
Proceedings of the 2006 Winter Simulation Conference 
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds. 
 
 
 

AN OBJECT-ORIENTED FRAMEWORK FOR SIMULATING MULTI-ECHELON INVENTORY SYSTEMS 
 
 

Manuel D. Rossetti 
Mehmet Miman 
Vijith Varghese 

Yisha Xiang 
 

Industrial Engineering Department 
4207 Bell Engineering Center 

University of Arkansas 
Fayetteville, AR 72701, U.S.A 

   
   

  

ABSTRACT 

In this paper, we discuss the design and use of an object-
oriented framework for simulating multi-echelon inventory 
systems.  We present a context for how the framework can 
be used through its application on two examples.  In addi-
tion, we describe the design by examining the major con-
ceptual artifacts within the object-oriented model.  The 
framework is built on a Java Simulation Library (JSL) and 
permits easy modeling and execution of simulation models.  
The results and discussion indicate the flexibility and 
power of modeling with the framework.  In addition, we 
summarize our future research efforts to model complex 
supply chains. 

1 INTRODUCTION 

In general, a supply chain can be considered as a network 
of facilities and distribution options that operate to obtain 
raw materials, transform these materials to finished prod-
ucts, distribute these finished products to the customers 
depending upon their demand and repair the failed prod-
ucts.  Engels and Lee (2000) also consider a supply chain 
as “a network of entities that starts with the suppliers’ sup-
plier and ends with the customers’ customer for the pro-
duction and delivery of goods and services”.  In this paper, 
we present an object-oriented simulation framework for 
simulating a supply chain with an arborescent tree struc-
ture.  These types of supply chains form a general class of 
inventory systems called multi-echelon inventory systems.  
Figure 1 illustrates the basic structure of a multi-echelon 
inventory system.  This research is part of a larger effort to 
develop an object-oriented framework for simulating sup-
ply chains and especially supply chains that are found 
within the military’s new sense and respond logistics para-
digm.  The concept of sense and respond logistics has en-
visioned the need to rapidly design responsive demand and 
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support networks that can anticipate, predict, and coordi-
nate actions at the strategic, operational, and tactical levels 
(Rossetti 2005). A framework to model multi-echelon in-
ventory systems, with options and flexibility to model each 
point in the network with unique behavioral characteristics, 
is an essential component in developing simulations of 
more responsive supply networks. 
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Figure 1 Multi-Echelon Inventory System 

 
Analytical solutions using mathematical tools such as 

probability theory and optimization can be used to obtain 
the approximate performance of multi-echelon inventory 
systems.  For research and references along those lines, we 
refer the interested reader to Al-Rifai and Rossetti (2006), 
Zipkin (2000), and Muckstadt (2005).  Unfortunately, the 
analytical modeling of complex supply chains is limited to 
the underlying mathematical assumptions that make the 
mathematics tractable.  For the performance modeling of 
complex supply chains, simulation turns out to be an excel-
lent  method for the evaluation of most of the systems 
where the relationships among the components are very 
complex. Dong (2001) considered simulation as a better 
technology for designing supply chain systems due to the 
system variation and interdependencies.  Ingalls (1998) 
concluded that simulation is the best method to analyze 
supply chain systems where the key driver is variance. On 
the other hand, simulating complex supply chain networks 
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has also some disadvantages . The major problem for using 
simulation for complex supply chain analysis is that most 
of the simulation models are specific to a particular prob-
lem and have a limited use (Rossetti and Chan 2003). The 
two major problems associated with simulation models are 
1) they may take a long time to develop and 2) they are 
very specific and have limited reuse (Swaminathan et al. 
1998). 
Most of the Commercial Off-The-Shelf (COTS) simulation 
packages do not easily simulate general purpose supply 
chains.  This is not meant to imply that they cannot simu-
late supply chains, but rather that their modeling constructs 
have been focused on other types of modeling domains.  
For many simulation packages, their primary purpose has 
been the simulation of manufacturing and material han-
dling systems.  Because the performance analysis of supply 
chain networks is essential within industry, many commer-
cial simulators are available, which will simulate particular 
supply chain scenarios. Supply Chain Operational Per-
formance Evaluator (SCOPE), SIMLOX, the Logistics 
Simulation and Analysis Model (LogSAM), are three such 
simulators within the domain of spare part inventory sys-
tems. The SCOPE simulation model was developed for the 
review and evaluation of readiness based sparing models 
for the Navy and for the review of efficient management 
and transportation policies for the Defense Logistics 
Agency. SCOPE models the entire logistics support for 
spare parts from the retail echelon to the whole sale eche-
lon of weapon systems by monitoring the failures of the 
spare parts through four levels of indenture (Culosi 2001). 
SIMLOX is a Systecon’s discrete event Monte-Carlo simu-
lation model developed for simulating operational, mainte-
nance logistics, and their interactions for any technical sys-
tems (Systecon 2001). SIMLOX models features such as 
full system and sub-system modeling capability without 
indenture constraints, data driven, modeling of lateral re-
supply and various repair philosophies (repair versus re-
placement). LogSAM modeling architecture simulates 
critical aircraft generation functions based on known and 
verifiable aircraft-specific reliability and maintainability 
statistics and can be used to test alternative supply and 
maintenance processes under a wide variety of resource-
constrained situations. 

