
act of modeling. Comparing the two figures, the process
of doing simulation involves more stages, and therefore
more opportunities to mess things up. Simulation modeling
involves a longer chain of inference than does analytical
modeling, which is why we generally would prefer to use
analytical solutions where possible.

As with most rules, there are exceptions. For example,
simulation can be an ideal technology for validating new
processes or procedures. Suppose that you wish to demon-
strate the superiority of a new statistical technique which
you claim is optimal when the data follow a particular dis-
tribution. With observational data you can do goodness of
fit tests to check for the desired distribution, but in practice
such tests have notoriously poor discriminating power. With
simulation you can guarantee the distribution of the inputs.

We’ll finish this section with the following recommen-
dations to modelers. Many modelers make the mistake of

Inference Statistical

Model

Formal Computer
Model Model

Description

Figure 2: Simulation Has a Longer Chain of Inference

equating detail with accuracy. They start with a grand vision
of a highly detailed model which mirrors every aspect of the
real world system. As a result they may run out of time or
budget before they ever get their model running. Those who
manage to create a running program end up with code bases
often measured in tens-, hundreds-, or even higher multi-
ples of thousands of lines of code. The sheer magnitude
of such programs makes verification and validation nearly
impossible. The behavior of the program is determined by
dozens to hundreds of IRKs (Independent Rheostat Knobs),
inputs whose correspondence to reality is tenuous at best
and which unethical analysts have been known to use to
“tune” a model to produce desired outcomes.

It will not surprise the astute reader to note that we
advocate a different approach.

e  Start small - Begin with the simplest possible model
which captures the essence of the system you wish
to study.

e Improve incrementally - Once you have a basic
model working, you can add features to it to im-
prove the representation of reality. However, do so
in small steps. Try to prioritize your additions in
terms of greatest anticipated improvement in the
model.

e Test frequently - The objective is a model which
conforms well to reality, not one which is a dupli-
cate. After each of your incremental improvements,
check the resulting model. Does it do a better job of
modeling? Did the new addition break anything?

e Do not be afraid to backtrack or simplify - There
comes a point where you face diminishing returns.
Sometimes, an addition produces no measurable
benefit. Do not be afraid to chuck it out if it adds
nothing but complexity.

Using this approach you are more likely to achieve a func-
tioning model. If you are constrained on budget or time, you
will still have built the best model which could be achieved
within these constraints. If you have reached the point
of diminishing returns on model investment, you produce



Sdnchez

a model which produces answers as good as (and possi-
bly better than) those of more complex models, without
the complexity. Either way you will have built the most
economical model for your purposes.

3 DISCRETE EVENT SYSTEMS

There are many classifications of systems available. The
Winter Simulation Conference tends to focus on Discrete
Event Systems. These are systems where the state changes
occur at a discrete set of points along the time axis, rather
than continuously. The points in time corresponding to state
changes are called events. Discrete Event Simulation (DES)
models can be built with any of several world views (Nance
1981).

Much of the simulation software which is commercially
available uses the Process world view for modeling. Process
models are considered to be very accessible—the modeler
describes the sequence of resource requirements, activities,
delays, and decisions that an entity experiences as it proceeds
through the system from start to finish. The details of
how this is accomplished are similar but specific to each
simulation package.

Event scheduling is another world view which can be
used to construct DES models, and yields efficient imple-
mentations quite straightforwardly when the model is to
be written in a lower level language. DES works by ad-
vancing simulated time directly from one event to another.
Intervals of time between events are of no interest, because
by definition nothing is happening during those intervals.
Schruben (1983) created event graph notation so that simu-
lation modelers could focus on the model-specific logic of
the system to be studied. Event graphs provide a concise,
unambiguous description of both how events change the
system state and how they trigger the occurrence of further
events.

Let’s talk briefly about another type of error that mod-
elers can make. An old joke that says “to the man who
only owns a hammer, all problems look like a nail.” The
modeling equivalent of that joke is no joke at all. It is a
concept called a Type III error by Mitroff and Feathering-
ham (1974), who defined it as “the error...[of] choosing
the wrong problem representation...” This can happen, as
in the joke, when the analyst tries to fit the problem to the
tool rather than vice-versa. You are at risk of committing
a Type III error when you find yourself trying to “trick”
your software into performing some modeling task.

