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ABSTRACT 

Capacity constrained make-to-order manufacturing sys-
tems with exogenously set due dates and heavy tardiness 
penalties can be effectively managed by selective accep-
tance of orders, especially when the system encounters 
heavy congestion. This is demonstrated using a popular or-
der acceptance rule. How this rule can optimally control a 
manufacturing system under different environments and 
how the main performance measures of the manufacturing 
system are affected in doing so, are demonstrated and ana-
lyzed. The study is done on a simulated hypothetical manu-
facturing system used as a testbed. 

1 INTRODUCTION 

Order Review and Release (ORR) in manufacturing has 
long passed its infancy and is now a widely accepted re-
search topic. The rich repository of research in ORR is 
evident from the expanding portfolio of publications since 
the days of Wight (1970) when the author proposed the ru-
dimentary principle in production control i.e. not to input 
jobs into a manufacturing system at a higher rate than the 
system output. Since then, various ORR strategies have 
been experimented with in numerous experimental scenar-
ios. Bergamaschi et al. (1997) is one survey paper classify-
ing this volume of research.  
 In capacity-constrained environments with exogenous 
due dates and heavy tardiness penalties, the extreme input 
control approach is a necessity, especially at the time of 
demand surge. Extreme input control approaches have 
been studied by queuing theorists as well as applied simu-
lationists. Some early work in queuing theoretic models 
permitting limited rejection of a portion of demand were 
done by Lippman (1975), Lippman and Ross (1971), 
Miller (1969), Scott (1969), and Scott (1970). Relatively 
recently, on the experimental side, several researchers have 
conducted simulation experiments of facilities with the ca-
pability to utilize this form of extreme control. Philipoom 
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and Fry (1992) studied two order acceptance strategies and 
found selective acceptance of orders can yield dramatic 
improvement in the case of capacity-constrained make-to-
order (MTO) manufacturing systems. ten Kate (1992) also 
found that in severe conditions with short lead times, high 
utilization rate, order acceptance integrated with schedul-
ing function performs better that the situation when they 
are not integrated. Wester et al. (1994) compared three ba-
sic order acceptance approaches and concluded that under 
heavy workload the one based on detailed scheduling of 
accepted orders outperforms other aggregate or myopic 
approaches. Ivanescu et al. (2002) suggested that the 
choice of the best order acceptance policy should depend 
on the processing time variability. Nandi and Rogers 
(2003) tested a two-stage input control mechanism in a ca-
pacity-constrained MTO setting with fixed customer due 
dates where selectively accepted orders can be delayed in a 
pre-shop pool and opportunistically released to the shop 
floor. Holding orders in the pre-shop pool was not found to 
improve the due date performance. Ebben et al. (2005) 
tested an "aggregate" approach versus an approach devel-
oping a complete schedule after each job was accepted. 
The authors suggested that the aggregate approaches do not 
work all that well in cases of high demand and little slack 
(i.e. high due date tightness). Additionally, Nandi and 
Rogers (2004) developed a simulation-based order accep-
tance approach, which inherently utilizes the full informa-
tion of the manufacturing system and demonstrated the 
concept of optimal control of the manufacturing system 
under different environments. 
 This paper is in line with the research activities in the 
field of extreme input control. Nandi and Rogers (2004) 
has already demonstrated the concept of optimal control of 
MTO manufacturing systems using an extreme input con-
trol approach, when the system is functioning in an uncon-
trolled environment. In this paper, this investigation has 
been further extended to another popular order acceptance 
rule (described in subsection 2.2), which was earlier inves-
tigated by Philipoom and Fry (1992) to some extent, but 
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was not really studied for optimal control of an MTO 
manufacturing system. The motivation of this paper lies in 
this very fact. 
 The remainder of the paper is structured as follows. 
First, the order acceptance rule is described, together with 
a description of the simulated manufacturing environment 
in which it was tested. A preliminary study on how the 
control parameters of the order acceptance rule influence 
the main performance measures of the system is done next. 
This is followed by an analysis of the optimal control pol-
icy of the manufacturing system using this rule under var-
ied environmental conditions. This study is also extended 
to demonstrate the effect of optimal control on the main 
performance measures of the system. Finally, some con-
clusions and possible directions for future work are high-
lighted. 

