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ABSTRACT 

This paper discussed the evolution and future trend of 
simulation in general domain and in transportation.  Some 
challenges facing transportation modeling and simulation 
were identified.  As an effort to address these challenges, a 
framework of new generation transportation simulation 
was developed.  The framework is envisioned to be multi-
scale in resolution, parallel in execution, and driven by ob-
jects. The paper further discussed strategies of transporta-
tion simulation at a nanoscopic level which offers a level 
of modeling detail beyond the state-of-the-art. 

1 INTRODUCTION 

Both simulation in general and in transportation have 
evolved about half a century.  Transportation simulation 
shares something in common with general simulation and, 
meanwhile, exhibits something particular in nature.  Simu-
lation is the process of generating an electronic version of 
the real world for many purposes including: (1) a tool for 
learning and understanding the physical world and its phe-
nomena, (2) a basis on which it is risk-free to experiment 
and test assumptions, (3) a means to predict by allowing 
preview of possible outcomes, (4) a decision-tool to show 
the effects by means of visualization. 

Transportation simulation is, meanwhile, a special ap-
plication of simulation. For example,  a traffic system is 
often thought as a queuing system, but it differs from a 
regular one such as a server.  This is because (1) faster ve-
hicles can overtake slower vehicles without having to wait 
behind, (2)  vehicles can change lanes easily and this is in 
contrast to servers and guided vehicles such as trains, (3) 
capacity is not a point constraint in a process, but a con-
tinuous constraint over space/roadway, (4) congestion can 
occur unexpectedly in a traffic system, though bottlenecks 
are mostly observed at locations with reduced capacity, (5) 
traffic demands typically indicate strong time-series pat-
terns rather than simply random distributions, (6) the hu-
man-in-the-loop nature renders a traffic system more fuzzy 
and intelligent than merely random. 
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Because of the above special nature of a traffic system, 
tools for transportation simulation are often designed spe-
cifically for such a purpose with less domain ambiguity. 
However, ambiguity often arises when different people 
talking about transportation modeling and simulation 
(TM&S). Typically, for people doing research, TM&S 
probably means using mathematic models to abstract part 
of the world and mimic its behavior in general; for infor-
mation technology (IT) people, TM&S frequently means 
implementing the mathematic model and developing corre-
sponding software products; for transportation profession-
als such as people in government agencies and consulting 
firms, very likely TM&S means using computerized soft-
ware tools (simulators) to replicate and study the perform-
ance of a specific transportation system.  

This paper falls into the first category, i.e. the paper 
focuses on general discussion on modeling philosophy in 
transportation simulation.  In section two, a historical per-
spective is presented briefing the evolution of simulation in 
transportation.  Challenges faced by transportation simula-
tion are identified in section three, and modeling strategies 
in response to these challenges are outlined, based on 
which a framework of a new generation transportation 
simulation is developed.  Section four focuses on a specific 
aspect of the framework – extremely detailed transporta-
tion simulation at a nanoscopic level.  Modeling philoso-
phy at this level of detail is conceptually presented includ-
ing autonomous intelligent driver model, dynamic 
interactive vehicle model, and driver-vehicle-environment 
closed-loop system.  Section five summarizes the paper. 