The purpose of our research effort is to bridge the gap 
between commercial general purpose simulation packages 
and specific supply chain simulators by developing  open 
source frameworks for performing simulations. Booch et 
al. (1999), define a software design framework as “an ar-
chitectural pattern that provides an extensible template for 
applications within a domain.”  A framework provides a 
set of abstract and concrete classes that can be extended via 
sub-classing or used directly to solve a particular problem 
within a particular domain.  This paper discusses a soft-
ware design framework for object-oriented simulations.  
Such a framework can ease the work of researchers, educa-
145
tors, and practitioners.  An object-oriented simulation 
framework can provide a better understanding of key ab-
stractions within simulation modeling and can provide a 
blueprint for the development of object-oriented simulation 
libraries.  See for example the work of Pratt et al. (1991). 
Our research is not only about simulating supply chains but 
also about finding and describing the key architectural pat-
terns that are found in this domain. 

 In order to do this we are building on the work of 
Rossetti and Chan (2003), and Rossetti and Thomas 
(2005).  Rossetti and Chan (2003) built a supply chain 
modeling framework which contains logistics elements like 
facility, warehouse, product etc. This Supply Chain Simu-
lation Framework (SCSF) facilitates the dynamic analysis 
of multi-echelon supply chain systems.  The SCSF consists 
of 29 classes representing the various elements within a 
supply chain network. The most important of all relation-
ships in the SCSF is the Relationship Network. A Relation-
ship Network is defined as a complex system of intercon-
nected network nodes that exchange material and 
information in order to provide material, products or ser-
vices to the end-users (Rossetti and Chan 2003).  Using the 
knowledge gained from the SCSF, Rossetti and Thomas 
(2005) built a modeling architecture for spare parts supply 
chain networks, especially those related to multi-
indentured weapon systems.  This framework expands the 
notion of a facility to a behavioral agent-based plug-in ar-
chitecture that allows customization of facilities through 
user-defined behaviors. 

In our modeling, we have identified a key layer of ab-
straction for the modeling of supply chains, which we term 
the inventory layer.  Currently, the other layers in our 
overall framework include a facility layer and a transport 
layer.  In this paper, we discuss the inventory layer.  We do 
this by describing the object-oriented constructs within the 
inventory layer and by illustrating their use in simulating 
multi-echelon inventory systems.  Our object-oriented 
framework is built upon a Java Simulation Library (JSL), 
see Rossetti et al. (2000). The JSL is a simulation library 
for Java. The JSL’s current version has packages that sup-
port random number generation, statistical collection, basic 
reporting, and discrete-event simulation modeling.  The 
development of a simulation model is based on sub-
classing the ModelElement class that provides the primary 
recurring actions within a simulation and event scheduling 
and handling.  The user adds developed model elements to 
an instance of Model and then executes the simulation. The 
JSL is divided into Java packages (calendar, examples, 
modeling, spatial, observers, and utilities).  The modeling 
package is further divided into packages that facilitate the 
modeling of processes, resources, queues, transporters, etc.  
In this paper, we describe the basic architecture of the 
jsl.modeling.elements.supplychain.inventory package. 

In what follows, we first give a basic overview of the 
structure and functionality of the inventory package.  We 
3
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then describe a simple example of an (r,Q) inventory 
model to illustrate the primary capabilities of the architec-
ture.  Finally, we illustrate how easy it is to develop mod-
els of multi-echelon inventory systems through a larger but 
still simple example.  We wrap up with a summary of our 
efforts and present ideas for future research. 

2 INVENTORY PACKAGE 

In this section, we present the inventory layer through two 
examples (1) a simple (r,Q) continuous review inventory 
model and (2) a multi-item multi-echelon inventory sys-
tem. The inventory package currently consists of 18 classes 
and 8 interfaces representing various elements within in-
ventory modeling. A complete discussion of all of the im-
plementation details of these classes is beyond the scope of 
this paper.  Our intention here is to provide enough detail 
so that the reader can make conceptual modeling with the 
inventory package more concrete.  

In order to illustrate our design, we give a brief de-
scription of six important classes:  

 
• ItemType 
• Demand 
• DemandGenerator 
• BackLogPolicyAbstract 
• Inventory 
• InventoryPolicyAbstract.  
 