2 ORDER ACCEPTANCE RULE 

In this section we first describe the hypothetical manufac-
turing system within which the order acceptance rule has 
been implemented. The order acceptance rule used in this 
study is described next in detail. 

2.1 Description of the System 

The manufacturing system considered here, is identical to 
the one used in Nandi and Rogers (2003). Please refer to 
this paper for more details on the system. The manufactur-
ing facility is a make-to-order manufacturing system com-
prising of 10 machines arranged in 4 workstations with the 
even numbered workstations having 3 machines and the 
odd numbered workstations having 2 machines. The total 
number of operations will vary between 1 and 4. Each of 
the 10 machines has a known mean processing time, with 
actual times being sampled from a Gamma distribution. 
The jobs in a machine queue are prioritized according to 
the well-known least-slack-per-remaining-operation dis-
patching rule, any tie being broken on the basis of first-in-
system-first-served. Two classes (viz. regular and urgent) 
of customer orders are generated with a batch size of unity 
and inter-arrival times following a Gamma distribution. 
Orders are selectively accepted following the order accep-
tance rule in Section 2.2. Each order is assigned an exoge-
nous due date which is a constant flow allowance away 
from the entry time. This flow allowance is RegFTA or 
UrgFTA depending on if the order is regular or urgent, 
RegFTA being greater than UrgFTA. Each accepted order, 
upon completion, contributes to the system an amount 
equal to its revenue (Rev) less any incurred tardiness pen-
alty costs (TC). Following are the formulations of Rev. 
 

Rev = Kr × TWK; for a regular order                      (1a) 
Rev = Ku × TWK; for an urgent order                     (1b) 
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Where, 
Kr = A positive constant 
Ku = A constant such that Ku>Kr 
TWK = Total estimated work content of the order. 

 
 Also, following are the formulations of TC. 

 
TC = Ktr × Rev × Tardiness; for a regular order     (2a) 
TC = Ktu × Rev × Tardiness; for an urgent order    (2b) 
 

Where, 
 Ktr = Tardiness cost factor, a positive con-

stant 
 Ktu = Tardiness cost factor, defined as    

Ktr × (RegFTA / UrgFTA) 
 Rev = Net revenue for the order in question 

(before considering tardiness cost) 
 Tardiness = Amount of tardiness on completion 

(which is zero or a positive quan-
tity). 

 
 So, any rejected job makes no contribution to net 
revenue but at the same time the opportunity cost of not 
accepting the job is limited to its revenue. Given the above, 
the key performance measure of interest for this system, 
referred to as Overall Percent Achievement (and denoted 
OPA) is defined as the ratio of actual net revenue to the 
maximum possible revenue if all jobs were accepted and 
completed on time. OPA will be less than 100% due to two 
sources, cumulative rejection losses, and cumulative tardi-
ness losses. Additionally, two types of loss are tracked in-
dividually and referred to by the measures Overall Percent 
Rejection Loss (denoted OPRL being the ratio of actual 
cumulative rejection losses to maximum possible revenue), 
and Overall Percent Tardiness Loss (denoted OPTL being 
the ratio of actual cumulative tardiness losses to maximum 
possible revenue). Obviously, OPA+OPRL+OPTL = 
100%. 

