
Experiences Creating Three Implementations
of the Repast Agent Modeling Toolkit

MICHAEL J. NORTH, NICHOLSON T. COLLIER, and JERRY R. VOS

Argonne National Laboratory

Many agent-based modeling and simulation researchers and practitioners have called for varying

levels of simulation interoperability ranging from shared software architectures to common agent

communications languages. These calls have been at least partially answered by several speci-

fications and technologies. In fact, Tanenbaum [1988] has remarked that the “nice thing about

standards is that there are so many to choose from.” Tanenbaum goes on to say that “if you do not

like any of them, you can just wait for next year’s model.” This article does not seek to introduce

next year’s model. Rather, the goal is to contribute to the larger simulation community the authors’

accumulated experiences from developing several implementations of an agent-based simulation

toolkit. As such, this article focuses on the implementation of simulation architectures rather than

agent communications languages. It is hoped that ongoing architecture standards efforts will bene-

fit from this new knowledge and use it to produce architecture standards with increased robustness.

Categories and Subject Descriptors: I.6.7 [Simulation and Modeling]: Simulation Support

Systems—Environments; I.6.2 [Simulation and Modeling]: Simulation Languages

General Terms: Design, Standardization

Additional Key Words and Phrases: Agent-based Modeling and Simulation, Java, Python, Microsoft

.NET

1. INTRODUCTION

Lu et al. [2000] and others have called for varying levels of simulation
interoperability that range from shared software architectures to common
agent communications languages. These calls have been at least partially

This research was supported by the U.S. Department of Energy under Contract W-31-109-Eng-38.

The submitted manuscript has been created by the University of Chicago as Operator of Argonne

National Laboratory (“Argonne”) under Contract No. W-31-109-Eng-38a with the U. S. Deaprtment

of Energy.

Authors’ address: Center for Complex Adaptive Agent Systems Simulation, Decision and Informa-

tion Sciences Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL, 60439;

email: {north,jvos}@anl.gov; nick.collier@varizon.net.

c©2006 Association for Computing Machinery. ACM acknowledges that this contribution was au-

thored or co-authored by a contractor or the [U.S.] Government. As such, the Government retains

a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so,

for Government purpose only.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1049-3301/06/0100-0001 $5.00

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006, Pages 1–25.

2 • M. J. North et al.

answered by several specifications and technologies. The alternatives include
the Foundation for Intelligent Physical Agents’ (FIPA) architecture specifi-
cations, the results of the Object Management Group (OMG) Agent Platform
Special Interest Group (AP SIG), the Knowledge-able Agent-oriented System
architecture (KAoS), the High-Level Architecture (HLA), and the Distributed
Interactive Simulation (DIS) protocol, to name a just few [IEEE 1995a, 1995b;
Bradshaw 1996, 1997; OMG 2000; IEEE 2001a, 2001b, 2001c; FIPA 2003]. In
fact, Tanenbaum [1988] has remarked that the “nice thing about standards is
that there are so many to choose from.” Tanenbaum goes on to say that “if you do
not like any of them, you can just wait for next year’s model.” This article does
not seek to introduce next year’s model. Rather, the goal is to contribute the
authors’ accumulated experiences from developing several implementations of
an agent-based simulation toolkit to the larger simulation community. As such,
this article focuses on the implementation of simulation architectures rather
than agent communications languages. See Labrou et al. [1999] for a treatment
of agent communications languages and Wooldridge and Jennings [1994] for a
discussion of the theory underlying agent architectures and communications
languages. It is hoped that ongoing architecture standardization efforts, such
as those managed by FIPA, will benefit from this new knowledge and use it to
produce architecture standards with increased robustness [FIPA 2003].

2. RELATED WORK

There is a significant amount of work related to agent-based simulation archi-
tectural interoperability. This related work can be classified into three main
categories, namely de jure standards, de facto standards, and standards imple-
mentations. The focus here is on simulation rather than related technologies
such as mobile agent systems. For a broader overview of the area, including
mobile agents, see Flores-Mendez [1999].

2.1 De Jure Standards

De jure standards are “formal, legal standards adopted by some authorized
standardization body” [Tanenbaum 1988]. The use of de jure standards may be
either compulsory or voluntary, depending on the legal status of the standard-
ization body [Tanenbaum 1988]. Four of the most important de jure simulation
architecture interoperability standards are the results of the FIPA effort, the
results of the Object Management Group (OMG) Agent Platform Special Inter-
est Group (AP SIG), the Knowledge-able Agent-oriented System architecture
(KAoS) group, and the HLA [Bradshaw 1996, 1997; IEEE 2001a; FIPA 2003].
A third de jure standard that will be briefly considered is the now obsolete
Distributed Interactive Simulation (DIS) standard [IEEE 1995a, 1995b].

FIPA is a non-profit organization founded in 1996 [FIPA 2003], which has
created, and continues to create, a suite of interrelated standards for intelligent
physical agents. FIPA’s mission is the “promotion of technologies and interoper-
ability specifications that facilitate the end-to-end interworking of intelligent
agent systems in modern commercial and industrial settings” [FIPA 2003].
Their overall focus is broader than agent-based simulation, but this topic area

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 3

is included in their efforts. FIPA itself is organized into topical Technical Com-
mittees and Working Groups, with the Modeling Technical Committee most
directly involved with agent-based simulation. Overall, the FIPA Technical
Committees are spearheading a variety of standards including platform inter-
operability standards and notational standards [Bauer et al. 2001; FIPA 2003].

The FIPA platform interoperability standards define the required agent com-
munication language, agent management facilities, and nonagent integration
facilities [Poslad et al. 2000]. Currently, FIPA lists ten open source agent plat-
forms as being FIPA conformant [FIPA 2003].1 These implementations will be
discussed further in the standards implementation section.

The OMG AP SIG seeks to “extend the OMG Object Management Architec-
ture to better support agent technology” and “to promote standard agent mod-
eling techniques that increase rigor and consistency of specifications” [OMG
2000]. Since the OMG AP SIG is working extremely closely with FIPA [OMG
2001], OMG AP SIG work will be considered along with FIPA.

KAoS seeks to “address two major limitations of current agent technology:
1. failure to address infrastructure, scalability, and security issues; and 2. lack
of semantics and extensibility of agent communication languages” [Bradshaw
1997]. KAoS applies “commercial distributed object products (CORBA, DCOM,
Java)” to address the first limitation [Bradshaw 1996]. The second limitation
is “providing an open agent communication meta-architecture in which any
number of agent communication languages with their accompanying semantics
could be accommodated” [Bradshaw 1996]. KAoS infrastructure implementa-
tions will be discussed in the next section.

The HLA is an IEEE standard “general purpose architecture for simulation
reuse and interoperability” that was first introduced by the U.S. Defense Mod-
eling and Simulation Office (DMSO) [IEEE 2001a, 2001b, 2001c; DMSO 2004].
The HLA supersedes the earlier IEEE DIS standard by broadening the scope
of applicability beyond just interactive simulations [IEEE 1995a, 1995b; Cavitt
et al. 1997]. The HLA was originally designed “to support reuse and interop-
erability across the large numbers of different types of simulations developed
and maintained” by the U.S. Department of Defense [DMSO 2004] and has
subsequently been used worldwide [Lu et al. 2000; Sun et al. 2003].

The HLA defines a core set of services that are to be provided by all HLA
compliant systems. Runtime infrastructures (RTIs) are software implementa-
tions of the HLA. These RTIs can optionally be verified by DMSO for adherence
to the HLA interface specification. As before, HLA RTI implementations will
be discussed further in the next section.