An ItemType represents or describes the items or 

products in the inventory system.  The Demand class 
represents a request for inventory and provides the status 
of the request.  An instance of Demand records the item 
type associated with the request, the customer of the re-
quest, the provider of the inventory items, the shipper of 
the items, the amount of the request, and other customer 
requirements associated with the request, such as whether 
backlogging or partial filling is permitted.  The De-
mandGenerator class creates instances of Demand and acts 
as a customer that generates the demand by providing de-
tails of the customer requirements.  The Inventory class 
represents units of items that can be requested and keeps 
track of the amount of inventory on-hand, backlogged, on 
order, lost, etc.  An instance of the Inventory class repre-
sents the state of the inventory at any given time.  The In-
ventory class provides methods for requesting inventory 
and for filling demands for the inventory. Every Inventory 
class is associated with an inventory policy. The Inven-
toryPolicyAbstract is an abstract base class that allows for 
the encapsulation of rules to control the associated inven-
1454
tory; it is a rule, policy, or strategy that governs the re-
ordering behavior for inventory. The inventory policy de-
termines when to order and how much to order.  A number 
of different inventory policies have been implemented 
within the inventory package.  Also associated with an In-
ventory class is a backlog policy.  An abstract base class, 
BackLogPolicyAbstract, represents the different rules or 
behaviors that can be used to backlog demands for inven-
tory and to fill backlogs associated with inventory.   The 
relationships between these 5 classes are illustrated in Fig-
ure 2.  In the following example, we illustrate the use of 
these classes and the way in which they interact. 

 

 
Figure 2 Class Diagram of Primary Inventory Classes 

2.1 Simulating a simple (r,Q) Inventory Model with the 
Inventory Package 

The flow chart in Figure 3 illustrates the basic logic associ-
ated with an (r, Q) inventory model with backlogging. 
When a demand occurs, the amount demanded is deter-
mined, and then the system checks the availability of stock. 
If the stock on-hand is sufficient for the order, the demand 
is filled and the quantity on-hand is decremented. On the 
other hand, if the stock on-hand is not sufficient to fill the 
order, the entire order is backordered. The backorders are 
accumulated in a queue and they will be filled on a FIFO 
basis after the arrival of replenishment order. The inven-
tory position is checked each time after a regular customer 
demand and the occurrence of a backorder. When the in-
ventory position falls under the reorder point, a replenish-
ment order is placed. The replenishment order will take a 
certain time to arrive and subsequently backorders are 
filled and the on-hand inventory is incremented. 
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Figure 3. Flowchart of the (r, Q) Inventory Logic
 
Using the inventory package, we developed and tested 
various scenarios of the (r, Q) inventory model (Figure 3).  
Table 1 presents the basic parameters of each of the model 
runs and the corresponding analytical (A) and simulation 
(S) results.  The simulations were run for 30 replications of 
3360 days with a warm up period of 360 days.  In this sim-
ple example, the demands occur according to a Poisson 
process with rate of 3.6 units per day.  The lead time for 
replenishment orders is a constant of (0.5) days.  
 

Table 1: Basic (r,Q) Simulation Results 

(Q=2) 
Avg. Stockout 

Frequency Avg. Inventory 

r A S A S 
-1 0.92 0.92 ±0.001 0.09 0.08 ±0.001 
0 0.69 0.69 ±0.001 0.40 0.40 ±0.002 
1 0.41 0.40 ±0.002 1.00 0.99 ±0.004 
2 0.19 0.19 ±0.002 1.81 1.80 ±0.005 
3 0.08 0.07 ±0.001 2.73 2.73 ±0.006 

 
The code for creating a simulation and running an experi-
ment is quite simple as illustrated in Exhibit 1. 
 
Model m = Model.createModel(); 
DistributionIfc tbd = new Exponential(1.0/3.6); 
DistributionIfc lt = new Constant(0.5); 
int rpt = -1; 
int qty = 2; 
int level = 0; 
RQInventoryModel rq = new RQInventoryModel(m, 
tbd, lt, rpt, qty, level); 
Experiment e = new Experiment(m); 
e.setNumberOfReplications(30); 
e.setLengthOfReplication(3360.0); 
e.setLengthOfWarmUp(360.0); 
e.runAll(); 

Exhibit 1: Creating and Running a Model 
1455
 
As can be seen in Exhibit 1, we need to create only an in-
stance of the class RQInventoryModel.  This class uses the 
previously described 6 classes.  Exhibit 2 presents the pri-
mary functionality of the constructor of the RQInventory-
Model. The first line defines an ItemType and represents 
the items that can be demanded.  The next 2 lines create a 
LeadTimeReplenishmentProvider. A LeadTimeReplen-
ishmentProvider acts as an inventory provider when an in-
ventory requires a replenishment.  A LeadTimeReplenish-
mentProvider is a special case of Inventory in which an 
infinite amount of inventory can be supplied after a time 
delay. 
 
ItemType myItemType = new ItemType(this, "Type-
A"); 
LeadTimeReplenishmentProvider supplier = new 
LeadTimeReplenishmentProvider(this); 
supplier.addLeadTime(myItemType,leadTime); 
DefaultBackLogPolicy bpolicy = new DefaultBacLog-
Policy(this); 
myInventoryPolicy = new RQInventoryPolicy(this, 
reorderPt, reorderQty); 
myInventory = new Inventory(this, myItemType, 
supplier, myInventoryPolicy, supplier, ini-
tialLevel, bpolicy, false); 
myDemandGenerator = new DemandGenerator(this, 
timebtwDemand, timebtwDemand); 
myDemandGenera-
tor.setDemandRequirements(myItemType, true, 
false, myInventory); 

Exhibit 2: Constructor for RQInventoryModel 
 
The next two lines define the policies for the instance of the 
Inventory class.  The DefaultBackLogPolicy is a sub-class 
of the abstract base class BackLogPolicyAbstract, and the 
RQInventoryPolicy is a sub-class of the InventoryPolicyAb-
stract.  The next line creates an instance of the Inventory 
class that uses the supplied policies, sets the supplier, and 
gives the initial amount on hand.  Finally, the last two lines 
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define the DemandGenerator and sets its requirements.  In 
this case, it is generating demands for the given item type, 
allows backlogging, does not permit partial filling, and sends 
its requests to the previously defined inventory. 