2 A HISTORICAL PERSPECTIVE 

The past decades have witnessed the evolution of simulation 
in general domain from time-driven modeling to event-
driven modeling to process-driven modeling, and the trend 
continues with object-driven modeling, data-driven model-
ing, and continuous modeling (Pegden 2005).  A time-driven 
simulation advances simulation at fixed time steps. At each 
step, components of the simulation system is checked one-
by-one and their states are updated accordingly.  This mod-
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eling philosophy is straightforward and simple to implement 
and thus is extensively applied in early stage models.  In 
some cases, system states may remain constant if time gaps 
between events are large and, as a result, computation power 
is wasted traversing these gaps. Under this circumstance, a 
more efficient approach may be event-driven modeling 
which updates system states at the occurrences of events.  A 
process-driven simulation follows pre-defined logics and 
executes simulation steps sequentially, either in time domain 
or other domains or their combinations.  A process-driven 
simulation requires that a modeler know the logical se-
quence of the simulation in advance and the simulation 
completes once the sequence has been traversed.  In con-
trast, an object-driven simulation does not have a clearly de-
fined modeling sequence.  Rather, the simulation depends on 
interactions of objects which are entities in the system.  
Similar to object-oriented programming, an object possesses 
properties and behaves by means of methods.  An object can 
be derived from some other objects inheriting their proper-
ties and methods or overriding them.  A special type of ob-
ject-driven simulation is an agent-driven simulation which 
typically applies to a system with human intelligence.  An 
agent (or autonomous agent as frequently referenced in lit-
erature) is driven by goals and is able to achieve its goals by 
changing its behavior and adapting to its environment.  All 
the above simulation scenarios are model-driven simulations 
in that the model controls the progress and all modeling ac-
tivities occur within a single simulation process which typi-
cally captures modeling details at the same level.  A recent 
emerging modeling philosophy is the so-called data-driven 
simulation.  A data-driven simulation may be distributed and 
may be able to capture different levels of modeling detail.  
In essence, the progress of a data-driven simulation is con-
trolled by input data. Different data may trigger different 
component models, different level of detail, and different 
simulation scopes, all of which can co-exist in a single simu-
lation framework.  All simulation efforts so far have been 
limited in discrete form because computers essentially work 
in discrete manner.  Our eternal goal is to approximate real 
world systems which are continuous in domains such as time 
and space.  In continuous modeling, system states change 
continuously over time and space with feedback from sys-
tem entities and/or prior system states. 

Echoing part of the above trend in a loose sense, simu-
lation in transportation has evolved from macroscopic 
simulation to mesoscopic simulation to microscopic simu-
lation, and the trend continues.  A macroscopic simulation 
(Michalopoulos 1984; Michalopoulos and Lin 1986; New-
ell 1993a; Newell 1993b; Newell 1993c; Daganzo 1994; 
Daganzo 1995a; Daganzo 1995b; Ni et al. 2005; Ni and 
Leonard 2005) is purely a time-driven process in that, at 
each time step, traffic as a compressible fluid is pumped 
into the simulation system, moves forward link-by-link, 
and exits the system eventually.  Central to the flow of traf-
fic through the system is the conservation law which states 
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that traffic entering a section of road should be equal to 
traffic exited plus any storage (Lighthill and Whitham 
1955; Richards 1956). A taxonomy of  macroscopic mod-
els can be found in (Ni et al. 2005). Rather than treating 
traffic as a continuous fluid, a mesoscopic simulation (Van 
Aerde and Yager 1988; Morrison and Loose 1995; Smith 
et al. 1995; Van Aerde 1995; LANL 1999) models traffic 
as discrete particles without mass and personality.  Much 
like a process-driven simulation, these particles traverse a 
discretized time-space grid, hopping from one cell to an-
other governed by some pre-defined local rules such as 
maximum speed constraints.  Though still time-driven in 
nature, a microscopic simulation adds some flavor of ob-
ject-driven simulation.  Driver-vehicle units in a micro-
scopic simulation are similar to objects in that they possess 
properties (e.g. perception-reaction times, aggressiveness, 
preferences, etc.), behave by means of methods (car-
following logics, lane-changing logics, and gap-acceptance 
logics), and are driven by goals (starting from their origins 
and arriving at their destinations).  Microscopic simulation 
represents the current state-of-the-art in transportation 
simulation and a taxonomy of  microscopic models is 
available from the Next Generation Simulation (NGSIM) 
supported by Federal Highway Administration.  Seemingly 
simple to model, the complexity of transportation simula-
tion comes from the huge number of vehicles involved and 
the difficulty to keep track of their states and interactions, 
needless to say other system components such as roadways 
and signals.  After decades of continuous effort, transporta-
tion simulation has evolved to the current state featuring 
models with varying levels of detail and over a hundred 
simulators, some of which have been widely applied in 
various aspects of transportation engineering. 