2.2 De Facto Standards

De facto standards “are those that have just happened, without any formal plan”
[Tanenbaum 1988]. Such standards often result from accumulated market

1Following HLA terminology, this article describes a model as being “compliant” to a standard when

the model meets the standard’s requirements for implementation or interoperability. A toolkit or

platform is described as “conformant” to a standard when models implemented using the toolkit

are automatically “compliant.”

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

4 • M. J. North et al.

share driven by widespread use of a given technology. De facto standards are not
always recognized as such, but are often simply systems that are used widely
enough to significantly influence later technologies. Important agent-based sim-
ulation systems that act as de facto standards include Swarm, NetLogo, and
Repast [Wilensky 1999; ROAD 2004; SDG 2004].

2.3 Standards Implementations

Standards implementations are concrete instantiations of de jure standards or
representative examples of de facto standards. FIPA conformant platforms, the
HLA RTIs, Swarm, NetLogo, and Repast are example standards implementa-
tions [Wilensky 1999; FIPA 2003; DMSO 2004; ROAD 2004; SDG 2004].

There are a large number of FIPA-conformant agent toolkits, with ten open
source examples alone [FIPA 2003]. However, it should be noted that FIPA
focuses quite heavily on mobile agents, generalized multi-agent systems, and
other topics outside of strict agent simulation. Poslad et al. [2000] added support
for the following features above and beyond the mandatory FIPA requirements
while implementing the FIPA Open Source (FIPA-OS) platform:

� Multiple base classes for “producing agents that can then communicate with
each other using the FIPA-OS facilities” were provided. Each base class offers
a different level of customizable capabilities [Poslad et al. 2000].

� “Multi-layered support for agent communication” was provided [Poslad et al.
2000].

� “Message and conversation management” features were provided [Poslad
et al. 2000].

� “Abstract interfaces and software design patterns” were used throughout
the design and implementation of FIPA-OS [Poslad et al. 2000].

� Specialized “diagnostics and visualization tools” were provided [Poslad et al.
2000].

Providing multiple base classes along with abstract interfaces can increase
the number of architectural options and overall development flexibility avail-
able to users. Advanced communications features and specialized development
tools can speed model design and implementation. The advanced communica-
tions features can also reduce mismatches between independently developed
components.

Multiple KAoS implementations currently exist. Bradshaw [1996] reports
that several useful lessons were learned from creating the Gaudi KAoS imple-
mentation, including the following:

� Agent-based systems should be constructed in a modular way so that “all
parts [are] replaceable” [Bradshaw 1996].

� Agent-based systems should be cross-platform so users can execute them
“everywhere” [Bradshaw 1996].

� Agent-based systems need connections to allow users to “pull data from any-
where” [Bradshaw 1996].

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 5

In short, swappable cross-platform components with rich data services have
a definite value for agent-based systems. Unfortunately for the current topic,
KAoS focuses heavily on mobile agents and other topics beyond agent simula-
tion [Bradshaw 1996, 1997].

There are many HLA RTI implementations. In fact, DMSO has verified
37 HLA RTIs and 9 more are in various stages of verification [DMSO 2005].
Several important lessons have been learned from this work, including the
following, which are related to agent simulation [Bachinsky et al. 1998]:

� Extensibility in the form of “proper object-oriented design” is essential to al-
low the architecture to “embrace change and be prepared to adapt to changing
requirements and technologies” [Bachinsky et al. 1998].

� Designing for testability using “well defined object interfaces” is required
so that “components can be developed and tested for correct functional-
ity in isolation or in concert with the overall system” [Bachinsky et al.
1998].

� The use of design patterns, such as the state pattern, is helpful for improving
implementation quality [Gamma et al. 1994]. Design patterns are a widely
used industrial approach to describing tried and true solutions for commonly
faced software design problems [Gamma et al. 1994; Coplien 2001].

Despite these useful observations, most of the lessons learned from im-
plementing HLA RTIs have focused on performance [Bachinsky et al. 1998;
Lu et al. 2000]. Performance is certainly an important issue for agent-based
simulation toolkit implementations, but it is far from the only concern. Fur-
thermore, the HLA is neither agent-based nor even truly object-oriented. For
example, according to Myjak et al. [1999], “the problem arises in the lan-
guage of the HLA Specification, which uses object-oriented terminology yet
only supports actions on public attributes.” Agent-based extensions to the
HLA have been developed, but they are not part of the core standard nor of
the superseded DIS standard [Lu et al. 2000; Aronson et al. 2003]. There-
fore, much remains to be learned about implementing agent-based simulation
standards.

Swarm was one of the earliest of the agent-based modeling toolkits [Minar
et al. 1996]. Swarm is implemented in Objective-C and has a Java wrapper
[Burkhart et al. 2000], therefore, Swarm simulations can be written in either
Objective-C or Java. Unfortunately, little has been published about lessons
learned from the implementation of Swarm.

NetLogo is a free agent-based simulation environment that uses a modi-
fied version of the Logo programming language [Harvey 1997; Wilensky 1999].
NetLogo’s developers have learned much from the StarLogo and StarLogoT
efforts [Tisue and Wilensky 2004]. NetLogo was designed to provide a basic
laboratory for teaching complexity concepts; however, it can also be used to
develop more complicated applications. NetLogo provides a graphical environ-
ment to create programs that control graphic “turtles” that reside in a world of
“patches,” which is monitored by an “observer” [Wilensky 1999]. NetLogo also
includes an innovative feature called HubNet, which allows groups of people
to interactively engage in simulation runs alongside of computational agents

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

6 • M. J. North et al.

[Wilensky and Stroup 1999]. Tisue and Wilensky [2004] have offered several
lessons from the development of NetLogo, including the following:

� Agent-based simulation environments and languages should be simple
enough to have a “low threshold” for beginners [Tisue and Wilensky 2004].

� Similarly, such systems should have “no ceiling” that limits what experienced
users can do [Tisue and Wilensky 2004].2

� These systems should include a large number of example simulations to help
beginning and experienced users alike.

2.4 The Remaining Need

Despite the significant amount of related work, there remains an unmet need for
practical experiences with creating multiple implementations of agent-based
toolkits. This article documents the authors’ experiences in creating three im-
plementations of the Repast agent modeling toolkit.

3. REPAST

The Recursive Porous Agent Simulation Toolkit (Repast)3 is a free open source
toolkit that was developed by Sallach, Collier, North, Howe, Vos, and oth-
ers [Collier et al. 2003]. Repast has an abstract feature set and three con-
crete implementations. Repast focuses on modeling social behavior, but is not
limited to social simulation. All of the Repast implementations discussed in
this article, including the source code, are available directly from the web at
http://repast.sourceforge.net/download.html [ROAD 2004].

Repast was created at the University of Chicago in close collaboration with
Argonne National Laboratory. Subsequently, responsibility for the ongoing de-
velopment of Repast was assumed by the Repast Organization for Architecture
and Design (ROAD) [ROAD 2004]. ROAD is a nonprofit volunteer group led by
a board of directors that includes members from a wide range of government,
academic, and industrial organizations.

The Repast user community is large and growing. For example, the most
recent release, Repast version 3, has had several thousand downloads. These
users have applied Repast to a wide variety of applications that range from
social systems, to evolutionary systems, to market modeling, to industrial anal-
ysis. A sampling of Repast applications will be presented later in this section.