In this model, events are initiated when demands are 
created. This is implemented by the generateAction() 
method encapsulated in DemandGenerator class as shown 
in Exhibit 3. The method first checks if the provider can 
provide the inventory by calling getInventory() method. If 
a reference to a valid inventory is returned then a demand 
representing the request is created by requestInventory-
Method(). If the demand is not null, the fillInventory() 
method is invoked to fill the demand. 
 
protected void generateAction(EventGenerator gen-
erator, JSLEvent event){ 
 if (myInventoryProvider != null){ 

 // get the amount of the demand 
 int amt = 0;   
 if (myAmtRV == null) 
  amt = 1; 
 else 
  amt = (int)myAmtRV.getValue(); 
  InventoryIfc i = myInventoryProvider.   
getInventory(myItemType, this); 
 if (i != null){ 
   
  Demand d = 
i.requestInventory(getItemType(), this, amt); 
  
 if (d != null) 
  i.fillInventory(d); 
 } 
} 

} 

Exhibit 3: Generating Demands and Requesting Inventory 
 
In this logic, demands are created by the Inventory class.  
Demand represents a “contract” at the current time to po-
tentially fill a request. The demand object has information 
concerning how much can be filled at the current time, 
whether the request will be backlogged, etc. The sender of 
the request (in this case a DemandGenerator) can decide to 
have the demand filled or not, depending on the status of 
the request.  In this simple case, the demand is then given 
back to the inventory class via the fillInventory() method 
and asked to be filled at the current simulation time. 

The fillinventory() method of the Inventory class deals 
with the request for the demand initially according to its re-
quest status, such as FILL_ALL, BACKLOG_PARTIAL, 
BAKLOG_NO_PARTIAL, LOST_PARTIAL and 
LOST_ALL, which is set when the demand is requested via 
the requestInventory() method. After checking the demand’s 
request status, the demand is processed via an internal han-
dleInitialRequest() method. If the demand cannot be filled 
immediately, the Inventory class uses the instance of De-
faultBacklogPolicy, to handle the backlogging of the de-
mand (if permitted).  In the case where the demand can be 
filled, it is necessary to invoke the inventory control policy. 
The inventory evaluation event is managed through the in-
1456
ventory policy specified, RQInventoryPolicy in our case, 
whose mechanism is provided by the InventoryPolicyAb-
stract class. For example, associated with the above case, 
handleInitialRequest() triggers the checkInventory() method 
of the supplied RQInventoryPolicy.  Exhibit 4 presents a 
code-snippet from the Inventory class and the RQInventory-
Policy class. From this code, it is easy to see that the Inven-
tory class delegates the policy checking behavior to its sup-
plied policy, making it easy to change policies before and 
during a simulation run. 

 
// within Inventory class 
protected final void checkInventory(){ 
 myInventoryPolicy.checkInventory(); 
} 
 
// within RQInventoryPolicy 
public void checkInventory() { 
 int ip = getInventoryPosition(); 
 if (ip <= myReorderPoint){ 
  requestReplenishment(myReorderQty); 
 }  
} 

Exhibit 4: Invoking the Inventory Policy 
 
In summary, the RQInventoryModel uses an RQInventory-
Policy to control the inventory. It uses a DemandGenerator 
to generate arrivals, similar to standard CREATE modules in 
languages like Arena. In this RQInventoryModel, backlog-
ging is permitted while no partial filling is allowed.  The 
backlog is processed by the instance of DefaultBackLog-
Policy where the discipline for the backlog queue is FIFO. 
An object of the Inventory class is used to represent the in-
ventory and keep track of its states. RQInventoryModel also 
uses an instance of the LeadTimeReplenishmentProvider 
class to provide the replenishment for inventory. The Lead-
TimeReplenishmentProvider allows  time-based shipping to 
replenish the inventory. The sequence diagram of the im-
plementation is provided in Figure 4.  
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require scheduling 
for replenishment 
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replenishment 
back 
 receive 

notification 

receive
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Figure 4 Sequence Diagram Between Major Objects 
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While much of the underlying logic has been omitted 

from this paper, we can see that the inventory package has 
many capabilities for easily modeling inventory systems.  
We have implemented and tested other inventory policies 
and the structure of the framework allows for easily plug-
ging-in behavior to make supply chains.  In the next exam-
ple, we illustrate how the inventory package can be used to 
simulate a multi-echelon inventory system, simply by de-
fining and “hooking” up the objects within the system. 

2.2 Simulating a Multi Echelon System with the 
Inventory Package 

The functionality of important classes in the Inventory 
Package has been demonstrated in detail through the a 
(r,Q) Inventory Model. This section illustrates the use of 
the inventory package to modeling a typical multi item 
multi echelon inventory system. 