Simulation languages are an example of what computer
scientists call Domain Specific Languages (DSLs) (Mernik,
Heering, and Sloane 2005). DSLs are very good at express-
ing problems within their chosen modeling framework and
domain of expertise, but become intractable outside those
boundaries. The alternative to DSLs is General-Purpose
Programming Languages (GPPLs). By definition GPPLs

are Turing complete (Brainerd and Landweber 1974), which
means that if a problem is computationally feasible it can
be expressed in a GPPL.

Many people shy away from using GPPLs for sim-
ulation, either because they do not know how simulation
actually works or because they perceive such solutions to be
very hard. The remainder of this tutorial describes how you
can “roll your own” simulation using a GPPL. This turns out
to be surprisingly easy using event graph notation. To illus-
trate the concepts being discussed, we have created a freely
available simulation engine using the Java programming
language. Java was chosen because of its platform indepen-
dence and its widespread popularity, which surpassed even
C and C++ in 2005 according to TIOBE Software (2006).
The resulting library is surprisingly flexible, despite its tiny
size.

4 REVIEW OF EVENT GRAPHS

Event graphs are a pictorial representation of event-based
discrete event models. Each event in the system is rep-
resented by a vertex in the graph. State transitions can
be specified below the vertex or separately, labeled by the
vertex’s label. Scheduling relationships between events are
depicted using directed edges with attributes annotated on
the edges to indicate the delay (if any) between the events
and the conditions under which the scheduling should occur.
When an event occurs, by convention all state transitions
associated with the event are performed first. Then each
edge departing from the current event’s vertex is evaluated
to see if its scheduling requirements are met. If so, schedule
the event corresponding to the head of that edge to occur
after a suitable delay. If not, take no action for this edge.
If no delay is specified use a value of zero, i.e., the event
being scheduled will happen at the same simulated time as
the event which schedules it. If no condition is specified
perform the scheduling under all circumstances.

Figure 3 illustrates the basic concepts of event graphs.
A and B are events, ¢ is a delay (which could be constant,
random, or some function of the state), and c¢ is a boolean
function of the state. Figure 3 can be readily translated into
English as follows:

When event A occurs, first perform all
of its state transitions. Then, if boolean
condition ¢ is true schedule event B to
occur ¢ time units later.

t (€)
A ~

Figure 3: The Quintessential Event Graph



Sdnchez

OO

{Q=0,S=k} {Q++}

ts
Begin
Service

{Q--S-}

PO s

Figure 4: A G/G/k Queueing System

5 AN EVENT GRAPH EXAMPLE

Using this basic structure, we can create models of quite
complex systems. For example, the model in Figure 4
represents a G/G/k queueing system (using the notation
introduced in Kendall 1953). The arrival process, which
instantiates values of #,, can be anything (G = general);
the service process, which instantiates values of #; can also
be anything; and there are k servers.

By convention every event graph has an initialize event,
which is scheduled to occur at the beginning of the simulation
run. Initialize is used to set state variables to their initial
values and to schedule such other events as are required for
the model to proceed. For the G/G/k queueing system, the
queue (Q) starts off with no customers and the number of
servers available (S) starts at full capacity k. At least one
Arrival event must occur to kick-start the model execution.

When an Arrival event occurs, the newly arrived entity
is added to the queue. The next arrival is then scheduled
to occur after a delay of (inter-arrival time) 7, time units.
If there is a server available, a Begin Service event will be
scheduled to occur immediately as well.

A Begin Service event removes one entity from the
queue, and also removes one server from the available
pool. It then unconditionally schedules an End Service
event to occur after a delay of (service time) t;.

When an End Service event occurs, a server is added
back to the available pool. If there are entities in line, they
evidently are waiting for a server to become available, so
we can immediately schedule a Begin Service for the next
one in the queue.

6 DESIGN CONSIDERATIONS

To implement the model as a computer program, we need
three things:

e A method for each event in the event graph model
that updates the model state as specified, schedules
further events as appropriate, and then terminates.

e An executive loop that determines the order in
which event methods should be invoked.

e A schedule capability that provides the mechanism
by which event methods notify the executive loop
about events that are candidates for invocation.

Note that only the first item is model-specific. The exec-
utive loop and scheduling capabilities are invariant across
all models, and can therefore be isolated from the model
implementation.

The simulation program needs to store notices of pend-
ing events in a container of some sort. Let P be the pending
events set. A pending event notice is comprised of an event
method reference and its associated time of execution. Event
notices have an ordering property based on their time of
execution, i.e., a notice with a smaller time should come
before a notice with a larger time. We need the ability to
add new event notices to P, and to find and extract event
notice e such that e <d Vd € {P —e}. A container with
these capabilities is called a priority queue.