3 NEW GENERATION SIMULATION 
FRAMEWORK 

3.1 Challenges of transportation simulation 

With computers become more and more powerful, there is 
a trend to analyze and address transportation problems 
from a system perspective involving increasingly large 
sizes and fine details. This brings about a number of chal-
lenges to the state-of-the-art transportation simulation:  

 
(1) Lack of details. Though microscopic simulation has 
sufficed our past and some of today’s needs, its limitation 
in terms of modeling details has been more and more 
widely recognized. As a matter of fact, many traffic engi-
neers feel difficulty in mimicking field traffic patterns us-
ing current limited logics on driver behaviors and vehicle 
responses. The main issue is that vehicles in the virtual en-
vironment are not driven the same way as they are in the 
real world. For example, vehicle acceleration and decelera-
tion performances have been unrealistic because of the use 



Ni 

 
of massless vehicle models. On the other hand, determinis-
tic mathematical approach has demonstrated only limited 
success in mimicking driver behavior where artificial intel-
ligence approach including fuzzy logics and neural net-
works may be more appropriate.  Though longitudinal ve-
hicle movement accounts for major aspects of traffic 
operation, inappropriate lateral movements are frequently 
found to be the causes of some operational problems, espe-
cially those of high impacts such as crashes and rollovers.  
As a matter of fact, NGSIM is actively seeking solutions to 
add more details in TM&S in terms of behavior models. 
(2) Lack of flexibility.  Traditional simulation approach 
treats everywhere in a transportation system with the same 
level of detail.  This poses challenges to some applications 
having competing requirements on both scale and detail.  
For example, modeling a regional transportation network 
inevitably sacrifices local details such as intersection op-
eration, while achieving local details limits the network 
size that an application can handle. 
(3) Costly to build models.  Building models involves pre-
paring data for the subject network and coding the network 
into a simulation model.  As the size of the network be-
comes large, the double complexity of network structure 
and data preparation can grow exponentially. Needless to 
say the resources needed to calibrate and validate the 
model. As a result, simulating a complex transportation 
system sometimes can be prohibitive due primarily to the 
cost of building the model. 

3.2 The framework of new generation simulation 

In response to the challenges identified above, a new gen-
eration transportation simulation is envisioned to be multi-
scale in resolution, parallel in execution, and driven by ob-
jects. 

3.2.1 Multi-scale resolution 

A simulation may not necessarily need the same resolution 
everywhere in the subject transportation network. For ex-
ample, management of a regional transportation network 
concerns more on its overall throughput, in which case a 
macroscopic may be more appropriate to achieve modeling 
scale.  As congestion built up at an intersec-
tion/interchange, the traffic analyst may be interested in 
identifying what factors contribute to the congestion and 
how it evolves. This scenario necessitates simulation at 
microscopic level or even more detailed level such as 
nanoscopic simulation.  For some part of the network, the 
analyst may want to learn more details about traffic dy-
namics while still overseeing the traffic flow, an interme-
diate scale such as mesoscopic simulation may be more 
appropriate.  

Figure 1 illustrate such a scenario with multi-scale re-
solution.  Simulation of Atlanta regional transportation 
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network is performed at a macroscopic level (the back-
ground map) to achieve modeling scale and maintain effi-
ciency.  Two interstates I-75 and I-85 merge and diverge at 
Brookwood interchange where traffic analysts want to ob-
tain more details here, so a closer view is obtained by 
“zooming in” to a mesoscopic level (the top local view).  
Downtown connector, the confluence of I-75/I-85,  is fre-
quently the root of congestion. An even closer view at a 
microscopic level (the middle local view) may reveal the 
instability of traffic and possible cause of traffic break-
down.  A view with higher resolution such as nanoscopic 
level (the bottom view) is always helpful to examine the 
interactions between vehicles and identify means to im-
prove traffic flow based on control at individual vehicle 
level.  Notice that, rather than applying the same modeling 
resolution everywhere in the network, different levels of 
detail are applied at different parts of the network and they 
co-exist in the same simulation.  This modeling technique 
is expected to improve simulation flexibility and address 
simultaneous requirements of scale and detail. 