These performance measures are also monitored at the 
level of order classes. OPA is broken down into UPA and 
RPA. UPA is defined as the ratio of actual net revenue 
earned by “urgent” orders to maximum possible revenue 
that could have been earned by “urgent” orders. RPA is the 
“regular” counterpart of UPA. Similarly, two components 
of OPRL are UPRL and RPRL. UPRL is the ratio of the 
loss through rejecting “urgent” orders to the maximum 
possible revenue that could have been earned by “urgent” 
orders. RPRL is the “regular” counterpart for UPRL. Last, 
UPTL and RPTL are the components of OPTL. UPTL is 
defined as the ratio of the loss through “urgent” tardy or-
ders to the maximum possible revenue that could have 
been earned by “urgent” orders. Again, RPTL is the “regu-
lar” counterpart for UPTL. So, by definition, UPA + UPRL 
+ UPTL = 100%, and also, RPA + RPRL + RPTL = 100%. 
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 This system can operate under various environmental 
conditions, which are set by choosing the levels of a num-
ber of factors as described in the following subsection 
2.1.1. 

2.1.1 Environmental Factors 

(i) Demand level: This parameter dictates the aver-
age utilization of the shop, if all arriving orders 
were accepted. This parameter is denoted as DL. 

(ii) Demand level variability: This parameter signifies 
the uncertainty involved in the demand. This pa-
rameter is varied by changing the coefficient of 
variation of the distribution of order inter-arrival 
times. This parameter is denoted as DLV. 

(iii) Process time variability: This parameter signifies 
the uncertainty in the processing times. This can 
be varied by changing the coefficient of variation 
of the distribution of the processing times. This 
parameter is denoted as PTV. It should be noted 
that for real manufacturing systems, PTV is ex-
pected to be smaller than DLV (e.g. 0.3 versus 
1.0). 

(iv) Proportion of urgent orders: This is the propor-
tion of the orders coming into the system that are 
urgent. This parameter is denoted as PUO. 

(v) Due Date Tightness: This is the severity of the 
pressure of meeting due date requirements in a 
given situation. In the current research, this is not 
expressed in a single variable but instead depends 
upon the values of the flow time allowance (for 
both "urgent" and "regular" jobs), and the tardi-
ness cost factor. This parameter is denoted as 
DDT. 

2.2 Order Acceptance Rule 

The order acceptance rule that has been used in the work 
reported in this paper is similar to the path load order re-
view introduced in Philipoom and Fry (1992). This can be 
stated as follows: 

Accept the order if the accepted load on the busiest 
machine on the candidate order’s route is less than a 
specified maximum value.  

For a regular order of type j, arriving at time t, if Ac-
cLOM(i)t < RL, for all i ⊂  qj, then the order is accepted, 
otherwise it is rejected; but for an urgent order RL is re-
placed by HL in this rule. Here,  

AccLOM(i)t = The value of the accepted workload 
on machine i at the time of the arri-
val of the order, t.  

qj  =  The set of all machines on the route 
of an order of type j.  
2005
RL  = A constant (a control parameter of 
this rule). 

HL  = A constant (another control pa-
rameter of this rule). 

 
As noted in Philipoom and Fry (1992), the machine with 
the heaviest workload would tend to delay the completion 
of an order more so than less loaded machines. So control-
ling the input of orders based on this critical machine may 
make more sense than looking at the total load on the en-
tire shop when making accept/reject decisions. Although 
this present rule is similar to the one introduced by Phili-
poom and Fry (1992), this rule further makes a clear dis-
tinction in handling urgent and regular orders. As should 
be obvious from the above description, increasing this 
rule’s control parameters, RL and/or HL, should result in 
less orders being rejected, but may also lead to increased 
congestion and hence increased order tardiness. 

3 EFFECT OF CONTROL PARAMETERS ON 
THE MAIN PERFORMANCE MEASURES 

To study the effect of the control parameters on the main 
performance measures of the system at different values of 
the environmental factors, RL is varied through {14, 18, 
22, 26, 30, 34, 38} hours with HL fixed at 22 hours. This is 
done when one of the environmental factors (i.e. DL, DLV, 
PTV, PUO or DDT) changes across different values while 
others are held fixed at their base levels. The values of 
these environmental factors used in this experiment are as 
follows: 

 
DL  = {0.75, 0.85, 0.95}, 
DLV = {0.1, 0.55, 1.0}, 
PTV  = {0.1, 0.3}, 
PUO = {0.05, 0.15, 0.25}, 
DDT = {“Loose”, “Tight”}. 
 