If P is implemented as a priority queue, clock is the
simulation clock, and current is an event notice reference
with associated method and time attributes, the following
block of pseudo-code describes the structural form of the
executive loop.

clock «— 0

invoke initialize

While (P #0)
current < P.poll
clock < current.time
invoke Current .method

7 IMPLEMENTATION

SIMpleKit is implemented as two classes and an interface.
We will tackle these from simplest to most complex.

7.1 The Model Interface

Every SIMpleKit model must implement the Model in-
terface. In Java an interface mandates class elements that



Sdnchez

must be present, but does not provide any implementation
for those elements.

The Model interface in SIMpleKit is small enough to
present in its entirety.

public interface Model {
public void initialize();
}

In other words, a SIMpleKit Model must have a method
initialize () which takes no arguments and returns
nothing.

7.2 The EventNotice Class

The EventNotice class is a helper class for storing and
retrieving event notices. It should never be used directly
by users, so all methods and constructors are declared
protected, meaning they are not available outside of the
SIMpleKit package hierarchy. Each event notice consists
of a reference to an event method, the simulated time at
which that event method should be invoked, and an array
of Java Object’s which will be used as method arguments.
The method argument array can be null in the event that
the event method takes no arguments.

Event notices are immutable. They can be created
and destroyed, or can be polled via methods time (),
event (), and args (), to retrieve the corresponding in-
formation stored by the event notice. However, those values
cannot be changed once initialized by the constructor.

Finally, event notices implement Java’s Comparable
interface. This means that they implement a method
compareTo () which provides relative ordering in-
formation for any pair of EventNotice objects.
EventNotice’s are ordered by their respective times of
execution.

7.3 The Simulation Class

Class Simulat ion provides the core functionality of SIM-
pleKit. It maintains a priority queue of EventNotice’s
called eventList, a reference of type Model to your
model object called model, and the current simulated time
in a variable called modelTime. The simulated time can
be polled from within a model via method time ().

Most of the interaction between the user’s model and the
Simulation class is handled by the schedule method.
The method is “overloaded,” i.e., there are two variants
which take different arguments:

public static wvoid
schedule (String method, double delay)

and

public static wvoid
schedule (String method, double delay,
Object[] args).

Method schedule takes arguments consisting of the name
of the event method to be scheduled, the amount of time
which should elapse before that event executes, and (op-
tionally) an Object array containing the set of arguments to
be passed to the method upon invocation. Both variants will
create an EventNotice object and place it on the event
list. If the model does not have a method which matches the
specified name and argument list, an exception is thrown.

Execution of the model is handled via a method called
run (), shown in Figure 5. The run () method takes one
argument—a reference to your model object. The method
declares a local EventNotice variable to keep track of
the current event, sets its model reference to the model
currently being run (provided as the argument to run, sets
the simulation clock to zero, and instantiates an empty event
list. Next, it invokes the initialize () method whose
existence is guaranteed by the Model interface. It then
proceeds with an execution loop which determines the next
event to be performed by polling the event list, sets the
simulation clock to the time of that event, and invokes the
event method. The execution loop terminates when and if
the event list is empty. Note the correspondence with the
pseudo-code description of the executive loop provided in
Section 6.

The last method provided by the Simulation class
is halt (). This will terminate the simulation by emp-
tying out the event list when invoked. Note that event
methods should never perform scheduling activities after
invoking Simulation.halt (). Doing so would negate
the terminating condition.

8 THE M/M/k QUEUE IN SIMpleKit

We demonstrate usage of SIMpleKit by implementing an
M/M/k queueing system. We can use the event graph from
Section 5, since the M/M/k system is a specialization of the
G/G/k in which the distributions of inter-arrival times and
service times are both exponential. Choices of particular
distributions do not change the event structure in any way,
and can be abstracted as a call to a generator method for the
desired distribution. SIMpleKit does not provide a library
of distributions—techniques for random variate generation
are widely available in the simulation literature.

Every SIMpleKit model must implement the Model
interface, as described in Section 7.1. This is accomplished
quite simply in the class declaration of the model.

public class MMk implements Model {...}

Looking at the state transitions and edge conditions, we
note that there are only two state variables required for the
model.