Figure 5 illustrates a three echelon supply chain han-
dling demands for 4 items. There are four retailers: Retailer 
A, B, C and D, having demands for Items 1, 2, 3 and 4, at 
echelon 1, where the demand arrives according to a Pois-
son distribution. The retailers follow a (r,Q) inventory pol-
icy and have a warehouse as their inventory provider, 
which also follows a (r,Q) inventory policy. The lead time 
for each item shipped from the warehouse to the retailers is  
constant. The warehouse is replenished by a factory which 
manufactures in response to the order with a production 
delay which is also constant. 

We begin by discussing the key set of classes and in-
terfaces that facilitate the model building for multi item 
multi echelon inventory systems. 

 
• InventoryIfc 
• InventoryCustomerIfc 
• InventoryProviderIfc 
• InventoryShipperIfc 
• InventoryHoldingPoint 
• LeadTimeReplenishmentProvider 
• NoDelayShipper 
• TimeBasedItemTypeShipper 

 
InventoryCustomerIfc declares all the operations per-

taining to a customer in an inventory system and the Inven-
toryProviderIfc describes the behavior of a provider of in-
ventory.  An inventory provider can be asked if it provides 
inventory that meets a customer’s requirements by means 
of the providesInventory() method and then the getInven-
tory() method can be used to actually get access to the in-
145
ventory at a particular provider’s location. However this 
transaction is permitted only if the customer and provider 
permits an agreeable transaction (for example: both may 
permit backlogging or not or both may permit partial fill-
ing or not etc.). This is achieved by means of permitRe-
plenishmentBackLogging and permitReplenishmentPar-
tialFilling methods for customers.  

InventoryShipperIfc facilitates shipping the items from 
the provider to the customer. In order to facilitate the re-
plenishment of shipments, there is an abstract base class 
InventoryShipperAbstract that can be used to model this 
behavior.  For example, two typical shippers are: NoDe-
layShipper where a replenishment is achieved instantly and 
TimeBasedItemTypeShipper to cause a delay with which a 
replenishment is made based on the type of item being 
shipped. 

The InventoryHoldingPoint class, encapsulates all the 
features of holding inventory at a particular location.  An 
inventory holding point has all the behaviors of inventory 
through an implementation of the InventoryIfc interface; it 
can act as a customer by implementing InventoryCus-
tomerIfc and can act as a provider by implementing the In-
ventoryProviderIfc interface.  Thus, an inventory holding 
point acts as both a customer (to other inventory holding 
points) and a provider (to other inventory holding points) 
within the inventory system.  Figure 6 illustrates the attrib-
utes and the operations of the IHP and the interfaces it im-
plements. The LeadTimeReplenishmentProvider is quite 
similar to the InventoryHoldingPoint except that it has it-
self as its own inventory provider. LeadTimeReplenish-
mentProvider has a TimeBasedItemTypeShipper object 
embedded within it and it causes a delay in replenishment 
to its customer as per the specified the distribution.  This 
allows the top of the multi-echelon network to be modeled 
with a location that has an infinite supply of items that can 
be requested with a time delay. 

With these basic classes/interfaces defined, we can 
now model the example.  The 4 SKUs within the system 
are first declared and their associated DemandGenerator 
objects created as discussed in the previous section. The 
former is achieved through the object ItemType which 
takes the ID of the SKU as an argument (illustrated pictori-
ally in Figure 5). The Demand object associated with each 
ItemType object is the “entity” moving within the system. 
The events related to these entities causes the simulation to 
run.  
7
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Figure 5. Multi Product Multi Location Problem 
 
All the retailers have the attributes of an inventory sys-

tem as well as an inventory provider (retailer is an inven-
tory provider to the customer demand: DemandGenerator 
object) and an inventory customer (retailer is an inventory 
customer of the warehouse: InventoryHoldingPoint object). 

 

 
Figure 6 InventoryHoldingPoint 

 
Since the InventoryHoldingPoint class encapsulates all the 
above three roles, we create the retailer A, B, C and D as 
instances of the InventoryHoldingPoint class. Similarly, we 
declare the warehouse also as an instance of the Inven-
toryHoldingPoint class, because it has the attributes of an 
145
inventory system as well as an inventory provider (to the 
retailers) and an inventory customer (to the factory,  e.g. 
LeadTimeReplenishmentProvider). In the example, the 
factory meets the orders of the warehouse with a produc-
tion delay and we declare it as a LeadTimeReplenishment-
Provider. The retailer A, retailer B, retailer C, retailer D, 
warehouse and factory are the major model elements 
within the simulation model and they are declared within 
the code as in Exhibit 5. 