The base levels of the above five parameters are 

{85%, 10%, 10%, 5%, “Loose”} in order of their appear-
ance. 

A “Loose” level of DDT is characterized by the values 
of RegFTA = 30 hours, UrgFTA = 20 hours, and Ktr = 
0.03333 with these values chosen so that they yield OPA = 
90% (approximately) when all orders are accepted and re-
leased immediately to the shop floor, with the dispatching 
rule as first-in-system-first-served under an environment 
such that all of the environmental factors are at their refer-
ence levels. Note that these settings imply that an order 
will lose all its revenue if it is tardy by its flow allowance. 

A “Tight” level of DDT is set with RegFTA = 21 
hours, UrgFTA = 14 hours, and Ktr = 0.05952 so that the 
system can achieve OPA = 58% (approximately) when 
working under the same conditions as in the case of the 
“Loose” level. Note that with these settings, if a regular or-



Nandi and Rogers 

 
der or an urgent order is tardy by 80% of its flow time al-
lowance, the order will lose all its revenue. 

For each of the different scenarios, the system has 
been simulated for 5 replications each of length 83520 
hours which includes a warm-up period of 11520 hours, so 
that a confidence interval on the average of each of the ob-
served performance measures has a half width less than or 
equal to 0.1% of the mean value of the performance meas-
ure. The observed performance measures are OPA, UPA, 
RPA, OPRL and OPTL. Figure 1 has been drawn with the 
environmental factors at their base levels. The figure 
shows that as RL increases OPA initially increases. The 

figure also shows how the corresponding OPRL and OPTL 
vary with increasing RL to yield the resulting OPA. As RL 
increases, OPTL increases while OPRL decreases. If RL 
increases further, OPA will eventually decline owing to the 
very high OPTL although OPRL will be very low. So for a 
fixed value of HL, there can be found a RL for which OPA 
is maximum where the total loss, comprised of rejection 
loss and tardiness loss, is the minimum for the given set of 
values of the environmental factors.  

To investigate the effect of control parameters on 
OPA, when the environmental factors vary, the above ex-
periment was further extended. In these experiments, one 
environmental factor is varied while others are kept at their 
base levels. Also for simplicity HL is kept constant at 22 
hours in this experiment. The results are summarized in 
Table 1.  

When DL is varied keeping other environmental fac-
tors at their base levels, a convex nature in the values of 
OPA is observed. As DL increases, the maximum value of 
OPA is achieved at a lower value of RL, which means that 
at a higher congestion the system will reject more orders to 
reach the maximum OPA. As the present system has a 
fixed capacity and the due date of the orders cannot be in-
fluenced, at a higher DL the system achieves the maximum 
OPA by rejecting more orders (i.e. by lowering RL). 

OPA, OPRL, OPTL vs RL
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Figure 1: OPA, OPRL and OPTL vs. RL 
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As DLV increases, the value of OPA decreases at a 
particular RL. The interaction effect of RL and DLV on 
OPA is insignificant in this particular scenario. 

As PTV increases a similar phenomenon is observed. 
In this case it can also be observed that at a higher PTV, the 
system tries to achieve the maximum OPA at a lower value 
of RL, other conditions remaining unchanged. 

 
Table 1: OPA vs. RL at Varying Environmental Factors 

RL (Hours) Fac-
tors 

Factor
Levels 14 18 22 26 30 34 38 
0.75 91.90 95.49 97.43 98.41 98.94 99.82 98.89
0.85 86.68 90.53 93.16 94.45 94.81 92.76 90.04DL 
0.95 81.21 84.98 87.46 88.39 87.28 83.26 78.41
0.10 86.68 90.53 93.16 94.45 94.81 92.76 90.04
0.55 85.72 89.68 92.34 93.66 94.00 92.02 89.08DLV
1.00 83.45 87.55 90.38 91.77 92.26 90.16 86.99
0.10 86.68 90.53 93.16 94.45 94.81 92.76 90.04

