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ABSTRACT 

While a variety of optimization formulations of production 
planning problems have been proposed over the last fifty 
years, the majority of these are based on simple models of 
capacity that fail to reflect the nonlinear relationship be-
tween workload and lead times induced by the queuing be-
havior of capacitated production resources. We use system 
dynamics simulations of a simple capacitated production 
system to examine the performance of several different ca-
pacity models that yield load-dependent lead times, and re-
late these models to those used in system dynamics models 
of production systems.  

1 INTRODUCTION 

The production planning problem may be defined as that of 
assigning available production resources to different prod-
ucts over time to optimize some measure of the firm’s per-
formance. The formulation of these problems as determi-
nistic optimization problems dates back to the seminal 
work of (Modigliani and Hohn 1955) and (Holt et al. 
1956). The basic approach of most of these models, 
whether they be integer or linear programs, is to divide the 
time horizon over which production is to be planned into 
discrete time periods. Within each period the capacity of 
each production resource is represented in some aggregate 
manner, usually as the total number of hours the resource 
can be loaded during the time bucket. Decision variables 
are associated with each planning period representing, at a 
minimum, the planned production or release quantities and 
ending inventories of each product for that period. How-
ever, in order to effectively match the firm’s production to 
its demand, production planning models need to consider 
the lead times that elapse between work being released into 
the plant and its emergence as finished product that can be 
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used to meet demand. The vast majority of existing linear 
and integer programming models for production planning 
(Hackman and Leachman 1989; Johnson and Montgomery 
1974), as well as the widely used Material Requirements 
Planning (MRP) procedure (Orlicky 1975), treat lead times 
as exogeneous parameters independent of the decision 
variables in the model. This leads to a fundamental circu-
larity in these kinds of models. Queuing models (Hopp and 
Spearman 2001; Buzacott and Shanthikumar 1993)  tell us 
that lead times increase nonlinearly in both mean and vari-
ance with resource utilization. However, the work release 
decisions made by the planning model determine the utili-
zation level of the production resources in a planning pe-
riod, and hence the lead times that will be realized.  

In recent years there has been growing interest in de-
veloping production planning models using representations 
of capacity that permit the representation of  workload-
dependent lead times (Pahl et al. 2005). In this paper we 
use system dynamics simulations (Sterman 2000) of a sim-
ple capacitated production system to examine the behavior 
of several different capacity models that have been sug-
gested in the production planning context. We also relate 
several of these models to counterparts in the system dy-
namics literature as well as some approaches suggested in 
the system dynamics literature for modeling the behavior 
of production resources. 

In the following section we give  a brief review of 
previous work related to modeling production systems with 
load-dependent lead times. We then focus on a particular 
class of these models, those based on clearing functions 
that represent the relationship between the expected output 
of the production system in a planning period and the ex-
pected work in process inventory (WIP) level during that 
period. Section 4 presents the design of the simulation ex-
periments, together with the implementation of these mod-
els in the VENSIM software. We then present the results of 
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the simulation experiments and discuss their significance. 
The paper concludes with a summary of the principal in-
sights and some directions for future research. 