 
ItemType type1 = new ItemType(m, "Type-1"); 
ItemType type2 = new ItemType(m, "Type-2"); 
ItemType type3 = new ItemType(m, "Type-3");   
ItemType type4 = new ItemType(m, "Type-4"); 
 
LeadTimeReplenishmentProvider supplyFactory = new 
LeadTimeReplenishmentProvider(m); 
InventoryHoldingPoint warehouse= new Inventory-
HoldingPoint(m, supplyFactory, warehouseShipper, 
"W"); 
InventoryHoldingPoint retailerA = new Inventory-
HoldingPoint(m, warehouse, retailerShipper, "R-
A"); 
InventoryHoldingPoint retailerB = new Inventory-
HoldingPoint(m, warehouse, retailerShipper, "R-
B"); 
InventoryHoldingPoint retailerC = new Inventory-
HoldingPoint(m, warehouse, retailerShipper, "R-
C"); 
InventoryHoldingPoint retailerD = new Inventory-
HoldingPoint(m, warehouse, retailerShipper, "R-
D"); 

Exhibit 5: Declaring the Elements of the System 
 
The IHP receives requests from its customers. For ex-

ample, in this problem RetailerA is an IHP and its cus-
tomer is the DemandGenerator which generates demand 
say for Item-1. When the demand is generated, it identifies 
its inventory provider and requests inventory (it passes a 
reference of the Inventory object) and if both parties meet 
the requirements (backlogging, partial filling etc.), then the 
8
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customer triggers the fillInventory() method in the IHP 
(inherited from the InventoryIfc, Figure 10) and the IHP 
triggers a shipment to the customer by the shipReplenish-
ment() method of the shipper class assigned to it. The re-
tailer A is assigned a NoDelayShipper and when shipRe-
plenishment() is invoked the customer receives its 
replenishment. In this case the replenishment is achieved 
with no delay. However, if the TimeBasedItemTypeShip-
per is assigned to the retailer, the replenishment can be eas-
ily scheduled with a delay. 

Each time a demand is fulfilled or replenishment from 
demands arriving to an IHP, the inventory is checked ac-
cording to its inventory policy. The InventoryPolicy, if  it 
finds that a replenishment from the provider has to be 
made, it then requests its provider for replenishment. Even-
tually, its provider schedules the shipment to the IHP and 
when the shipment arrives also, the inventory policy 
checks its inventory. 

Inventory at each IHP is designated by item type and 
added to each IHP accordingly. For the example, we used 
an (r,Q) inventory policy for each item at each location and 
we allow backlogging but do not allow partial filling. This 
is achieved by the addRQInventoryItem() method in the 
InventoryHoldingPoint class. Exhibit 6 has a code snippet 
showing how the method is invoked to add inventory at re-
tailer B.  
 
   retailerB.addRQInventoryItem(type1,2,2,1); 
   retailerB.addRQInventoryItem(type2,2,2,1); 
   retailerB.addRQInventoryItem(type3,2,2,1); 
   retailerB.addRQInventoryItem(type4,2,2,1); 

Exhibit 6 :Adding Inventory to an IHP 
 

Once all the Inventory objects of each item type are added 
at the retailers and the warehouse, we create objects that 
will facilitate shipping the items from factory to ware-
house, warehouse to retailer, and retailer to the customer. 
In order to schedule shipments of replenishment, the inven-
tory package has implemented shipper classes that can 
schedule delay for replenishment. The shipment from re-
tailer to the customer is to be achieved instantly and an in-
stance of the NoDelayShipper class  is created for this pur-
pose as in Exhibit 7 and is assigned to the retailers when 
the retailer objects are created (Exhibit 5).  

 
// The retailer uses a NoDelayShipper to ship to 
its customers 
NoDelayShipper retailerShipper = new NoDelay-
Shipper(m); 

Exhibit 7: NoDelayShipper Class for Demand Fulfillment 
 

The warehouse ships its items to the retailers facilitated 
through an instance of the TimeBasedItemTypeShipper 
class which is created as in Exhibit 8. The distribution that 
governs the lead time is added to the shipper and is as-
1459
signed to the warehouse when the warehouse object is cre-
ated (Exhibit 5).  
 
TimeBasedItemTypeShipper warehouseShipper = new 
TimeBasedItemTypeShipper(m); 
warehouseShipper.addLeadTime(type1,lt1); 
warehouseShipper.addLeadTime(type2,lt2); 
warehouseShipper.addLeadTime(type3,lt3); 
warehouseShipper.addLeadTime(type4,lt4); 

Exhibit 8: TimeBasedItemTypeShipper generation 
 

The factory is modeled as an instance of LeadTimeReplen-
ishmentProvider and the TimeBasedItemTypeShipper 
which is embedded within it allows the  assignment of the 
lead times of each item type via the addLeadTime() 
method (Exhibit 9). 

 
// within the LeadTimeReplenishmentProvider 
  DistributionIfc pt1 = new Constant(1.0); 
  supplyFactory.addLeadTime(type1,pt1); 

Exhibit 9: Lead Time Assignments 
 

Once the shippers are assigned the model is ready to be 
run. We set a replication length of 10 years and a warm up 
period of an year and the experiment is replicated  30 
times. The results are summarized for the item tye1 for the 
purpose of illustration in the Table 2. (The half widths for 
all the responses were 0.00 for all the performance meas-
ures indicating at least two significant digits). 
 

Table2: MIME Results for Item-1 

Type-1 
Results 

Stock-
out 

Freq. 