3.1 The Context of Repast

Repast is one of several available agent modeling toolkits such as Swarm,
Ascape, NetLogo, and the Multi-Agent Simulator Of Neighborhoods (MASON)
[Minar et al. 1996; Burkhart et al. 2000; Inchiosa and Parker 2002; George
Mason University 2004]. Repast is differentiated from these toolkits in sev-
eral respects. Unlike Swarm, Repast is available in both pure Java and pure
Microsoft .NET forms. Swarm is distributed under the GNU General Public

2In practice, NetLogo’s design team has been forced to find a good compromise between their

competing “low threshold” and “no ceiling” goals.
3This article describes version 3 of the Repast toolkit.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 7

License (GPL), which requires developers to make the source code for their
entire model available to anyone who obtains a legitimate copy of the model’s
binary code. NetLogo is not open source. Both the executable code and source
code for Repast are distributed free of charge under a variation of the Berkeley
Software Distribution (BSD) license, which does not require user model source
code to be released. Unlike the freely available versions of Ascape, Repast
is being actively developed. MASON is a relatively new entrant into the
field of agent-based simulation toolkits. MASON’s “design owes a lot to other
multiagent simulators in the Social Complexity and Robotics fields, particu-
larly to Repast and TeamBots” [George Mason University 2004]. For reviews
of Swarm, Repast, and other agent-modeling toolkits, see the 2002 survey by
Serenko and Detlor, the 2002 survey by Gilbert and Bankes, and the 2003 toolkit
review by Tobias and Hofmann [Gilbert and Bankes 2002; Serenko and Detlor
2002; Tobias and Hofmann 2004].

3.2 Example Repast Applications4

John Padgett, Doowan Lee, and Nicholson Collier’s Hypercycle model uses
Repast in combination with analytic methods to investigate autocatalytic coevo-
lution of complex interconnected production and consumption systems [Padgett
et al. 2003]. They seek to answer the question, “can self-sustaining cycles of
economic production and consumption spontaneously emerge” [Padgett et al.
2003]? Their Hypercycle model has products that are exchanged throughout
the Hypercycle world, rules that transform products into other products, and
agents that use the rules to convert products into other products [Padgett et al.
2003]. The long-term goal is to model selected critical features found in real
production and consumption systems such as Renaissance Florence [Padgett
and Ansell 1993].

George Kampis of the Eotvos University, Budapest and Laszlo Gulyas of
the Hungarian Academy of Sciences are applying Repast to investigate evo-
lutionary emergence [Kampis 2002; Kampis and Gulyas 2003, 2004]. They are
using Repast to answer the question, “how is it possible to produce sustained
evolution in an artificial system” [Kampis and Gulyas 2004]? They state the
following:

We developed an agent-based simulation model using the Repast package. Or-
ganisms are agents that selectively feed, reproduce and die, based on their
phenotypic properties described in variable length records. As adaptation pro-
gresses, new property sets extend the records, and as a result, selection can
spontaneously switch between the defining properties of an interaction. The
aim is to develop functionally disjoint subpopulations specialized for the use of
different property sets. The first results have recently been reported, showing
the possibility of progressive evolution productive of new selection effects, as
an illustration for the causal principles of embodiment.

Randal Picker of the University of Chicago Law School has used Repast
to investigate the endogenous emergence of social norms and the resulting

4Many of these examples, as well as Repast itself, are discussed in more detail in North and Mascal

[2005].

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

8 • M. J. North et al.

reification of selected norms as law [Baird et al. 1998]. He has sought to answer
the question: How do conventions emerge and eventually become laws [Baird
et al. 1998]? The agents in his Endogenous Neighborhoods and Norms model
are individual people. The agents’ environment is a forum for interaction. The
agents adopt or change norms based on the relative success they experience
using those social norms. Success is itself dependent on the level of adoption of
the underlying norms.

Lars-Erik Cederman of the Swiss Federal Institute of Technology Zurich is
using Repast to study state formation and nationalist movements [Cederman
2001, 2002]. He seeks to answer multiple questions, including how do national
borders emerge and why do they take the shapes that they do [Cederman
2001, 2002]? In some of his Repast models, each agent represents a na-
tion or fiefdom existing on a grid containing variable resources. The na-
tions or fiefdoms can interact peacefully by forming alliances or by merg-
ing, along with interacting by attempting to invade and conquer neighboring
states.

P. Jeffery Brantingham of the University of California, Los Angeles is apply-
ing Repast to investigate stone tool assembly by ancient peoples [Brantingham
2003]. He seeks to answer questions such as: How did ancient people build
their tools and why did they use the approaches that were chosen? His
Repast model “dispenses with assumptions that raw material type and abun-
dance play any role in the organization of mobility and raw material procure-
ment strategies” [Brantingham 2003]. Brantingham reports that his Repast
model shows that “richness-sample size relationships, frequencies of raw ma-
terial transfers as a function of distance from source, and both quantity-
distance and reduction intensity-distance relationships are qualitatively sim-
ilar to commonly observed archaeological patterns.” This success has lead
Brantingham to interesting findings, including the “possibility that Pale-
olithic behavioral adaptations were sometimes not responsive to differences
between stone raw material types in the ways implied by current archaeological
theory.”

Craig Stephan and John Sullivan of Ford Motor Company are studying the
“growth of a hydrogen transportation infrastructure” [Stephan and Sullivan,
2004]. In the long run, they are seeking to answer several questions, in-
cluding discovering what factors might lead to the successful emergence of a
self-sustaining hydrogen transportation infrastructure [Stephan and Sullivan
2004]. In their model, the agents are drivers who chose what types of vehicles
to buy (e.g., hydrogen-fueled cars versus gasoline-fueled cars) as well as fueling
stations that chose to offer different fuels.

Michael North, Charles Macal, and others at Argonne National Laboratory
are using Repast to model electric power markets. Their Electricity Market
Complex Adaptive Systems (EMCAS) model seeks to answer questions about
electric power market stability and efficiency [North et al. 2003]. EMCAS rep-
resents the behavior of an electric power system as well as the producers and
consumers that operate within it. The agents include generation companies
that offer power into the electricity marketplace and demand companies that
buy bulk electricity from the marketplace.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 9

Fig. 1. The Repast components.

4. THE REPAST FEATURE SET

The Repast system supports a rich feature set. This feature set is divided into a
set of related modules. These modules are classified as either fixed or flexible.5

All of the components in a fixed module are required for a full Repast im-
plementation. Components in flexible modules are optional. Implementers can
decide which components are included and which are not included in flexible
modules. Implementers are free to add appropriate components to both fixed
and flexible modules.

There are varying ways to implement both fixed and flexible modules. For
example, there may be one implementation component for each module compo-
nent or there may be one implementation component that takes on the role of
two or more module components.

There are six modules in the Repast feature set. These modules are the En-
gine, the Logging Module, the Interactive Run Module, the Batch Run Module,
the Adaptive Behaviors Module, and the Domains Module. A component dia-
gram for Repast is shown in Figure 1.

4.1 The Engine Module

The Engine Module is a fixed module that is responsible for controlling the
activities in a simulation. It contains Engine Controller, Scheduler, Action, and
Agent components.

Controllers work with Interactive Run and Batch Run components to initiate,
start, pause, step, stop, and restart simulation runs. Schedulers are responsi-
ble for managing the flow of time in a simulation using Actions. Schedulers
are commonly implemented as discrete event clock managers [Law and Kelton
2000]. Actions are individual events that occur in a simulation. Agents cause
actions to occur by registering them with a Scheduler. Agents are autonomous

5Flexibility is confined to the module level to keep the feature set as small as possible. Flexible com-

ponents in otherwise fixed modules need not be included in the feature set, since these components

are optional and implementers are free to add optional components to any module.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

10 • M. J. North et al.

components that manage their own activities and coordinate with other Agents
through one or more Schedulers. Agents are normally implemented as objects
with specialized properties, including self-direction.