2 PREVIOUS RELATED WORK 

While a variety of definitions of manufacturing capacity 
are discussed in both the academic and the trade literature, 
accurate measurement of manufacturing capacity is sur-
prisingly difficult (Elmaghraby 1991). The amount  and 
mix of output a capacitated production resource can pro-
duce over a specific time interval can depend on lot sizes, 
processing times, the distributions of the random variables 
associated with the system, the mix of products to be pro-
duced. An extensive literature has been developed using 
stochastic models, particularly queuing models, to examine 
the effects of these different factors on the performance of 
production systems (Buzacott and Shanthikumar 1993;  
Karmarkar 1993; Hopp and Spearman 2001). In particular, 
queuing research has shown that lead times increase 
nonlinearly with resource utilization in both expectation 
and variance, and that this degradation of lead times begins 
to be observed long before the utilization reaches to 1. 
Thus, deterministic production planning models that seek 
to effectively match the firm’s supply to its estimated de-
mand over time are faced with a circularity: in order to 
match supply to demand, the model must capture lead 
times, but lead times are a result of the planning decisions 
made by the model itself. 
 There have been two basic approaches to this problem 
in the literature. By far the most common is to treat lead 
times as an exogeneous parameter independent of the deci-
sion variables in the planning model. A thorough discus-
sion of this approach is given by (Hackman and Leachman 
1989). The other approach is to link the planning model to 
a detailed scheduling or simulation model that determines 
whether the plans developed by the planning model are ac-
tually feasible. Examples of this type of approach are given 
by Pritsker and Snyder (1997) and Dauzere-Peres and 
Lasserre (1994). 
 A number of authors have proposed enhanced LP for-
mulations that model the dependency between lead times 
and resource utilization to some degree. Lautenschlager 
and Stadtler (1998) suggest a model where the lead times 
are captured by allowing the production in a given period 
to become available over several future periods. Voss and 
Woodruff (2003) propose a nonlinear model where the 
function linking lead time to workload is approximated as 
a piecewise linear function. Other authors, such as Kekre 
(1984) and Ettl et al. (2000) have followed a similar ap-
proach, essentially including a nonlinear term representing 
the costs of carrying WIP as a function of workload in the 
objective function. The clearing function (CF) approach 
differs in that the nonlinear behavior of the system is em-
bedded in the constraints rather than the objective function.  
1856
 Other authors have suggested iterative techniques for 
addressing the fundamental circularity. Riano et al. (2003) 
present a formulation that models random lead times, but 
assumes that lead time distributions for products are inde-
pendent, which is unlikely if they share production capac-
ity. In addition, the distribution of lead times appears to be 
time-stationary, which is again of limited accuracy if work-
loads vary over time. In subsequent work Riano (2003) de-
rived an iterative approach based on estimating the fraction 
of the work released in a given period that will emerge as 
output in a given future period. An initial set of release de-
cisions is made and the weights associated with that release 
pattern are estimated. A linear programming model using 
these weights is then solved to obtain a new release pat-
tern, and the iteration proceeds until convergence. Hung 
and Leachman (1996) propose an alternative iteration 
scheme where an initial set of lead time estimates is ob-
tained and used in an LP model that determines work re-
lease decisions over time. The resulting releases are then 
simulated to estimate the realized lead times associated 
with that release pattern, and the realized lead times are 
now used for another iteration of the planning model. This 
approach is further refined in (Hung and Hou 2001).  
 A promising approach to capturing the relationship be-
tween workload and lead times in production planning that 
has received increasing interest recently (Pahl et al. 2005) 
is the use of clearing functions, originally suggested by 
Graves (1986, 1988) and further developed by Karmarkar 
(1989) and Srinivasan et al. (1988). These approaches form 
the focus of the simulation models in this paper, and are 
described in the following section. 
 System dynamics models (Sterman 2000; Forrester 
1962) have been used extensively for decades to model 
supply chains. As such, they include their own representa-
tions of manufacturing capacity and the relationship be-
tween workload, WIP and lead times. In this paper we use 
system dynamics models to examine the behavior of dif-
ferent models of manufacturing capacity in the face of dif-
ferent demand patterns. Our objectives are to illustrate the 
assumptions about system behavior that are implicit in the 
different capacity models, and to link the system dynamics 
terminology to that used in the production planning com-
munity in order to facilitate interaction between these areas 
in the future. 