Avg. 
OnHand 

Inv. 

Avg. 
OnOrder 

Inv. 

Avg. 
Back-
logged 

WareHouse 0.05 3.02 2.00 0.02 
Retailer-A 0.01 2.50 0.50 0.00 
Retailer-B 0.01 2.50 0.51 0.00 
Retailer-C 0.01 2.50 0.51 0.00 
Retailer-D 0.01 2.50 0.50 0.00 

 
We also modeled the above problem in Arena in order to 
compare the performance measures of stock-out frequen-
cies as well as  average inventories and backorders at each 
echelon (Table 2). The results were the same to within sta-
tistical error.  Although the model here is small, there are 
no physical limitations (except for memory) that limit the 
size of the model (e.g. number of echelons, retailer, ware-
house, inventory items, allocation of inventory to each 
IHP, etc. 

3 SUMMARY 

In this paper we have introduced and illustrated the use of  
the jsl.modeling.elements.supplychain.inventory package, 
which has been developed as a part of an object-oriented 
framework for simulating supply chains, particularly the 
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ones within the military’s new sense and response logistics 
where the structure of the supply chain can be enormously 
complex and dynamic. 

The inventory package, currently consisting of 18 
classes and 8 interfaces and is built upon a Java Simulation 
Library. By defining and “hooking” up the objects a vari-
ety of inventory systems can be simulated by redefining 
the input parameters. For example, an instance of “De-
mand” can be used to deal with a variety of complex sys-
tems in which demand can be backlogged,  lost or partially 
lost along with  partially filling options or not. Similarly, a 
Demand Generator can describe a variety of cases where 
demand arises from any distribution governing the time be-
tween demand. In addition, the InventoryPolicyAbstract 
can be used to implement a variety of inventory policies.  
Currently the (r,Q) and (s,S) inventory policies in continu-
ous as well as periodic schema are built into the inventory 
package.  

In this paper we did not provide a complete discussion 
of all of the implementation details of all classes, instead 
we provide enough detail on important classes along with 
their important behaviors in order to illustrate their use as 
well as functionality through two examples. Hence, the 
reader can make conceptual modeling with the “Inventory 
Package” developed for these cases concrete.  In addition, 
it should now be clear that a variety of complex systems 
can be modeled where at each echelon, at each inventory 
holding point, as well as for each item type a variety of dif-
ferent inventory policies, backlogging policies, and de-
mand shipment options can be used.  In addition, because 
the framework is object-oriented and built on Java, the 
modeler can use all the power of the object-oriented mod-
eling and Java to develop additional models and behaviors. 

Currently, the aggregation of performance at each 
echelon to provide the overall assessment of the system 
evaluation, is under development. It should be also noted 
that the package described here constitutes only the “inven-
tory layer” of the supply chain framework and on-going 
research is being directed to combine this layer with the 
“facility layer” and the “transport layer” to simulate and 
evaluate entire supply chains from the demand arising from 
a customer point to being produced by supplier, and trans-
ported back through multiple echelons to the customer.  
The facility layer will handle complex order processing 
and the transport layer will handle the complexities of 
truck load and less-than-truck load shipping. 

In addition to these modeling efforts, work is in pro-
gress to provide database persistence to the supply chain 
models developed within the framework, from which the 
parameters for the model, such as each item’s distributions, 
lead time, BOM, etc. can be supplied through to the simu-
lation model easily along with overall cost components for 
the entire supply chain. Finally, all of the these research 
activities are meant to be used for the evaluation of sense 
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and respond logistics systems and to facilitate their optimi-
zation. 

ACKNOWLEDGMENTS 

This material is based upon work supported by the Air 
Force Office of Sponsored Research and the Air Force Re-
search Laboratory. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are 
those of the author(s) and do not necessarily reflect the 
views of the Air Force. 

REFERENCES 

Al-Rifai, M. H. and M. D. Rossetti. 2006. An Efficient 
Heuristic Optimization Algorithm for a Two-Echelon 
(R, Q) Inventory System. Accepted for publication in 
the International Journal of Production Economics. 

Booch, G., J. Rumbaugh, and I. Jacobson.,  1999. The Uni-
fied Modeling Language User Guide. Addison-
Wesley. 

Culosi, S. J. 2001. A simulation for evaluating the opera-
tional readiness of the supply chain. MacLean, VA. 

Dong, M. 2001. Process modeling, performance analysis 
and configuration simulation in integrated supply 
chain network design. Doctoral Dissertation, Virginia 
Polytechnic Institute and State University, Blacksburg, 
VA. 

Engels, G. and L. Groenewegen. 2000. Object-Oriented 
Modeling: A roadmap, In Proceedings of the Confer-
ence on the Future of Software Engineering, ed. A. 
Finkelstein, 105-116. Limerick, Ireland. 

Ingalls, R. G. 1998. The value of simulation in modeling 
supply chains. In Proceedings of the 1998 Winter 
Simulation Conference, ed. D.J. Medeiros, E.F. Wat-
son, J.S. Carson and M.S. Manivannan, 1371-1375. 
Piscataway, New Jersey: Institute of Electrical and 
Electronic Engineers. 