4.2 The Logging Module

The Logging Module is a fixed module that is responsible for recording simula-
tion results. Two types of logging components, namely Data Loggers and Object
Loggers, are required. These types differ based on the complexity of the inputs.

Data Loggers are the simplest logging components. Data Loggers simply
record primitive values such as integers, floating point numbers, or strings
to a specified location.

Object Loggers are more sophisticated than Data Loggers. Object Loggers
record the state of full objects or sets of objects, rather than just primitives, to
a specified location. Agents can be logged using object loggers since agents are
normally implemented as objects with specific properties.

4.3 The Interactive Run Module

The Interactive Run Module is a fixed module that is responsible for managing
simulation runs under the direct control of a user. The components in the In-
teractive Run Module usually act as intermediaries between users and Engine
Module components.

User Interface Controllers act as intermediaries between users and Engine
Controllers. User Interface Controllers offer users options to initiate, start,
pause, step, stop, and restart simulations and then communicate these requests
to the Engine Controllers. User Interface Controllers also show the current mas-
ter Scheduler clock time and overall simulation status.

Environment Visualizations show and allow editing of the status of the over-
all model and agents in the system. These visualizations normally include var-
ious types of interactive multidimensional displays and a range of agent layout
techniques.

Similar to Environment Visualizations, Probes show and allow editing of the
status of the overall model and individual agents in the system. Probes are
differentiated from Environment Visualizations, since Probes are textual while
the visualizations are visual or abstractly spatial. Agents can have rich, recur-
sively nested properties. Therefore, probes are expected to allow deep recursive
exploration of agent properties.

Graphs show detailed visual results traces at both the level of individual
agents and the overall model. Graphs often display results recorded in logs.

Much like Graphs, Reports show detailed results traces and often display
results recorded in logs. However, Reports are textual.

4.4 The Batch Run Module

The Batch Run Module is a fixed module that is responsible for completing a
set of simulation runs without requiring the direct intervention of a user. As
with the Interactive Run Module, components in the Batch Run Module usually
act as intermediaries between users and Engine Module components.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 11

Each Batch Controller manages an individual Engine Controller during the
course of one simulation run. A Batch Controller uses its Engine Controller
to complete one model run using one model parameter combination. A model
parameter combination is given to the Batch Controller by the Parameter Sweep
Framework.

The Parameter Sweep Framework iterates over a range of model input pa-
rameters to complete a set of simulation runs. An example is a simple social
network model that is run 20 times with between 10 and 20 people in each run.
In this case, the Parameter Sweep Framework will execute the model 20 times
for each of the 11 population counts,6 resulting in a total of 220 (20 × 11) sim-
ulation runs.

4.5 Adaptive Behaviors Module

The Adaptive Behaviors Module is a flexible module that is responsible for
providing adaptive components for implementing agent behaviors. The compo-
nents can include genetic algorithms, neural networks, other artificial intelli-
gence tools, and regression tools for building agents that can learn and adapt
[Goldberg 1989; Rich and Knight 1991; Ginsberg 1993; McClave and Benson
1994; Mitchell 1996].

4.6 Domains Module

The Domains Module is a flexible module that is responsible for providing area-
specific functions. In some cases, these functions may be sophisticated enough
to become modules in their own right. Example components in the domains
module include tools for general networks, social systems, geographical infor-
mation systems (GIS), systems dynamics, and computational game theory.

5. THE REPAST IMPLEMENTATIONS

There are currently three implementations of Repast. These implementations
are Repast for Java (Repast J), Repast .NET, and Repast for Python Script-
ing (Repast Py). Repast J was the original implementation; Repast Py was
developed using Repast J Repast .NET is the most recent implementation.7

Independent descriptions of the three implementations will be provided in this
section and the similarities and differences will be pointed out in a later section.

5.1 Repast for Java

Repast J is a Java language implementation of the Repast specification [Foxwell
1999].8 This implementation thus provides a software framework for creating

6The population counts go from 10 to 20 for a total of 20 – 10 + 1 = 11 combinations.
7As will be discussed later, Repast Py presents the full Repast feature set using a visual interface

and a simple programming language. However, since Repast Py was built using Repast J, Repast

Py can be considered in some sense “half of an implementation” of the Repast feature set. The

authors decided to describe their work as “three implementations” rather than “two and a half

implementations” of the Repast feature set for brevity.
8Java version two was used in this article. The replacement for Java version two, namely Java

version five, was released on September 29, 2004 [Sun Microsystems 2005]. The Java version

following version two is version five, despite the skip in numbering.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

12 • M. J. North et al.

Fig. 2. The repast J HexaBugs Model, a typical Repast simulation, has a GUI controller toolbar

at the top, simulation parameters on the right and a visualization of the simulation on the left.

agent-based simulations where the common infrastructural abstractions ex-
pressed in the framework are implemented as Java classes. The user then
creates a simulation by combining and extending these classes. An example
Repast J model is shown in Figure 2.

Java focuses on cross-platform compatibility [Foxwell 1999].9 Java thus pro-
vides one language that can run on many different computer systems.10 Java
programs inherit this value proposition. Developers who choose Java use one
language, but can run the resulting programs on nearly any type of computer.

The Repast J classes are organized into Java packages that roughly express
the Repast specification. It is important to note that most of the classes de-
scribed below are extensible so that features such as custom user interfaces,
for example, can be easily created. A description of the packages relevant to the
specification follows.

5.1.1 The Engine Package. The classes in the Engine Package are responsi-
ble for setting up, manipulating, and driving simulations. The Engine Module,
as well as the Controller portions of the Interactive and Batch Run Modules,
are implemented by this package. More specifically, this package contains the
controller hierarchy by which an agent simulation is started, paused, stepped,
stopped, and restarted. There are different controllers for handling user inter-
action with a simulation through an interface and for automating such interac-
tion with a batch run mechanism. In addition, the Engine Package contains the

9The term “cross platform” used in this sentence refers to executing binary programs without

modifications on many different computer systems such as Microsoft Windows, Apple Mac OS,

Linux, and Sun Solaris.
10This is not strictly true. There are specialized languages such as Jython that can be compiled

to Java binary code. However, this is by far the exception rather than the rule. The overwhelming

majority of Java binary code was generated from Java language source code.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 13

classes that make up a discrete event scheduling mechanism, including classes
for the Schedule itself and the primitive Actions that are scheduled.

Agents are flexibly defined in Repast J. Agents can be built using one of a
variety of Repast J base classes or they can be constructed using generic objects.

5.1.2 The Analysis Package. The classes in the Analysis Package are re-
sponsible for gathering, recording, and charting data. With its gathering and
recording responsibilities, this package implements the Logging Module, while
the charting functionality implements the graphing portion of the Interactive
Run Module.

5.1.3 The GUI Package. The Graphical User Interface (GUI) Package
classes are responsible for the graphical animated visualization of the
simulation as well as providing the capability to take snapshots of the display
and make QuickTime movies of the visualization as it evolves over time. The
GUI Package uses the Model-View-Controller (MVC) design pattern to modu-
larize functionality [Gamma et al. 1994].11 The various display classes work in
conjunction with the classes in the Space Package to display these Spaces appro-
priately. Spaces work in conjunction with the display classes in the GUI Package
to present visualizations of the Spaces and the agents that they contain. In ad-
dition, this package handles agent probing. This package implements all of the
Interactive Run Module except for the GUI Controller, which is implemented
in the Engine Package.