 

 
Figure 1: Multi-Scale Resolution Simulation 

3.2.2 Parallel execution 

In line with the need to satisfy both scale and detail, a 
simulation does not have to run in a monolithic fashion.  
Multiple simulation processes can communicate and syn-
chronize such that each simulation takes care of part of a 
larger transportation network.  This technique can be im-
plemented in a single computer executing multiple simula-
tion processes in parallel or distribute the processes to mul-
tiple computers/locations to share workload and 
information. 

Closely related to the parallel/distributed simulation is 
its convenience to incorporate data-driven applications 
where locally distributed simulation processes are easier to 
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take care of changes in traffic pattern such as sudden 
surges, accidents, and emergencies.  These pattern changes 
then steer the simulation processes to enter next level of 
detail as appropriate. 

There are generally two approaches to parallelism: 
functional parallelism and spatial parallelism.  Both of 
them are desirable for the application of interest. For ex-
ample, the functional parallelism allows one or more low-
level, local microscopic simulation to co-exist with a high-
level, global macroscopic simulation; the spatial parallel-
ism is ideal to partition a large network into several small 
but more detailed sub-networks spatially and map them to 
different processors. 

3.2.3 Object models 

Actually, the object-oriented paradigm was originated in 
simulation world and was adopted in programming world 
(Pegden 2005). One of the advantages of thinking in ob-
jects is to reuse codes and save time in repeated works, 
which opens the door of simplifying model building.  In 
transportation simulation, an object can be anything rang-
ing from links, nodes, signs, signals, vehicles, drivers, and 
even the model itself.  Therefore, it is important to coin the 
concept of object model, i.e. a model can be an object and 
an object can be a model.  An object can have properties, 
carry goals, and behave by methods.  For example, a signal 
has timing plans and behaves by indicating right of ways.  
A vehicle has dimensions, mass, and power and behaves 
by carrying out dynamic response to control strategies.  A 
driver has personalities and preferences and behaves by de-
termining vehicle control strategies.  Importantly, the 
driver’s behavior is motivated by its goal – traveling from 
point A to point B subject to certain constraints such as 
minimizing travel time.  What make objects attractive are 
their ability to be encapsulated with data, instantiated to 
spawn multiple copies, and modified to generate new ob-
jects based on their parents to exhibit new properties, 
methods, and goals. Driven by their goals, objects can 
work autonomously and adapt their behavior to new set-
tings.  This is much the same way that real word systems 
work – everybody acts on its own schedule, yet there is a 
universal time to coordinate the actions of all of those in-
volved.  This modeling philosophy partly echoes the paral-
lel execution discussed above. 

4 NANOSCOPIC TRANSPORTATION 
SIMULATION 

Though real world systems can be examined with continu-
ously finer resolution, transportation simulation has to be 
“zoomed in” by discrete levels, i.e. macroscopic, 
mesoscopic, microscopic, and intuitively nanoscopic.  Our 
current knowledge has covered the first three levels.  In 
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this section, we try to extend our understanding to the last 
level in an exploratory and conceptual manner. 