PTV 0.30 85.24 89.15 91.77 93.02 92.87 90.96 88.13
0.05 86.68 90.53 93.16 94.45 94.81 92.76 90.04
0.15 87.07 90.80 92.89 93.70 93.90 92.61 91.17PUO
0.25 87.47 90.91 92.54 92.99 93.09 92.17 91.87

Loose 86.68 90.53 93.16 94.45 94.81 92.76 90.04
DDT

Tight 84.54 86.05 84.48 81.90 76.39 61.10 19.93
  
 Regarding the effect of RL on OPA under varying 
PUO, OPA increases with PUO, at a lower RL, but when 
RL is high a lower PUO will attain a higher OPA.  
 At the “Tight” level of DDT, OPA drops at a much 
faster rate with increasing RL and also the system tries to 
attain the optimum OPA at a lower value of RL. At the 
“Tight” level of DDT, the flow allowance of an order is 
smaller and also the tardiness cost penalty factor (i.e. Ktr) 
is higher. So to avoid a high tardiness penalty, the system 
rejects more orders to attain the maximum OPA, which is 
achievable at that condition. 

4 OPTIMAL CONTROL POLICY FOR GIVEN 
ENVIRONMENTAL CONDITIONS 

This section reports on an important and major aspect of 
this research which is to study how the system can be op-
timally controlled under different environments by adjust-
ing the control parameters of the order acceptance rule. 
Also it is of interest to study how sensitive this choice of 
control parameters is with respect to variation in the envi-
ronmental factors. The following sections study this for 
two classes of orders. The general approach to find out the 
optimal value of the control parameters (RL and HL) for a 
given environmental condition is detailed in the section be-
low. These optimal values of RL and HL are plotted for dif-
6
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ferent environmental factors, in a range of figures in the 
following sections. 

4.1 General Approach to Find the Optimum 

To find out what should be the optimal control policy i.e. 
what should be the value of RL and HL, so that the system 
performs the best, the approach taken is described below. 
This approach has two main steps: 

 
(a) In the first step, a regression model is built which re-

lates OPA, RL and HL and environmental factors viz. 
DL, DLV, PTV, PUO and DDT. 

(b) After the regression model is built, OPA is optimized 
using this regression model with respect to RL and HL 
when other factors are set at specific values. The opti-
mization is done by implementing the quasi-Newton 
search algorithm to find the direction of search while 
forward differencing is used to estimate the partial de-
rivatives of the objective function. An initial estimate of 
the basic variables in one-dimensional search is done by 
quadratic extrapolation. Optimization of this type can be 
carried out using the Microsoft Excel solver. 

 
To build a regression model, a cubic polynomial in seven 
factors is fitted to the observed values of OPA, which are 
obtained from a specified set of experiments. This set of 
experiments is determined by a D-optimal design, from a 
super set of full factorial design, under the condition that 
the effects appearing in the regression model are estimable. 
Each of these experiments in the chosen subset involved 5 
replications, each of length 83520 time units. The statistics 
were cleared after a warm-up period of 11520 time units. 
These values were chosen so as to yield a confidence inter-
val on OPA whose half-width was less than 0.1% of the 
point estimate for OPA. This D-optimal design was carried 
out using the SAS statistical software package. See John 
and Draper (1975) for a review on D-optimality for regres-
sion designs. 

4.2 Influence of DL When Other Factors Are Fixed at 
Their Base Levels 

Figure 2 shows how the optimal control limits vary with 
DL from 0.75 to 0.95 at a step of 0.05 keeping other factors 
at their base levels. It can be observed that (i) at DL = 0.75, 
RL is higher than HL, (ii) at a higher DL the system 
chooses HL higher than RL to operate optimally, and (iii) 
in this higher range of DL, HL does not vary much with re-
spect to DL, while RL decreases as DL increases. Possible 
justifications for these three observed phenomena are as 
follows. 
 