5.1.4 The Parameter Package. The Parameter Package is responsible for
defining parameter spaces and iterating through them (i.e., running the simu-
lation with different sets of parameters each time in an automated way). This
functionality is highly extensible so that custom parameter formats and pa-
rameter sweeps can be easily created. Additionally, this package implements
the Parameter Sweep Framework component of the Batch Run Module.

5.1.5 The Adaptation Package. The Adaptation Package implements the
Adaptive Behaviors Module. This package includes tools such as genetic algo-
rithms and neural networks.

5.1.6 Domains Module-Related Packages. Repast J provides several pack-
ages beyond the more infrastructural ones described above. These packages
provide the basis for constructing particular types of simulations and agents,
such as simulations with agents that interact over a grid or torus topology.

The Network Package contains the core classes used to build network simula-
tions. These include default node and edge classes, various specialized records
for recording network data, and so forth. In addition, the NetworkFactory class
is used to load networks from a file in a variety of formats as well as to generate
small world, random density, and square lattice networks.

In an agent simulation, agents often have some sort of spatial relation-
ship to each other. The Space Package contains base classes for creating such

11The MVC design pattern uses a Model that takes directions from a Controller to produce results

shown by a View.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

14 • M. J. North et al.

Fig. 3. The Repast .NET RocketBugs model, a typical repast .NET simulation, has a GUI con-

troller, parameters, and a visualization.

relationships as well as several particular instantiations including grids, tori,
and multiple occupancy grids, among others.

Creating agents using real geographic data is important for many applica-
tions [Brown et al. 2005]. Storing the results back into geographic data files is
just as critical [Brown et al. 2005]. The GIS Package provides tools to create
Repast J agents from, and to store simulation results back to, standard GIS
data sources.

5.2 Repast .NET

Repast .NET is a Microsoft .NET implementation of the Repast specification
[Foxwell 1999]. Repast .NET is written in the C# language [Archer 2001]. As
with Repast J, the Repast .NET implementation provides a software framework
for creating agent-based simulations. However, Repast .NET expresses the com-
mon infrastructural abstractions expressed as .NET Framework classes. The
user then creates a simulation by combining and extending these classes. An
example Repast .NET model is shown in Figure 3.

These classes are organized into .NET namespaces that express the Repast
specification.12 As before, most of the classes described in the following are
extensible so that features such as custom agent behaviors, for example, can be
easily created. The details of the Repast .NET framework follow.

Microsoft .NET focuses on providing multilingual functionality [Archer
2001], accordingly, Microsoft .NET provides many languages that all work
together seamlessly on one computer platform.13 Microsoft .NET programs

12Namespaces play the same role in .NET framework applications as packages play in Java ap-

plications. Both terms are used in this article rather than just one, to respect the differences in

nomenclature between the .NET and Java development communities.
13As with Java’s single language development, this sweeping statement is not strictly true. There is

an effort underway that provides tools to execute Microsoft .NET programs under Linux. However,

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 15

inherit this value proposition. Developers that choose Microsoft .NET can use
nearly any language but can only run the resulting programs on one type of com-
puter. Thus in some sense, Java and Microsoft .NET present converse tradeoffs.

One of the main features of the Microsoft .NET framework is its ability to
seamlessly support the development of a single program in several languages
without complicated binary linking schemes. For example, C#, Managed C++,
Visual Basic .NET14, and even Managed FORTRAN can all be used together to
write a single program. In fact, the Repast .NET model shown in Figure 3 uses
a Model written in Managed C++, a Space written in Visual Basic .NET, and
Agents written in C#.

5.2.1 The Engine Namespace. Engine Namespace classes are responsible
for setting up, manipulating, and driving simulations. The Engine Namespace
implements the Engine Module and the Controller portions of the Interactive
and Batch Run Modules. Similarly to Repast J, the Engine Namespace contains
the discrete event scheduling mechanism including classes for the Schedule and
the Actions that are scheduled. As with Repast J, Agents can be created based
on one of several parent classes or they can be based on generic objects.

5.2.2 The Analysis Namespace. Analysis Namespace classes are responsi-
ble for gathering, recording, and charting data. As with Repast J, this names-
pace implements the Logging Module, and the graphing portion of the Interac-
tive Run Module.

5.2.3 The GUI Namespace. The classes in the GUI Namespace are respon-
sible for the graphical animated visualization of simulations as well as for
providing the capability to take snapshots of the displays. These classes pro-
vide visualizations for the classes in the Space Namespace as an addition to
handling agent probing. The GUI Namespace implements the Interactive Run
Module, excluding the Engine Package’s GUI Controller.

5.2.4 The Parameter Namespace. The classes in the Parameter Namespace
are responsible for defining parameter spaces and automatically running the
simulation multiple times with different sets of parameters each time. Custom
parameters and parameter scans can be easily created. The Parameter Names-
pace also implements the Batch Run Module’s Parameter Sweep Framework.

5.2.5 The Adpatiation Namespace. As with Repast J, the Adaptiation
Namespace implements the Adaptive Behaviors Module. As before, this names-
pace includes genetic algorithms and regression tools to be used to create adap-
tive agent behaviors.

5.2.6 Domains Module Related Namespaces. The Repast .NET Domains
Module namespaces provide tools for constructing specalized types of simula-
tions and agents. For example, the Space Namespace contains base classes for

the overwhelming majority of Microsoft .NET code will be executed solely under Microsoft Windows

for the near future.
14Visual Basic .NET is the newest incarnation of Microsoft’s Visual Basic language, built as a .NET

language.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

16 • M. J. North et al.

representing many relationships between agents, such as those found in grids,
tori, and multiple occupancy grids, among others.

5.3 Repast for Python Scripting

Repast for Python Scripting (Repast Py) is a rapid application development
(RAD) tool for producing Repast simulations in which agent behavior is scripted
using the Python computer language [Lutz and Ascher 1999]. As a RAD tool,
Repast Py differs significantly from Repast J and Repast .NET. In Repast Py,
user services are presented in a visual manner through a separate application
whereas Repast J and Repast .NET are frameworks that are accessed through
standard programming languages such as Java or C#. For example, in Repast
J and Repast .NET the user typically constructs their agents as Java or C#
classes, but in Repast Py the user employs a point-and-click interface to set
the properties of agent components. In general, much that would have to be
manually coded (e.g. data logging) in Repast J or Repast .NET has been replaced
by a point-and-click component based interface in Repast Py. Although Repast
Py is a separate application, it is implemented in Java and makes extensive
use of the Repast J implementation.15 In fact, Repast Py produces simulations
as compiled Java byte-code that is executed by the Repast J implementation.
An example Repast Py model is shown in Figure 4. Repast Py can also generate
Java source code that can be used with Repast J. However, unlike Repast J and
Repast .NET, Repast Py is not fully object-oriented, since it only supports one
level of inheritance.

Repast Py adapts the general Repast notion of how to organize the inter-
nal implementation of an agent simulation, but adds a component-based visual
“point-and-click” interface as shown in Figure 5. Specifically, the Model part
of the simulation is responsible for initializing the agents and any other re-
quired elements and defining what should occur at each time step of the simu-
lation. The agents themselves then perform the actual behavior that drives the
simulation. Repast Py adapts this notion by providing components for models
and agents. Each component can be thought of as providing a generic descrip-
tion of a piece of the final simulation (i.e., the Model, a particular agent type,
a chart, and so on). This composite description is then compiled into the actual
simulation code itself.