To illustrate the difference in modeling philosophies 
of these levels and facilitate subsequent discussion, we 
make the following analogy. Suppose one is observing 
traffic 10,000m above the ground, traffic behaves as a 
compressible fluid whose states (speed, flow, and density, 
etc.) propagate back and forth like waves. This is a sce-
nario of macroscopic simulation. If one lowers to 3,000 m, 
the sense of waves recedes and a scene of particles 
emerges. A vehicle behaves as a particle hopping from one 
cell to another governed by some predetermined logics. 
This is a scenario of mesoscopic simulation. If one lowers 
even more to 1,000m, the scene is dominated by moving 
particles which interact with each other so as to maintain 
safe positions in the traffic stream. This is a scenario of 
microscopic simulation as well as the state-of-the-art.  
Nanoscopic simulation is fundamentally different from the 
above modeling philosophies. Continuing with the above 
analogy, nanoscopic simulation provides a perspective as 
though one were to get down to the ground and drive in the 
traffic stream. What one sees now is neither wave nor par-
ticle, but a complicated nanoscopic system consisting of 
drivers, vehicles, and environment (e.g. roadway, signs, 
signals, etc.). Drivers collect information and make control 
decisions in terms of steering, acceleration, and decelera-
tion. Vehicles dynamically respond to drivers by executing 
the control decisions and moving on the ground. Feedback 
from vehicle dynamics, together with information from the 
environment, constitutes the basis for drivers to make con-
trol decisions in the next step and the above process goes 
on and on. Traffic operation is simply the movement and 
interaction of all vehicles in the system over time and 
space. This is a scenario of nanoscopic simulation. 

4.1 Autonomous intelligent driver model 

A driver is a special object in simulation, commonly re-
ferred to as an autonomous agent.  It is autonomous be-
cause it acts on its own, i.e. it is driven by goals and is able 
to adapt to the changing environment.  It is intelligent be-
cause it is able to reason, i.e. using the current context as a 
key to find solutions from its knowledge base and past ex-
perience.   

Thinking in an object-oriented (O-O) paradigm, a 
driver object has properties, behaves by methods, and pur-
sues goals.  More specifically, driver properties include 
aggressiveness, alertness, perception-reaction time, deci-
sion thresholds, preferences (lane and speed), etc.  Driver 
goals can be expressed as a combination of the following 
constraints: origin and destination, safety and security, 
travel time, and other costs.  Driver methods involve a 
complicated reasoning process to determine driving control 
strategies including acceleration, deceleration, and steering 
based on current context. 
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Figure 2 illustrates the reasoning process of the 

Autonomous Intelligent Driver model which consists of 
three parts: inputs, the driver model, and outputs.  Driver 
inputs come from environment as well as vehicle feedback. 

 

 
Figure 2: Autonomous Intelligent Driver Model 

 
The environment here generally refers to the entire 

system including drivers, vehicles, pedestrians, roadway 
infrastructure, traffic control devices, roadsides, abutting 
lands, nearby business, etc. From a driver’s perspective, 
there are local environment and global environment.  The 
local environment consists of everything in the vicinity 
around the driver such as roadway geometry, traffic control 
devices, other surrounding vehicles, distances to other ve-
hicles, deviation from target lane, available driving spaces, 
etc. Local environment affects the driver’s immediate driv-
ing tasks such as acceleration and deceleration.  The global 
environment is actually the mapping of the entire system in 
the driver’s brain such as alternative routes to destinations, 
traffic control devises along the routes, anticipated travel 
times on the routes, congestions and incidents elsewhere, 
points of interests, etc. Global environment affects the 
driver’s long turn driving tasks such as route choice and 
diversion.  Vehicle feedback includes dynamic responses 
generated from a vehicle and perceived by its driver, such 
as vehicle position, speed, acceleration, yaw rate, etc. 