(i) When the system chooses HL higher than RL for opti-

mal operation, it in effect reserves some space for the 
2007
anticipated future urgent orders by rejecting some 
regular orders. In this scenario, only 5% of arriving 
orders are urgent which makes the arrival of urgent 

orders relatively infrequent. So at a low DL of 0.75, 
reserving space for the urgent orders and thus rejecting 
the regular orders causes a rejection loss which is 
more than the extra revenue that could have been 
earned by accepting more urgent orders. So at DL = 
0.75, to operate optimally, more regular orders are ac-
cepted by keeping RL greater than HL.  

(ii) At DL greater than 0.75 however, the system shows a 
preference for the urgent orders over the regular or-
ders. Here the system finds it beneficial to reserve 
some extra space for the urgent orders instead by re-
jecting some regular orders. The extra loss of revenue 
due to the rejection of regular orders (compared to the 
situation when HL = RL) is lower than the extra reve-
nue earned by accepting more urgent orders. This ac-
ceptance of extra urgent orders would not have been 
possible, without excessively large increases in tardi-
ness costs, if some extra regular orders were not re-
jected. However this does not necessarily mean that all 
urgent orders are accepted. Accepting all urgent orders 
might increase the loss due to tardiness of both classes 
of order. Due to the variability in the arrival process in 
the system there is an uneven frequency of arrival of 
urgent orders. If all the urgent orders are accepted by 
further lowering RL (and hence by rejecting more 
regular orders), during any period of low frequency of 
arrival of urgent orders, the loss suffered by the system 
due to the rejection of regular orders cannot be made 
up by the revenue earned even by all the urgent orders 
in this period. So the total loss will increase through 
the increased rejection loss. On the other hand if RL is 
not lowered further and all the urgent orders are ac-
cepted, this will lead to an increase in tardiness loss. 
So the optimum arrangement has been to reject a req-
uisite amount of urgent and regular orders so as to 

Optimal RL and HL vs DL
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Figure 2: Optimum RL and HL vs. DL 
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minimize the sum total of the rejection and tardiness 
loss of both urgent and regular orders. 

(iii) The system under consideration is a fixed capacity 
system and is working here under varying DL. To op-
erate in an optimum fashion (i.e. producing the maxi-
mum OPA at a given situation), RL and HL must ad-
just to protect the system appropriately from the 
dynamics of the environment. In Figure 3, plots of 
OPRL and OPTL reveal that during the interval DL =  

0.75 and 0.80, the system operates in an optimal fash-
ion by accepting more orders while beyond that re-
gion, it relies on rejecting more orders. In 
this figure the values of OPRL and OPTL at a particu-
lar DL are plotted when the system operates optimally. 
So beyond DL = 0.80, the system treats orders of the 
two classes significantly differently. Rather it is appor-
tioning the urgent and regular loads judiciously 
(through proper setting of HL and RL) to maximize 
OPA. The system will always try to accept urgent or-
ders as much as possible (under the constraint that the 
total loss is minimized, as explained in the context of 
observation (ii)). Figure 4 shows the plot of UPRL and 
RPRL with the values corresponding to the optimal 
operation of the system. As DL is increased the fre-

OPRL and OPTL vs DL
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quency of urgent orders will also increase and for DL 
>= 0.85, the system will try to accept these extra ur-
gent orders fully, making UPRL to be zero. However, 
on an overall basis the system will operate optimally 
still by rejecting orders (leading to an increase in 
OPRL) which is achieved through rejecting only regu-
lar orders. So for DL >= 0.85, RL will be reduced in 
order to be able to accept extra urgent orders without 
causing overly large tardiness penalties.  

4.3 Influence of DLV When Other Factors Are Fixed at 
Their Base Levels 

Figure 5 suggests that there is little influence of DLV on 
the choice of the optimal control limits when other factors 
are fixed at their base levels.  

4.4 Influence of PTV When Other Factors Are Fixed at 
Their Base Levels 

Figure 6 is created by varying PTV through 0.1, 0.2, 0.3 
with other factors at base levels. It shows that PTV has lit-
tle influence on the choice of the optimal control limits. 
 