These generic components are specialized by setting the values of the com-
ponent’s properties. For example, the component that describes and produces
a description of an agent type based on a GIS input file has a data source prop-
erty. The value of this property is the GIS data file that provides both a partial
structure of the agent type and the data encapsulated by each instantiated
agent of that type. Thus, different GIS input files will result in different agent
types. It is through a component’s properties that standard Repast services are
exposed. For example, the schedule property allows the user to schedule the
execution of agent and Model behavior. The result is the same as if the appro-
priate scheduling calls had been made, but Repast Py allows the user to do this

15Please see the previous discussion about Repast Py as “half an implementation” of the Repast

feature set.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 17

Fig. 4. A Repast Py network Model (The bottom window shows the Repast Py Application itself

and the top three windows show the resulting Repast simulation).

Fig. 5. The Repast Py Visual Interface (In this case, the user is creating a custom ZIP code region

or “ZipRegion” Agent by setting property values through the visual interface).

in a completely different environment using a visual orientation as shown in
Figure 6.

Many of the capabilities in the Repast feature set are visually encapsulated
entirely in a point-and-click interface. For example, instead of writing the lines
of Repast J code shown in Figure 7, the visual interfaces shown in Figures 6

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

18 • M. J. North et al.

Fig. 6. Repast Py schedule editor.

Fig. 7. Example Repast J scheduling code.

and 8 are used. The schedule editors shown in Figures 6 and 8 are invoked from
Repast Py agents or models. They allow the user to visually schedule the agent
or model’s behavior. This is in contrast to Repast J’s need for scheduling code
of the kind in shown Figure 7.

Repast Py allows the user to define domain-specific behavior through the Ac-
tions Property. The Actions Property is essentially a list of behaviors or actions
that are edited in the Actions Editor. Actions Properties are associated with
each simulation component such as an agent.

Actions are written in a special subset of the Python language [Lutz and
Ascher 1999]. A subset is used because the entire Python language is not nec-
essary for specifying agent behavior. For example, Python features such as class
and function declarations or the dynamic manipulation of a class’ structure are

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 19

Fig. 8. The Repast Py schedule view.

not necessary when defining an agent’s behavior. This subset is “special” be-
cause it integrates well with Java, and thus with Repast J as a whole. As a
result, it is easy to use pieces from the Repast J framework when scripting
agent behaviors and to automatically compile these Python scripts into exe-
cutable code when running the resulting simulation.

6. CONCLUSIONS

Both technical and conceptual lessons were learned during the development of
the three Repast implementations. These lessons point the way to the future
work discussed in the next section.

6.1 Technical Lessons Learned

Based on the authors’ comparative experiences implementing Repast J, Repast
.NET, and Repast Py, several technical issues were found. These issues are
summarized in Table I. The relative advantages and disadvantages of the three
Repast implementations are summarized in Table II. These issues and compar-
isons have also contributed to some of the conceptual conclusions offered in the
next section.

The use of design patterns such as the MVC pattern simplified the develop-
ment process. In particular, MVC allowed the Repast .NET implementation to
be built in testable stages, namely Model, then Controllers, and finally Views. It
also largely eliminated the need to maintain redundant internal states within
the toolkit modules.

The fact that both Java and Microsoft .NET are object-oriented provided a
natural way to separate functions throughout the implementations and pro-
vides a natural way to build up agent behaviors in stages. This enriched the
development and use of both implementations.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

20 • M. J. North et al.

Microsoft .NET allows developers to be more expressive than Java in con-
trolling the details of object inheritance.16 This allowed the Repast .NET im-
plementation to have significantly stronger type checking and fewer errors.

Microsoft .NET Properties are useful for simplifying object interfaces, and
logically combining data access and writing

Microsoft .NET’s ability to embed metadata tags into code has the poten-
tial to make development easier and to increase the interoperability of code
modules.17,18

Microsoft .NET’s reduction in virtual machine language restrictions com-
pared to Java made cross-language development easier. This is particularly
true when simplified languages such as Visual Basic .NET are included.

The Microsoft Visual Studio development environment is quite weak com-
pared to free and open source tools such as Eclipse [Archer 2001; Eclipse 2004].
In particular, Visual Studio 2003’s lack of refactoring, tools made iterative de-
velopment difficult compared to Eclipse [Fowler et al. 1999].19,20 This will be
addressed to some extent in the next version of Visual Studio, but preview
versions indicate that the improvements will still lag significantly behind the
features available for Java.

Java has a much larger large set of third-party libraries than Microsoft
.NET. This is particularly true in the free and open source arena. This made
Java development much faster since existing code could be reused in many
cases.

Differences were found in the underlying implementations of the Microsoft
.NET and Java mathematics libraries. The differences caused otherwise iden-
tical calculations to produce divergent results, even for relatively simple equa-
tions. As might be expected, cumulative use of such calculations was found to
produce widely divergent results. This complicates simulation cross verification
between Repast J and Repast .NET.

Compared to Repast J and Repast .NET, Repast Py opted for a user-work-
flow-oriented approach over a component-oriented approach. This meant that
the underlying simulation modules are organized to make model construction
easier for users rather than to provide a component pallet for complex model
design.

Overall, Microsoft .NET is a strong platform, has a good library of basic
classes, and appears to be fast except for graphics operations. Java is also
a strong platform with a solid built-in class library. On a comparative basis,
Java 2 tools and libraries are much more mature, but the Microsoft .NET core

16Specifically, Microsoft .NET allows explicit control of virtual versus standard functions and con-

trol of method overriding by offering both override and new operators.
17Code metadata tags mark classes, methods, and fields with descriptive information that can be

used by programs that work with code such as compliers and simulation runtime environments.
18Java 5 includes support for the meta-data tags in the form of Java annotations.
19Refactoring is an industrial technique for code reorganization. Refactoring generally requires

tool support to be efficient, since it often involves simultaneous, systematic, and repeated changes

to many code modules.
20In some cases, certain third party tools can add refactoring support to Visual Studio.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 21

Table I. Technical Lessons Learned

Repast .NET

(.NET Compatible

Repast J (Java) Language)

Object Oriented + +
Fine Grained Inheritance Control − +
First Class Properties − +
Metadata Tags −21 +
Cross-language Development − +
Cross-Platform Development + −
Advanced Development Features (e.g.,

Integrated Refactoring)

+ −22

Large Variety of Free and Open Source Third

Party Libraries

+ −

Table II. Advantages and Disadvantages of the Three Repast Implementations

Repast J Repast .NET Repast Py

Cross-Platform

Development

Windows, Linux,

Apple OS X, and

Many Others

Windows and Linux Windows, Linux,

Apple OS X, and

Many Others

Cross Language

Development

Java Only (For

Practical Purposes)

C#, Managed C++,

Visual Basic .NET,

and Others

Python-like Language,

but with Strong

Java Integration

Extensibility Very Extensible

Through a Myriad

of Third Party Java

Libraries

Less so than Repast J,

but Still Extensible

Through .NET

Language Libraries

Visual Development

and Ease of Use

Constraints Limit

Extensibility, but

Java Integration

Allows for the Use

of Third Party Java

Libraries

Nature of

Implementation

Java Language

Library for

Constructing Repast

Simulations

.NET Framework

Library for

Constructing Repast

Simulations

Stand–alone

Application for

Constructing Repast

Simulations

Visual

Programming

No No Simulation is

Constructed Via a

Point-and-Click

Interface with Some

Programming

language specification is richer.23 Java’s multiplatform approach will remain
attractive to those who need to execute simulations on many different types of
computers, particularly those who need to run models on both workstations and
large clusters. Microsoft .NET’s multilingual approach will appeal to those who

21As previously mentioned, meta-data tags are available in Java version five.
22As previously stated, Microsoft Visual Studio 2003 was evaluated. The next version of Microsoft

Visual Studio is expected to include some advanced development features.
23Java 5 has essentially eliminated this gap.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

22 • M. J. North et al.

wish to leverage existing language skills and the unique features of specialized
languages.24

6.2 Conceptual Lessons Learned

In addition to technical lessons learned, the authors’ experiences in creating
three implementations of the Repast feature set have suggested several con-
ceptual lessons. The conceptual lessons learned are as follows:

� As with FIPA-OS and the HLA-RTIs, object-oriented design is essential to
allow the architectures to be flexible [Bachinsky et al. 1998; Poslad et al.
2000].