As an intelligent agent, a driver is able to (a) respond 
in a timely fashion to changes in the environment, (b) ex-
ercises control over his/her own actions, (c) pursue a goal 
by which to drive his/her actions, (d) communicate with 
other agents, and (e) change his/her behavior based on pre-
vious experience. These aspects of human intelligence can 
be modeled by artificial intelligence (AI) such as adaptive 
neuro-fuzzy inference system (ANFIS). In solving com-
plex, non-linear, and dynamic problems such as vehicle 
control, past research has shown that AI appeared to be 
more efficient than conventional deterministic mathematic 
approach. In addition, AI is able to mimic the natural way 
of driving a vehicle. Based on the above considerations, 
the intelligent driver consists of the following components: 
(i) Perception interface which mimics the way that infor-
mation enters the driver’s eyes and forms an image in the 
driver’s brain.  Since the driver, as a human being, can 
only take information in fuzzy terms, crispy information 
from outside needs to be fuzzified before registered in the 
driver’s brain.  (ii) Reaction interface which functions as 
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the reverse of the perception interface, i.e. fuzzy decisions 
made by the driver need to be defuzzified to crispy infor-
mation before execution on vehicles.  (iii) Driver proper-
ties and goals as explained before.  (iv) Knowledge base 
which consists the experiences and decision rules that gov-
ern driving behavior. For example, when there is no obsta-
cle in front and the vehicle is running slow, the knowledge 
base may suggest speeding up.  (v) Information dispatcher 
which is actually the central processing unit of the driver 
model. Three sources of information are critical to a driv-
ing task: environment information, vehicle feedback, and 
driver properties.  The dispatcher receives information 
from the three sources, queries the knowledge base, gets 
answers from it, determines control strategies, and sends 
them to decision queue for execution. 

Outputs of the model are strategies of vehicle control 
such as steering wheel angle, gas, and brake, of which the 
latter two can be simplified as one. This is exactly how 
drivers control their vehicles in the real world.  

Modeling drivers as objects provides great flexibility 
and simplification to model building. For example, driver-
related data are encapsulated in driver objects and only the 
objects can change their states;  driver input patterns trig-
ger object-specific actions;  specialized objects (pedestri-
ans, bicyclists, auto drivers, heavy vehicle drivers, etc.) can 
be derived from existing objects (generic drivers);  new ob-
jects can be built by combining existing objects. 

4.2 Dynamic interactive vehicle model 

Thinking again in O-O paradigm, a vehicle object has 
properties, behave by methods, but no goals.  Vehicle 
properties include mass, power, dimensions, etc.  Vehicle 
methods can be expressed as a set of dynamic equations 
mapping driver control strategies to vehicle responses.  A 
vehicle object is dynamic because its responses change dy-
namically as a function of driver control strategies and it 
captures vehicle dynamics including mass and acceleration 
(longitudinal and lateral).  The object is also interactive be-
cause its responses depend on driver control strategies and, 
in return, influence driver decision-making. 

Figure 3 illustrates how a vehicle object/ model works. 
Three parts are involved: inputs, the vehicle model, and 
outputs. 

 

 
Figure 3: Dynamic Interactive Vehicle Model 
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Inputs of the vehicle model come from two sources: 
the driver and the environment.  Inputs from the driver in-
clude steering wheel angle, throttle position, and brake po-
sition. The last two can be combined as one since they both 
control acceleration (deceleration is negative acceleration).  
Inputs from environment is the physical space in which the 
vehicle operates, such as roadway surfaces, lanes, curves, 
and resistances. 

The vehicle model consists of vehicle-specific infor-
mation and vehicle-generic information.  Vehicle-specific 
information contains vehicle properties such as mass, di-
mension, and engine power.  Vehicle-generic information 
is actually a set of dynamic equations describing the dy-
namic performance of a class of vehicles, such as accelera-
tion/deceleration and steering performance. 

Outputs of the vehicle model are vehicle dynamic re-
sponses, of which the following are of particular interest: 
(i) longitudinal acceleration which describes vehicle longi-
tudinal movement and affects the driver’s choice of speed 
and car-following behavior;  (ii) lateral acceleration which 
describes vehicle lateral movement and affects lane 
change, turning, overturn, etc.  (iii) yaw rate which de-
scribes vehicle stability under steering and exerts some in-
fluence on the driver to decide appropriate combination of 
speed and turning. Yaw rate is also closely related to vehi-
cle rollover. 

4.3 Driver-vehicle-environment closed-loop system 

The above discussion presents an autonomous intelligent 
driver model and a dynamic interactive vehicle model. 
Working together, the two models form a driver-vehicle 
closed-loop system which constitutes a basic building 
block of roadway traffic – a new object derived by combin-
ing the previous two. Many such objects as well as road-
ways, traffic control devices, and other objects related to 
traffic operation constitute a general environment in which 
the driver-vehicle objects operate. The interactions among 
drivers, vehicles, and environment are summarized in Fig-
ure 4 which illustrates the architecture of nanoscopic trans-
portation modeling and simulation. 
 