Sdnchez

public static void run (Model m) {

EventNotice current;

model = m;
modelTime = 0.0;
eventList = new PriorityQueue<EventNotice>();
model.initialize () ;
while ((current = eventlList.poll()) != null) {
modelTime = current.time();
try {

current.event () .invoke (model, current.args());
} catch (Exception e) {
e.printStackTrace (System.err);

Figure 5: The Simulation run () Method

// model state
private int numAvailableServers;
private int glLength;

Note that we are not declaring state variables to be static—
you can create multiple MMk instances with distinct (or
identical) parameterizations. We declare a few more instance
variables to represent the parameterizations

// model parameters
private int maxServers;
private double arrivalRate;
private double serviceRate;

and initialize them with a suitable constructor.

public MMk (double arrivalRate,
double serviceRate, int maxServers)

this.maxServers = maxServers;
this.arrivalRate = arrivalRate;
this.serviceRate = serviceRate;

}
Last but not least, we need a source of random numbers

// helper vars
private static Random r = new Random();

and a way to generate exponential random variates.

public double exponential (double rate) {
return -Math.log(r.nextDouble ())
/ rate;

}

Note that r is declared static and instantiated once, to
ensure that there are no problems with overlapping sequences
of random numbers in the model.

8.1 Event Methods

Each event in Figure 4 has a corresponding event method
in the model class. The event graph provides a roadmap
of how to write the event methods, as described in Section
4. First, perform all state transitions. Then schedule events
corresponding to each departing edge if the edge conditions
are true, with suitable delays.

The first event, initialize (), fulfills our contrac-
tual obligation from the Mode1 interface.

public void initialize () {
numAvailableServers = maxServers;
gLength = 0;
Simulation.schedule ("arrival", 0.0);
Simulation.schedule ("halt", 100.0);
}

The state transitions are self-explanatory. Event scheduling
is handled by asking the Simulation class to schedule an
event with the name “arrival” with no delay. Although Figure
4 does not explicitly represent when or how to terminate
the model, we need to do so for a concrete implementation.
We have arbitrarily decided to create a method “halt” and
schedule it to go off after 100 time units. The halt event
invokes Simulation.halt (), which empties the event
list to guarantee termination of the model as described
earlier.

public void halt () {
Simulation.halt ();
// report or tally results
}

The other event methods are sufficiently straightforward
that we present the implementations without further com-
ment other than to note that ++ and —— are Java operators
for increment and decrement, respectively.



Sdnchez

public void arrival() {

++gLength;

Simulation.schedule ("arrival",
exponential (arrivalRate));

if (numAvailableServers > 0) {

Simulation.schedule (

"beginService", 0.0);

}

// report state if desired

public void beginService () {
——gLength;
——numAvailableServers;
Simulation.schedule ("endService",
exponential (serviceRate));
// report state if desired

public void endService () {
++numAvailableServers;
if (gLength > 0) {
Simulation.schedule (
"beginService", 0.0);
}
// report state if desired

8.2 Running the Model

The model has to be started somehow. This is accomplished
by creating a Java “main” method which creates an instance
of the model and passes it to the Simulation class to be
run. For instance,

public static void main(Stringl[] s
Simulation.run (new MMk (4.5, 1.0, 5));
}

will run a model with an arrival rate of 4.5 customers per
time unit, a service rate of 1.0 customers per time unit per
server, and 5 servers. Multiple runs could be accomplished
by looping, and statistics could be tallied and reported across
runs.

9 FINAL COMMENTS ABOUT SIMpLEKIT

SIMpleKit provides a simple and transparent mechanism to
illustrate how discrete event models can be implemented.
Event Graphs map very directly into SIMpleKit programs,
and run very efficiently. SIMpleKit is freely available under
the Free Software Foundation’s LGPL licensing scheme
(Free Software Foundation 2006), and can be downloaded
from a Subversion repository at <https://or.nps.
edu/svn/SIMpleKit> (user=guest, password=guest).
There are several features which SIMpleKit is lacking—
event cancellation, random variate generation, and hierar-

chical design, to name a few—but this is by design. The
intent was to keep the design of SIMpleKit minimalist and
use it as a pedagogical tool for understanding discrete event
scheduling. Students and users who wish to build more
sophisticated models are encouraged to use a more appro-
priate tool such as SIGMA (Schruben and Schruben 2001)
or SimKit (Buss 2005), both of which strongly influenced
the author’s efforts.