� As with FIPA-OS and the HLA RTIs, the use of design patterns is helpful
for improving implementation quality [Bachinsky et al. 1998; Poslad et al.
2000].

� Choosing environments that allow seamless programming in different lan-
guages may help provide both the “low threshold” NetLogo seeks for begin-
ners and the unlimited ceiling NetLogo seeks for advanced users [Tisue and
Wilensky 2004].25

� As with the Gaudi KAoS implementation, choosing environments that are
cross-platform makes systems usable for a wider audience than with single
platform approaches [Bradshaw 1996].

� As with the Gaudi KAoS implementation, modular construction is essential
[Bradshaw 1996].

� Toolkit developers should be keenly aware of differences in the fundamental
details of the candidate implementation environments, such as differences
in mathematics libraries.

� Toolkit developers should consider the availability and capability of the
ecosystem surrounding an implementation environment when making their
selections. For example, the availability of third-party libraries and the qual-
ity of development tools should be taken into account.

� Toolkit developers should consider the availability of advanced language fea-
tures such as metadata tags and first class properties when selecting imple-
mentation languages.

� Toolkit developers should consider future growth plans for the candidate
environments, such as F#, when selecting an implementation environment.

7. FUTURE WORK

There are several directions for future work. First, an optional visual program-
ming tool should be added to supplement the textual languages used in Repast.

24For example, Microsoft’s F# language promises to simplify most common programming tasks by

eliminating tedious and repetitious coding details, at the possible expense of some expressiveness.

Any lost expressiveness can be overcome by coding in a standard Microsoft .NET language such

as C#. F# may be extremely useful for less technical modelers and for prototyping. Repast .NET’s

implementation makes F# immediately available to agent-based modelers.
25For example, Visual Basic .NET can be used by beginning programmers and C# can be used by

more advanced programmers.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 23

This will allow developers to explore the implementation of a fully visual envi-
ronment. Second, higher-level languages such as Microsoft .NET framework F#
should be explored to see if they can help support the type of “rapid-discovery
social science” being sought by Sallach [2003]. Third, a Repast implementa-
tion in a nonprocedural language should be completed as suggested by Sallach
[2004]. This will allow a full reexamination of the underlying feature set and
the implementation details of the Repast agent-based simulation toolkit.

ACKNOWLEDGMENTS

The authors wish to thank David L. Sallach for his visionary leadership in
founding the Repast project as well as pioneering the Repast nonprocedural
implementation effort, Charles M. Macal for sustaining involvement in the
project, and Repast contributors such as Thomas R. Howe.

REFERENCES

ARCHER, T. 2001. Inside C#. Microsoft Press, Redmond, WA.

ARONSON, J., MANIKONDA, V., PENG, W., LEVY, R., AND ROTH, K. 2003. An HLA compliant agent-

based fast-time simulation architecture for analysis of civil aviation concepts. In Proceedings
of the Simulation Interoperability Standards Organization Spring Simulation Interoperability
Workshop, IEEE Kisimmee, FL USA.

BACHINSKY, S. T., MELLON, L., TARBOX, G. H., AND FUJIMOTO, R. 1998. RTI 2.0 architecture. In Pro-
ceedings of the Simulation Interoperability Standards Organization Spring Simulation Interop-
erability Workshop, IEEE, Orlando, FL.

BAIRD, D. G., GERTNER, R. H., AND PICKER, R. C. 1998. Game Theory and the Law. Harvard Uni-

versity Press, Cambridge, MA, USA.

BAUER, B., MÜLLER, J. P., AND ODELL, J . 2001. Agent UML: A formalism for specifying multiagent

interaction. In Agent-Oriented Software Engineering, Ciancarini, P. and Wooldridge, M. Eds.

Springer-Verlag, Berlin, Germany, 91–103.

BRADSHAW, J. 1996. KAoS: An open agent architecture supporting reuse, interoperability, and ex-

tensibility. In Proceedings of the 1996 Knowledge Acquisition Workshop, Banff, Alberta, Canada,

University of Calgary.

BRADSHAW, J. 1997. An introduction to software agents. In Software Agents. J. Bradshaw, Ed.

AAAI Press, Menlo Park, CA.

BRANTINGHAM, P. 2003. A neutral model of stone raw material procurement. American Antiquity,

487–509.

BROWN, D. G., RIOLO, R., ROBINSON, D. T., NORTH, M. J., AND RAND, W. 2005. Spatial process and

data models: Toward integration of agent-based models and GIS. Journal of Geological Society.

BURKHART, R., ASKENAZI, M., AND MINAR, N. 2000. Swarm release documentation.

www.santafe.edu/projects/swarm/swarmdocs/set/set.html.

CAVITT, D. B., OVERSTREET, C. M., AND MALY, K. J. 1997. A performance monitoring application for

distributed interactive simulations (DIS). In Proceedings of the 1997 Winter Simulation Confer-
ence, ACM, Atlanta, GA, USA.

CEDERMAN, L.-E. 2001. Modeling the co-evolution of states and nations. In Workshop on Sim-
ulation of Social Agents: Architectures and Institutions, Chicago, IL, Oct. 4–6, 1997, Argonne

National Laboratory.

CEDERMAN, L.-E. 2002. Endogenizing geopolitical boundaries with agent-based modeling. In Pro-
ceedings National Academy of Sciences 99(90003), 7296–7303.

COLLIER, N., HOWE, T., AND NORTH, M. J. 2003. Onward and upward: The transition to Repast

2.0. In First Annual North American Association for Computational Social and Organizational
Science Conference. (Pittsburgh, PA USA), North American Association for Computational Social

and Organizational Science.

COPLIEN, J. O. 2001. Software Patterns Page. www.hillside.net/patterns/.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

24 • M. J. North et al.

DMSO. 2005. High Level Architecture Home Page. U.S. Defense Modeling and Simulation Office,

www.dmso.mil/public/transition/hla.

DMSO. 2004. HLA RTI Verification Status Board. Defense Modeling and Simulation Office,

www.dmso.mil/public/transition/hla/statusboard.

ECLIPSE. 2004. Eclipse Home Page. The Eclipse Project, www.eclipse.org/.

FIPA. 2003. Foundation for Intelligent Physical Agents Publicly Available Agent Platform Im-
plementations. Alameda, CA, FIPA. http://www.fipa.org/resources/livesystems.html

FLORES-MENDEZ, R. A. 1999. Towards a standardization of multi-agent system frameworks. ACM
Crossroads 5.

FOWLER, M., BECK, K., BRANT, J., OPDYKE, W., AND ROBERTS, D. 1999. Refactoring: Improving the
Design of Existing Code. Addison-Wesley, Redwood City, CA.

FOXWELL, H. 1999. Java 2 software development kit. Linux Journal.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES. J. 1994. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Wokingham, UK.

GEORGE MASON UNIVERSITY. 2004. MASON Home Page. George Mason University, Fairfax, VA,

http://cs.gmu.edu/∼eclab/projects/mason/.