3 CLEARING FUNCTIONS 

As suggested by Graves (1986, 1988), a  clearing function 
relates the expected output of a production resource over a 
given planning period to the WIP level during that period. 
Figure 1 illustrates several different clearing functions 
studied in the literature along with other models of the rela-
tionship between WIP and throughput. The “Constant Pro-
portion Clearing Function (CPCF)” of (Graves 1986) al-
lows unlimited output in a planning period, but ensures 
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fixed lead-time. However, by linking production rate to 
WIP level, it differs from the fixed delays used in most LP 
models, where the output of a production process is simply 
the input shifted forward in time by the fixed lead time. 
The “Fixed Capacity” function corresponds to a fixed up-
per bound on output over the period, but without a lead-
time constraint it implies instantaneous production, since 
production occurs without any WIP in the system. This is 
reflected in the independence of output from the WIP level, 
which may constrain throughput to a level below the upper 
bound by starving the resource. Typical LP formulations 
enforce an upper bound on output via an aggregate capac-
ity constraint and allow the possibility of output being con-
strained by available inventory levels through the presence 
of inventory balance constraints. This latter is denoted by 
the “Fixed Exogenous Lead Time (FELT)” line, whose 
slope is equal to the inverse of the unit average processing 
time of work at the resource. This approach is implemented 
in, for example, the MRP-C approach of (Tardif and 
Spearman 1997) and the LP approaches of (Hackman and 
Leachman 1989) and (Billington et al. 1983). It is apparent 
from the figure that the clearing function always lies below 
the “FELT” and “Fixed Capacity” lines, which together 
represent the capacity constraints of a typical LP model.  
 

 

 
Figure 1: Different Clearing Functions 

 
 Karmarkar (1989) and Srinivasan et al. (1988) propose 
production planning formulations using clearing functions 
for single product systems. Asmundsson et al. (2006) and 
Asmundsson et al. (2006) extend these formulations to 
multiple product systems, discuss the estimation of the 
clearing functions form empirical data and provide exten-
sive computational experiments comparing the perform-
ance of the clearing function models to that of conven-
tional linear programming models with fixed lead times. 
Our objective in this paper is to compare the behavior of 
this representation of production capacity relative to other 
commonly used representations in production planning and 
system dynamics.  
185
4 CAPACITY MODELS SIMULATED 

In this section we describe the different models of capacity 
that constitute the simulation models used. For simplicity 
of exposition we shall focus on a single product production 
system consisting of a number of machines or machine 
groups. We shall denote the amount of work released to the 
system at the beginning of period t by Rt, the output of the 
production system over that period by Xt and the amount of 
WIP in the system at the end of the period by Wt. The 
amount of inventory of finished product at the end of pe-
riod t is denoted by It, and the exogenous demand for the 
product during the planning period by Dt. Our primary fo-
cus will be on the relationship between Rt, Wt and Xt. Fi-
nally, we shall denote the maximum possible output of the 
system in period t by Ct. In practice this would represent 
the production rate of the bottleneck resource. All quanti-
ties are defined in units of time; thus, for example, Rt 
represents the number of hours of work released into the 
system in period t.  We now describe the different capacity 
models simulated. 

4.1 Fixed Exogenous Lead Time 

This representation of lead times, which we will refer as 
FELT, is common both in the mathematical programming 
literature on production planning and the inventory litera-
ture. The lead time of the production system is represented 
as a fixed, exogenous constant L. Thus the behavior of this 
system is characterized by the relationship 

 
Xt = Rt-L      (1) 

 
In systems dynamics terminology, this is a pipeline or 

fixed delay (Sterman 2000, p. 411) where the output of the 
process emerges from the process in exactly the order in 
which it enters, but L time units after it entered with perfect 
conservation of material. 

4.2 Constant Proportion Clearing Function 

This clearing function, which we shall denote by CPCF, 
was first proposed and analyzed by Graves (1986, 1988) 
based on empirical observation of a manufacturing plant 
described in (Fine and Graves 1989). The governing rela-
tionship here is given by 

 

Xt  = 
Wt

L
             (2) 

 
where L is the lead time (in time units). For example, if the 
lead time is 4 time units then this model states that in a 
given time unit only 25% of the work-in-progress is proc-
essed to completion.  
7
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In system dynamics terminology, this is a first-order 
material delay (Sterman 2000, p. 416), which assumes per-
fect mixing of the units in the WIP; essentially any item in 
WIP has the same probability of emerging as output re-
gardless of when it entered the system. 