Despite its simplicity SIMpleKit has been used to imple-
ment some quite sophisticated models, including an analysis
of joint problem solving in edge vs. hierarchical organi-
zations and an implementation of Dijkstra’s algorithm for
determining shortest paths in a graph.

10 CONCLUSIONS

Many people who are new to computer simulation place
undue emphasis on writing the simulation program. In fact,
the difficult part of a simulation study is modeling, not
programming. Type III errors are all too common, and are
costly both in terms of wasted time and effort and in terms
of incorrect inferences or conclusions regarding the real
system being modeled. Similarly, biting off more than you
can chew by starting with a model which is too large or
too detailed at the outset can waste time and effort. Too
many studies have run out of time or budget before they
even got a functioning model. Writing a good simulation
program is important, but cannot possibly succeed without
a good model at the core.

Keep your eyes firmly on the goal of your analysis. What
is it you wish to know about the real system of interest?
What are the essential characteristics and behaviors that
allow you to answer your questions? Don’t confuse large
volumes of detail with accuracy in building your model.
Start small, and add detail when and if validation shows a
need for it. Test your model frequently during development,
and focus on model elements which yield meaningful gains
in model accuracy. These are modeling principles which
apply regardless of whether you use a process or event
world view, or commercial simulation packages or a GPPL.

Modern commercially available simulation software is
of very high quality, and offers tremendous leverage for many
problem domains. However, if you find that you’re spending
all of your effort trying to “trick” the software into behaving
the way you want it to, consider the possibility that a
different implementation approach may be more productive.
Perhaps a different simulation package is more suitable for
your problem. GPPLs also represent an option for your
consideration. With the right tools it is surprisingly easy to
implement discrete event models in a GPPL, and doing so
gives you complete control over your model.



Sdnchez

REFERENCES

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol.
2005. Discrete-event system simulation. 4" ed. Upper
Saddle River, N.J.: Prentice-Hall.

Brainerd, W. S., and L. H. Landweber. 1974. Theory of
computation. Wiley.

Buss, A. H. 2005. Simkit. <http://diana.cs.nps.
navy.mil/simkit>.

de Solla Price, D. 1959, June. An ancient Greek computer.
Scientific American 60-67.

Free Software Foundation. 2006. <http://www.fsf.
org/>. Free Software Foundation.

Kendall, D. G. 1953. Stochastic processes occurring in the
theory of queues and their analysis by the method
of imbedded Markov chains. Annals of Mathematical
Statistics 24:338-354.

Law, A. M., and W. D. Kelton. 2000. Simulation modeling
and analysis. 3" ed. New York, NY: McGraw-Hill.

Mernik, M., J. Heering, and A. M. Sloane. 2005. When
and how to develop domain-specific languages. ACM
Computing Surveys 37 (4): 316-344.

Mitroff, I. I., and T. R. Featheringham. 1974, November.
On systemic problem solving and the error of the third
kind. Behavioral Science 19 (6): 383-393.

Nance, R. E. 1981. The time and state relationships in
simulation modeling. Communications of the ACM 24
4): 173-179.

Nise, N. S. 2004. Control systems engineering. 4" ed. John
Wiley & Sons, Inc.

Sargent, R. G. 2003. Verification and validation: verification
and validation of simulation models. In Proceedings of
the Winter Simulation Conference, ed. S. Chick, P. J.
Sanchez, D. Ferrin, and D. J. Morrice, 37-48.

Schruben, D., and L. W. Schruben. 2001. Graphical simu-
lation modeling using SIGMA. 4" ed. Berkeley, Cali-
fornia: Custom Simulations.

Schruben, L. W. 1983. Simulation modeling with event
graphs. Communications of the ACM 26 (11): 957-
963.

TIOBE Software. 2006, July. TIOBE Programming Commu-
nity Index. <http://www.tiobe.com/index.
htm?tiobe_index>.

Weinberg, G. M. 2001. An introduction to general systems
thinking. Dorset House.

AUTHOR BIOGRAPHY

PAUL J. SANCHEZ is a faculty member in the Opera-
tions Research Department at the Naval Postgraduate School.
His research interests include all aspects of discrete event
simulation, but particularly large-scale designs of exper-
iments. He rides recumbent bikes and has read entirely

10

too much science fiction. You can reach him by e-mail at
<PaulSanchez@nps.edu>.



	MAIN MENU
	PREVIOUS MENU
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