GILBERT, N. AND BANKES, S. 2002. Platforms and Methods for Agent-based Modeling. In Proceed-
ings of the National Academy of Sciences of the USA, 99 (3), 7197–7198.

GINSBERG, M. L. 1993. Essentials of Artificial Intelligence, Morgan Kaufmann Publishers.

GOLDBERG, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Redwood City, CA.

HARVEY, B. 1997. Computer Science Logo Style. MIT Press, Boston, MA,

IEEE. 1995a. IEEE Standard for Distributed Interactive Simulation—Application Protocols,

Institute of Electrical and Electronics Engineers, 1278.1-1995.

IEEE. 1995b. IEEE Standard for Distributed Interactive Simulation—Communication Services,

Institute of Electrical and Electronics Engineers, 1278.2-1995.

IEEE. 2001a. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA)—Framework and Rules, Institute of Electrical and Electronics Engineers, P1516.

IEEE. 2001b. IEEE Standard for Modeling and Simulation (M&S) High Level Architec-
ture (HLA)—Federate Interface Specification, Institute of Electrical and Electronics Engineers,

P1516.1.

IEEE. 2001c. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture
(HLA)—Object Model Template (OMT) Specification, Institute of Electrical and Electronics En-

gineers, P1516.2.

INCHIOSA, M. E. AND PARKER, M. T. 2002. Overcoming design and development challenges in agent-

based modeling using ASCAPE. In Proceedings National Academy of Sciences, 99 (3), 7304–

7308.

KAMPIS, G. 2002. A causal model of evolution. In Proceedings of the 4th Asia-Pacific Conference
on Simulated Evolution and Learning, Singapore.

KAMPIS, G. AND GULYAS, L. 2003. Causal structures in embodied systems. The European Research
Consortium for Informatics and Mathematics News 53.

KAMPIS, G. AND GULYAS, L. 2004. Out of interaction: A phenotype based model of species evolution.

Accepted for the 5th International Workshop on Emergent Synthesis.

LABROU, Y., FININ, T., AND PENG, Y. 1999. The interoperability problem: Bringing together mobile

agents and agent communication languages. In Proceedings of the 1999 Hawaii International
Conference on System Sciences, IEEE, Maui, Hawaii, USA.

LAW, A. M. AND KELTON, W. D. 2000. Simulation Modeling and Analysis, 3rd Ed. McGraw-Hill,

New York, NY.

LU, T., CHUNGNAN, L., AND HSIA, W. 2000. Supporting large-scale distributed simulation using

HLA. ACM Trans. Model. Comput. Simul. 10, 3, 268–294.

LUTZ, M. AND ASCHER, D. 1999. Learning Python. O’Reilly, Sebastopol, CA.

MCCLAVE, J. T. AND BENSON, P. G. 1994. Statistics for Business and Economics. Prentice Hall,

Englewood Cliffs, NJ.

MINAR, N., BURKHART, R., LANGTON, C., AND ASKENAZI, M. 1996. The Swarm Simulation System, A

Toolkit for Building Multi-Agent Simulations.

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

Three Implementations of the Repast Agent Modeling Toolkit • 25

MITCHELL, M. 1996. An Introduction to Genetic Algorithms (Complex Adaptive Systems). MIT

Press, Cambridge, MA.

MYJAK, M., SHARP, S., LAKE, T., AND BRIGGS, K. 1999. Object Transfer in HLA. In Proceedings
of the Simulation Interoperability Standards Organization Spring Simulation Interoperability
Workshop, IEEE.

NORTH, M. J. AND MASAL, C. M. 2005. Escaping the accidents of history: An overview of artificial life

modeling with Repast. In Artificial Life Models in Software, A. Adamatzky and M. Komosinski,

Eds. Springer, Heidelberg, Germany. 115–141.

NORTH, M., THIMMAPURAM, P., CIRILLO, R., MACAL, C., CONZELMANN, G., KORITAROV, V., AND VESELKA, T.

2003. EMCAS: An agent-based tool for modeling electricity markets. In Agent 2003: Challenges
in Social Simulation, (University of Chicago, Chicago, IL USA), Argonne National Laboratory.

OMG. 2000. OMG Agent Platform Special Interest Group Mission Statement. Object Manage-

ment Group, Needham, MA, www.omg.org/.

OMG. 2001. OMG Unified Modeling Language Specification Version 1.5. Object Management

Group Needham, MA, http://www.uml.org/#UML1.5.

PADGETT, J. F. AND ANSELL, C. K. 1993. Robust action and the rise of the Medici, 1400–1434.

American Journal of Sociology 98, 1259–1319.

PADGETT, J. F., LEE, D., AND COLLIER, N. 2003. Economic production as chemistry. Industrial and
Corporate Change 12 (4), 843–877.

POSLAD, S., BUCKLE, P., AND HADINGHAM, R. 2000. The FIPA-OS Agent Platform: Open Source

for Open Standards. In Proceedings of the 5th International Conference and Exhibition on the
Practical Application of Intelligent Agents and Multi-Agents. Manchester, UK.

RICH, E. AND KNIGHT, K. 1991. Artificial Intelligence, McGraw-Hill, New York, NY.

ROAD. 2004. Repast Home Page. Repast Organization for Architecture and Design, Chicago, IL,

repast.sourceforge.net/.

SALLACH, D. L. 2003. Social theory and agent architectures: Prospective issues in rapid discovery

social science. Social Science Computer Review 21(Summer).

SALLACH, D. L. 2004. Repast for Oz/Mozart. M. North. Argonne, IL.

SDG. 2004. Swarm Home Page. Swarm Development Group, Santa Fe, NM, www.swarm.org/

wiki/Main Page.

SERENKO, A. AND DETLOR, B. 2002. Agent Toolkits: A General Overview of the Market and an
Assessment of Instructor Satisfaction with Utilizing Toolkits in the Classroom (Working Paper
455), McMaster University, Hamilton, Ontario, Canada.

STEPHAN, C. AND SULLIVAN, J. 2004. Growth of a hydrogen transportation infrastructure. In Pro-
ceedings of the Agent 2004 Conference on Social Dynamics: Interaction, Reflexivity and Emergence,

Chicago, IL, University of Chicago and Argonne National Laboratory.

SUN, X., LIU, F., AND XU, M. 2003. Research on interoperability of intelligent mobile agent for DIS.

ACM SIGSOFT Software Engineering Notes 28 (6), 9.

SUN MICROSYSTEMS. 2005. J2SE Code Names, Santa Clara, CA, java.sun.com/j2se/ codenames.

html.

TANENBAUM, A. 1988. Computer Networks. Prentice Hall, Englewood Cliffs, NJ,.

TISUE, S. AND WILENSKY, U. 2004. NetLogo: Design and implementation of a multi-agent modeling

environment. In SwarmFest 2004, Ann Arbor, MI, Swarm Development Group.

TOBIAS, R. AND HOFMANN, C. 2004. Evaluation of free Java-libraries for social-scientific agent

based simulation. Journal of Artificial Societies and Social Simulation 7(1).

WILENSKY, U. 1999. NetLogo. Center for Connected Learning and Computer-Based Modeling,

Northwestern University, Evanston, IL.

WILENSKY, U. AND STROUP, W. 1999. HubNet. Center for Connected Learning and Computer-Based

Modeling, Northwestern University, Evanston, IL.

WOOLDRIDGE, M. AND JENNINGS, N. R. 1994. Agent theories, architectures, and languages: A survey.

In Proceedings of the 1994 Workshop on Agent Theories, Architectures & Languages. Amsterdam,

The Netherlands, Springer-Verlag.

Received January 2005; revised October 2005; accepted October 2005

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 1, January 2006.