4.3 Capacitated Constant Proportion Clearing 
Function 

An obvious disadvantage of the CPCF is apparent from 
Figure 1: at high WIP levels it will suggest output levels in 
excess of the available resource capacity Ct. The Capaci-
tated CPCF model, denoted by C-CPCF (depicted with 
dashed line in Figure 1), addresses this by limiting the 
maximum output in a period, giving  

 

 
Xt  = min {

Wt

L
 , Ct  } .    (3) 

 

4.4 Concave Saturating Clearing Function 

This is the form of clearing function suggested by 
Karmarkar (1989) and Srinivasan et al. (1988). We shall 
denote it by CSCF in the remainder of the paper. The intui-
tion is that as the utilization increases, the congestion ef-
fects of queuing cause the output to increase with WIP but 
at a decreasing rate. Extensive empirical analysis using 
simulation models supports the assumption that this func-
tion will be concave; Asmundsson et al. (2006) show that 
clearing functions derived from steady-state queuing rela-
tionships such as the Pollaczek-Khintchine formula for the 
M/G/1 queue or from queuing analysis of the short-term 
behavior of the queue yield functions with the postulated 
concave form. In our experiments we use a CSCF of the 
form 

 

 
Xt  = 

CtWt

Wt  + K
,     (4) 

 
where K is a user-defined parameter controlling the curva-
ture of the function. Note that this functional form yields 
 

 
 
lim

Wt →∞
Xt  = Ct .     (5) 

 
In system dynamics terminology, this type of function is 
called a Fuzzy MIN function discussed by (Sterman 2000, 
p. 529). Interestingly, he does not use this function in the 
models of capacitated manufacturing systems he develops 
in later chapters. 
 The majority of the researchers in the production 
community who work with clearing functions derive them 
from some form of queuing model. It is interesting to note 
185
that essentially the same model can be derived using a sys-
tem dynamics approach, which we present in the following 
section.  

5 SIMULATION EXPERIMENTS 

The purpose of the simulation experiments presented in 
this section is to examine behavior of an arbitrary produc-
tion facility modeled at aggregate level using the different 
approaches presented in the previous section. Thus, this 
section provides insights independent of any given industry 
for discrete manufacturing systems within planning con-
text. While the specific nature of the flows within the pro-
duction system may be quite complex, such as reentrant 
flows encountered in semiconductor manufacturing (Uzsoy 
et al. 1992), we represent the production system using sim-
ple input-output relationships typical of those used in op-
timization formulations of production planning problems. 
Asmundsson et al. (2006) give an extensive discussion of 
the estimation of clearing functions in reentrant flow sys-
tems. The simulations were developed using the VENSIM 
simulation software by Ventana Systems. Figure 2 depicts 
the causal diagram of the C-CPCF model. As discussed in 
(Sterman 2000), together with the equations defining the 
flows (Starts and Production Rate), these constitute a com-
plete description of the system dynamics models used. The 
releases to the production facility are represented by the 
Starts flow which simulates a pulse release of 100 units 
starting at week 50 for 100 weeks (see last plot in Figure 
3). The work-in-progress is represented by a stock (WIP). 
The output of the production system is modeled by another 
flow whose rate is given by (3). To simulate the other ca-
pacity models used, the flow expression is modified to the 
appropriate expression given in the previous section. Fin-
ished products are accumulated in the Inventory stock.  
 

 
Figure 2: Causal Diagram of C-CPCF model   

 
The diagrams for the other simulations are similar and can 
be obtained from the authors on request. In all simulations, 
we used the parameter settings given in Table 1 to facilitate 
fair comparison of models. The relationship between these 
parameters will be highlighted as the associated simula-
tions results are being discussed. We simulate the behavior 
of each capacity model presented in the previous section 
using two different pulse inputs, one at low utilization 
8
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(0.33) and one at high utilization (1.033). The latter sce-
nario represents a situation where the input temporarily ex-
ceeds the capacity of the resource, and permits us to show 
the effect of the different capacity models when significant 
congestion effects are present. 