 
Figure 4: Driver-Vehicle-Environment System 
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In this architecture, the driver receives information 
from the environment such as roadways, traffic control de-
vices, and the presence of other vehicles. The driver also 
receives information from his/her own vehicle such as 
speed, acceleration, and yaw rate. These sources of infor-
mation, together with driver properties and goals, are used 
to determine driving strategies (such as steering and 
gas/brake). The driving strategies are fed forward to the 
vehicle which also receives roadway information from the 
environment. These sources of information, together with 
vehicle properties, determine the vehicle’s dynamic re-
sponses based on vehicle dynamic equations. Moving lon-
gitudinally and laterally, the vehicle constitute part of the 
environment. Other vehicle dynamic responses such as 
speed, acceleration, and yaw rate are fed back to the driver 
for determining driving strategies in the next step. There-
fore, the architecture creates an environment, in which 
each driver-vehicle object is an autonomous agent which is 
driven by goals and is able to achieve the goals by moving 
through the environment. Thus traffic operation is simply 
the movements and interactions of all vehicles in the envi-
ronment. 

It can be seen conceptually that the implementation of 
the above nanoscopic simulation will be a very difficult 
task and the execution of such a nanoscopic simulation will 
be heavyweight.  These difficulties echo the need for the 
multi-scale resolution simulation framework, i.e. a light-
weight, low-resolution simulation takes care of network-
wide performance, while a heavyweight, high-resolution 
simulation reveals details in a sub-network or a point on 
roadway. 

5 SUMMARY 

This paper discussed some commonalities and differences 
between simulation in general domain and simulation in 
transportation, as well as their evolution of modeling phi-
losophies.  A few challenges are faced by the state-of-the-
art transportation simulation in an effort to meet today and 
tomorrow’s needs in transportation modeling and simula-
tion. These challenges include: (1) a lack of details in a 
sense that vehicles in the virtual environment are not 
driven the same way as in the real world, (2) a lack of 
flexibility in a sense that existing models have difficulty to 
meet the simultaneous requirements on scale and detail, 
and (3) costly to build models in a sense that data collec-
tion and model coding are sometimes too expensive to 
warrant a simulation application. 

To deal with the above challenges, a framework of 
new generation transportation simulation was proposed. 
Future transportation simulation is envisioned to be multi-
scale in resolution, parallel in execution, and driven by ob-
jects.  More specifically, future transportation simulation is 
expected to be able to accommodate different levels of de-
tail in the same simulation.  Macroscopic simulation facili-
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tates large scale modeling, microscopic simulation reveals 
more local details, while mesoscopic simulation balances 
scale and detail.  Future transportation needs to run parallel 
and/or in a  distributed manner. Such a consideration 
comes from the need of sharing workload and information 
as well as to facilitate data-driven applications.  Future 
transportation simulation is envisioned to be driven by ob-
jects which are system components capable of acting on 
their own yet interacting with other objects.   By means of 
encapsulation, instantiation, and overriding, object-driven 
simulation is expected to render a simulation more realistic 
and efficient. 

Moving along the line of macroscopic, mesoscopic, 
and microscopic simulation, the next step to improve mod-
eling detail is nanoscopic simulation.  This can be achieved 
by incorporating an autonomous intelligent driver model, a 
dynamic interactive vehicle model, and integrate both in a 
driver-vehicle-environment closed-loop system.  The 
driver model is capable of capturing environment informa-
tion and vehicle feedback to control a vehicle in terms of 
accelerating, decelerating, and steering.  The vehicle model 
executes the above control strategies and makes dynamic 
responses accordingly.  The driver-vehicle object interacts 
with other similar objects as well as other system objects 
such as roadways and signals.  Thus traffic operation is 
modeled as actions and interactions of all objects in a 
driver-vehicle-environment closed-loop system. 
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