Optimal RL and HL vs PTV

30.82 31.1330.52

27.29 27.2527.34

15

20

25

30

35

0.05 0.1 0.15 0.2 0.25 0.3 0.35
PTV

O
pt

im
al

 R
L

 a
nd

 H
L

HL RL

Figure 6: Optimum RL and HL vs. PTV 
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4.5 Influence of PUO When Other Factors Are Fixed 

at Their Base Levels 

Figure 7 shows how the optimal choice of the control lim-
its is influenced by changing PUO from 5% to 25% at a 
step of 5% when other factors are fixed at their base levels.  
From the figure it can be observed that HL remains higher 
than RL over the whole range of PUO, and also that as 
PUO increases, HL remains relatively constant while RL 

decreases slowly. To gain insight into this scenario, it is 
useful to look how OPA, OPRL, OPTL, RPRL, UPTL and 
RPTL vary with respect to PUO when the system is operat-
ing in an optimal fashion. These data are shown in Table 2 
in relation to the Section 5. The system finds it economic 
to keep room for the urgent orders and to do this a neces-
sary amount of regular orders are rejected. Thus HL re-
mains higher than RL. At DL = 85%, the system operates 
optimally by rejecting orders on an overall basis. If PUO is 
increased, the system accepts all the extra urgent orders 
and RL is lowered accordingly to reject the necessary 
quantity of regular orders so that the tardy loss does not 
become excessive.  

4.6 Influence of DDT When Other Factors Are Fixed 
at Their Base Levels 

Figure 8 shows how the optimal choice of the control lim-
its is influenced by varying DDT across two different lev-
els viz. “Loose” and “Tight” with other factors kept at their 
base levels. It can be observed that at the tight level, RL re-
duces while HL increases compared to the “Loose” level. 
This is expected because otherwise in the “Tight” level, the 
tardy loss will increase. So more orders are rejected. In 
both cases, HL remains higher than RL. When the DDT 
level changes from “Loose” to “Tight”, the corresponding 
OPA drops from 95.31 to 90.82 as seen in Table 2.  
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5 MAIN PERFORMANCE MEASURES UNDER 
OPTIMAL CONTROL 

This section reports on the behavior of the main perform-
ance measures of the manufacturing system when the sys-
tem is controlled optimally under various environmental 
conditions and when urgent orders are allowed. Each row 
of Table 2 shows the values of these performance measures 
when the system operates with one environmental factor 
fixed at a level shown, while others are fixed at their re-
spective reference levels and RL and HL at the values as 
shown. These values of RL and HL are the same values as 
obtained in the previous Section 4, which yields the maxi-
mum achievable OPA at the environmental condition cho-
sen. The values of different performance measures in each 
row of Table 2 were obtained from an appropriate simula-
tion run that involved five replications, each of length 
83,520 hours. The statistics were cleared after a warm-up 
period of 11,520 hours. These values were chosen to yield 
a confidence interval on OPA with a half-width that was 
less than 0.1% of the point estimate for OPA. 
 Results show that as DL increases OPA drops signifi-
cantly. At low DL, OPRL decreases up to DL = 0.80, after 
which it increases significantly, showing that the system 
maintains optimal performance by increasing the propor-
tion of orders rejected. OPTL keeps low compared to 
OPRL all across DL >= 0.85. However when DLV, PTV or 
PUO increases, OPA drops very little compared to when 
DL changes. With increasing DL, UPA and RPA are also 
appropriately adjusted.  