 
Table 1:  Simulation Parameters 

Simulation Horizon 200 weeks 
Integration Time Step 1 week 
Capacity 300 
Curvature (K) 800 
Average Cycle Time 4 weeks 
Raw Processing Time 8/3 weeks 
Low Utilization Run Pulse 100 
Congestion Run Pulse 310 

 
 
Figure 3 shows the simulation results for low utiliza-

tion runs for FELT, CPCF, C-CPCF, CSCF, First Order 
Delay and Third Order Delay models. FELT model re-
sponds to the pulse release with a fixed 4 weeks delay 
which is the perfect pipeline. CPCF and First Order Delay 
(with average cycle time) exactly coincides on top of each 
other as expected theoretically. Notice that the system 
takes longer than the average cycle time to adapt to the dis-
ruption. C-CPCF is also coincides with CPCF and First 
Order Delay due to the low utilization (33.33%). The third 
order delay with average cycle time response approaches 
the pipeline response since, as discussed by (Sterman 
2000),  as the order of delay increases the system adapts to 
the disturbances more rapidly and the pipeline delay is an 
infinite-order delay. The CSCF model responds to the 
change in the release impulse slowest but close to CPCF. 
This lag is due to the fact that actual (observed) capacity 
reaches the theoretical capacity Ct asymptotically in the 
CSCF model. This effect becomes more apparent when the 
system is running at higher utilization as seen in Figure 4. 

 

 
Figure 3: Comparison of Models: Low Utilization 
 
 
In Figure 4, all models except for CSCF respond to the 

pulse release of magnitude 310, which is higher than the 
1859
theoretical capacity Ct = 300, in an almost identical manner 
to the low utilization case. This suggests that they fail to 
capture the congestion phenomena observed in many 
manufacturing setups. The curvature K of the clearing 
function was calculated to be 800 based on an assumed raw 
processing time, i.e., throughput time of the line with no 
congestion, of 2.67 weeks. 

 

 
Figure 4: Comparisons of Models: High Utilization 
 

 
The model presented in Figure 5 shows how a conven-

tional systems dynamics approach might model the behav-
ior of a production system subject to congestion. When the 
production facility is empty it takes raw processing time to 
produce the first product. As the WIP accumulates conges-
tion effects begin and hence the cycle time increases. The 
production rate (throughput) increases at a decreasing rate 
as WIP accumulates. The model of Figure 5 captures this 
dependency with a linear relationship between cycle time, 
WIP, total capacity and raw processing time: cycle time is 
equal to raw processing time plus WIP divided by total ca-
pacity. Note that this linear relationship is identical to the 
tangent to clearing function given by (4) where the raw 
processing time is equal to K/Ct. Figure 6 compares this 
model to CSCF under high utilization condition. As sus-
pected the responses of these two models exactly overlap 
on to each other. 

 
 

 
Figure 5: Conventional Systems Dynamics Model 
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Figure 6: Comparison of Clearing Function to Conven-
tional Systems Dynamics Model 

 

6 CONCLUSIONS 

The simple system dynamics simulations presented above 
show that a number of models used in the production plan-
ning and system dynamics literatures fail to capture the be-
havior of production systems at high utilization. Although 
all models behave quite similarly at low utilization levels. 
The CSCF model is shown to represent the nonlinear 
changes in system performance at high utilization in a 
manner consistent with insights from queuing models and 
industrial practice. We have also related the production 
planning models to those used in the system dynamics 
community, and shown how to derive the CSCF model us-
ing a system dynamics approach rather than the queuing 
approach from which most clearing functions are derived 
in the production planning literature. These results imply 
that the FELT model in widespread use in optimization 
formulations of production planning problems fails to rep-
resent the behavior of production systems at the high utili-
zation levels common in capital-intensive industries such 
as the semiconductor industry (Atherton, R. W.  and J. E. 
Dayhoff 1986a,b). A natural extension to this work is a 
comparative study of the effects of policies devised by util-
izing these models in production planning optimizations. 
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