Pratt, D. B, P. A. Farrington, C. B. Basnet, H. C. Bhuskute, 
M. Kamath, and J. H. Mize. 1991. A framework for 
highly reusable simulation modeling: separating 
physical, information, and control elements. In Simu-
lation Symposium, Proceedings of the 24th Annual, 
254 –261. New Orleans, LA, USA. 

Muckstadt, J. A. 2005. Analysis and Algorithms for Service 
Parts Supply Chains. New York: Springer. 

Rossetti, M. D., B. Aylor, R. Jacoby, A. Prorock, and A. 
White. 2000. Simfone′: An object-oriented simulation 
framework, In Proceedings of the 2000 Winter Simu-
lation Conference, ed. J. Joines, R. Barton, P. Fish-
wick, and K. Kang, ACM/SIGSIM, ASA, IEEE/CS, 
IEEE/SMCS, IIE, INFORMS/CS, NIST and SCS, 
1855-1864. 

Rossetti, M. D., and H. T. Chan. 2003. A Prototype Object-
Oriented Supply Chain Simulation Framework. In 



Rossetti, Miman, Varghese, and Xiang 

 

 
Proceedings of the 2003 Winter Simulation Confer-
ence, ed. S. Chick, P. J. Sánchez, D. Ferrin, and D. J. 
Morrice, ACM/SIGSIM, ASA, IEEE/CS, 
IEEE/SMCS, IIE, INFORMS/CS, NIST and SCS. 

Rossetti, M. D. 2005. Modeling and Simulation Based 
Framework for Sense and Respond Logistics Con-
cepts. Report AFSOR Tasks, Department of Industrial 
Engineering, University of Arkansas, Fayetteville, AR. 

Rossetti, M. D. and S. Thomas. 2005. Object-Oriented 
Multi-Indenture Multi-Echelon Spare Parts Supply 
Chain Simulation Model. Accepted for publication in 
the International Journal for Modeling and Simula-
tion. 

Systecon. 2001. SIMLOXv2 logistics simulation from Sys-
tecon [Homepage of Systecon], [Online]. Available: 
<http://www.systecon.co.uk/simlox.htm> [accessed on 
2002] . 

Swaminathan, J.M. 1998. Modeling supply chain dynam-
ics: A multi-agent approach. Decision Sciences 29 (3): 
607-632. 

Zipkin, P. H. 2000. Foundations of Inventory Management. 
McGraw-Hill Companions, Inc. 

AUTHOR BIOGRAPHIES 

MANUEL D.  ROSSETTI, Ph. D., P. E. is an Associate 
Professor in the Industrial Engineering Department at the 
University of Arkansas.  He received his Ph.D. in Industrial 
and Systems Engineering from The Ohio State University. 
Dr. Rossetti has published over thirty-five journal and con-
ference articles in the areas of transportation, manufacturing, 
health care and simulation and he has obtained over $1.5 
million dollars in extra-mural research funding.  His research 
interests include the design, analysis, and optimization of 
manufacturing, health care, and transportation systems using 
stochastic modeling, computer simulation, and artificial in-
telligence techniques.  He was selected as a Lilly Teaching 
Fellow in 1997/98 and has been nominated  three times for 
outstanding teaching awards.  He is currently serving as De-
partmental ABET Coordinator.  He serves as an Associate 
Editor for the International Journal of Modeling and Simula-
tion and is active in IIE, INFORMS, and ASEE.  He served 
as co-editor for the WSC 2004 conference.  His email and 
web addresses are <rossetti@uark.edu> and 
<www.uark.edu/~rossetti>. 

MEHMET MIMAN is a PhD student in the Department 
of Industrial Engineering at the University of Arkansas.  
Prior to coming to the University of Arkansas, he received 
his M. I.E. from North Carolina State University, and B.S. 
in Industrial Engineering from Bilkent University.  He 
served in NCSU as a Teaching Assistant for Statistical 
Quality Control for two years and taught Production Plan-
ning and Control Course in Atilim University.  Currently 
he is a Research Assistant in the University of Arkansas 
1461
and a member of IIE and INFORMS.  His primary research 
interests are in Reliability and Supply Chain Management. 

VIJITH M. VARGHESE, M.S.I.E. is a Research Assistant 
and a Ph.D. student in the Department of Industrial Engi-
neering at the University of Arkansas. He received his M.S. 
in Industrial Engineering from the University of Arkansas 
and B.Tech. in Mechanical Engineering from the Mahatma 
Gandhi University, India. His areas of interest include com-
puter simulation, demand modeling and forecasting, and the 
design and analysis of supply chain systems. 

YISHA XIANG is a Research Assistant and a Ph.D. student 
in the Department of Industrial Engineering at the University 
of Arkansas. She received her B.S. in Industrial Engineering 
from Nanjing University of Aero.&Astro., China. Her area 
of interest is in repairable system modeling. 

http://www.systecon.co.uk/simlox.htm
mailto:rossetti@comp.uark.edu
http://www.uark.edu/~rossetti

	MAIN MENU
	PREVIOUS MENU
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