6 CONCLUSIONS 

The order acceptance rule used in this research is a capac-
ity-based rule and is parameterized. The rule can control 
the manufacturing system by adjusting the controllable pa-
rameters of the rule. Although the influence of similar ca-
pacity-based order acceptance rules on the performance of 
a manufacturing system was studied before, how to opti-
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DL RL HL
0.75 26.65 17.79 98.37 82.22 99.43 1.47 17.72 0.40 0.16 0.06 0.16
0.80 29.97 30.57 97.87 97.70 97.88 0.91 0.83 0.92 1.22 1.47 1.20
0.85 27.34 30.52 95.31 97.56 95.16 3.29 0.02 3.51 1.40 2.42 1.33
0.90 25.88 30.77 92.06 98.05 91.66 7.06 0.00 7.53 0.88 1.95 0.81
0.95 24.63 30.89 88.65 97.14 88.09 10.06 0.00 10.72 1.30 2.86 1.19

DLV RL HL
0.10 27.34 30.52 95.31 97.56 95.16 3.29 0.02 3.51 1.40 2.42 1.33
0.35 27.38 30.57 95.09 97.57 94.93 3.51 0.05 3.73 1.40 2.38 1.34
0.60 27.43 30.70 94.41 97.53 94.21 4.11 0.00 4.38 1.48 2.47 1.42
0.85 27.48 30.90 93.51 97.26 93.26 4.89 0.10 5.21 1.60 2.64 1.53
1.00 27.52 31.04 92.95 97.17 92.67 5.37 0.09 5.72 1.68 2.74 1.61

PTV RL HL
0.10 27.34 30.52 95.31 97.56 95.16 3.29 0.02 3.51 1.40 2.42 1.33
0.20 27.29 30.82 94.79 97.17 94.63 3.53 0.07 3.76 1.68 2.76 1.61
0.30 27.25 31.13 93.67 96.50 93.48 4.11 0.05 4.38 2.22 3.45 2.14

PUO RL HL
0.05 27.34 30.52 95.31 97.56 95.16 3.29 0.02 3.51 1.40 2.42 1.33
0.10 27.22 30.32 95.09 97.28 94.79 3.16 0.04 3.60 1.74 2.69 1.61
0.15 26.98 30.20 94.64 96.85 94.15 3.14 0.09 3.80 2.23 3.05 2.04
0.20 26.53 30.10 94.17 96.39 93.49 3.11 0.15 4.02 2.72 3.46 2.50
0.25 25.71 29.96 93.84 97.28 92.41 4.24 0.01 6.00 1.92 2.71 1.59

DDT RL HL
Loose 27.34 30.52 95.31 97.56 95.16 3.29 0.02 3.51 1.40 2.42 1.33
Tight 18.22 38.33 90.82 99.84 90.23 9.15 0.00 9.75 0.03 0.16 0.02

Table 2: Performance Measures Under Optimal Control 
mally control a manufacturing system using this rule, given 
a set of environmental conditions, was not investigated. 
While using this rule in the scenario of two categories of 
order, interesting insights are gained on how the system ju-
diciously apportions its earning of revenue from urgent and 
regular orders to adjust to the changing environmental 
conditions. The importance of this research lies in explor-
ing the possibility to control a manufacturing system by 
such a rule. Exact implementation to a real system will ne-
cessitate customization of this rule in terms of reevaluating 
the effect of this rule on the specific system. However the 
possibility to optimally control the system will still hold 
good, as demonstrated in this paper. Real-life implementa-
tion of this rule will require infrastructures such as moni-
toring system, data collection, and modeling of the specific 
system among many others. 
 This research can be further extended along various 
avenues: 
 

1. The implementation and analysis of such capac-
ity-based rules should be extended to more com-
plex manufacturing systems such as systems with 
assembled products and systems with distributed 
2010
controls. To gain insight into how the rule man-
ages the system with multi-class (more than two 
classes) orders will also be worth investigating. 

2. This rule should be compared with other good or-
der acceptance rules and possibly manufacturing 
control systems should be developed where the 
system can choose from a range of such order ac-
ceptance rules to work with depending on the en-
vironmental condition encountered and also the 
system can potentially switch to a different rule to 
its advantage, if necessary. 

3. The optimum seeking methodology implemented 
here should be improved and for practical imple-
mentation, a reasonably fast and accurate opti-
mum seeking method would be necessary. Also 
the effect of incorrect choice of the optimal values 
of the control parameters on the performance of 
the manufacturing system should be studied in 
more detail. 
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