
Proceedings of the 2006 Winter Simulation Conference

L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

OUTPUT ANALYSIS FOR SIMULATIONS

Marvin K. Nakayama

Computer Science Department

New Jersey Institute of Technology

Newark, NJ 07102, U.S.A.
ABSTRACT

We discuss methods for statistically analyzing the output

from stochastic discrete-event or Monte Carlo simulations.

Terminating and steady-state simulations are considered.

1 INTRODUCTION

So you’ve finally finished developing your simulation model.

You spent countless hours developing an understanding of

the underlying processes, collecting data, fitting the data

to various probability distributions, and coding and debug-

ging your simulation program. You carefully selected a

performance measure you felt was appropriate to evaluate

the system, and your program outputs an estimate of this

measure. You then ran the simulation program once, and the

results seemed to indicate that if the system design in your

program was actually put into practice, it would perform

well. You showed your boss the results, who then gave you

the green light to implement this system design. However,

once the system was in place, it performed poorly, not at all

like the results that you obtained from your one simulation

run. What went wrong?

Many simulations include randomness, which can arise

in a variety of ways. For example, in a simulation of

a manufacturing system, the processing times required at

a station may follow a given probability distribution or

the arrival times of new jobs may be stochastic. In a

bank simulation, customers arrive at random times and

the amount of time spent at a teller is stochastic. Future

returns in financial simulations are often modeled as random

variables.

Because of the randomness in the components driv-

ing a simulation, its output is also random, so statistical

techniques must be used to analyze the results. The data-

analysis methods taught in introductory statistics courses

typically assume that the data are independent and identi-

cally distributed (i.i.d.) with a normal distribution, but the

output data from simulations are often not i.i.d. normal.
361-4244-0501-7/06/$20.00 ©2006 IEEE
For example, consider bank customers’ waiting times at an

automatic teller machine (ATM). If one customer has an

unusually long waiting time, then the next customer proba-

bly also will, so the waiting times of the two customers are

dependent. Moreover, customers arriving during the lunch

hour will usually have longer waiting times than customers

coming in at other times, so waiting times are not identi-

cally distributed throughout the day. Finally, waiting times

are always positive and often skewed to the right, with a

possible mode at zero, so waiting times are not normally

distributed. For these reasons one often cannot analyze

simulation output using the classical statistical techniques

developed for i.i.d. normal data.

In this tutorial, we will examine some statistical meth-

ods for designing and analyzing simulation experiments. In

the next section we begin by distinguishing between two

types of performance measures: terminating (or transient)

and steady-state (or infinite-horizon or long-run). These two

types of measures require different statistical techniques to

analyze the results, and Section 3 reviews methods for ana-

lyzing output from terminating simulations, while Section 4

covers techniques for steady-state simulations. In Section 5

we discuss the estimation of multiple performance mea-

sures, and Section 6 briefly covers other methods useful for

analyzing simulation output. Some concluding remarks are

given in Section 7.

2 PERFORMANCE MEASURES

One of the first steps in any simulation study is choosing the

performance measure(s) to compute. In other words, what

measures will be used to evaluate how “good” the system

is? For example, the performance of a queueing system may

be measured by its expected number of customers served

in a day, or we may use the long-run average daily cost as

a measure of the performance of a supply chain.

There are primarily two types of performance measures

for stochastic systems, which we now briefly describe:

yama
Naka

1. Transient performance measures, also known as

terminating or finite-horizon measures, evaluate

the system’s evolution over a finite time horizon.

2. Steady-state performance measures describe how

the system evolves over an infinite time horizon.

These are also known as long-run or infinite-horizon

measures.

A simulation in which a transient (resp., steady-state)

measure is estimated is called a transient simulation (resp.,

steady-state simulation). We now describe these concepts

in more depth.

2.1 Transient Performance Measures

Definition: A terminating simulation is one for which

there is a “natural” event B that specifies the length of time

in which one is interested for the system. The event B

often occurs either at a time point beyond which no useful

information is obtained, or when the system is “cleaned

out.” For example, if we are interested in the performance

of a system during the first 10 time units of operation of

a day, then B would denote the event that 10 time units of

system time have elapsed. If we want to determine the first

time at which a queue has at least 8 customers, then B is

the event of the first time the queue length reaching 8. (See

Law and Kelton 2000, Section 9.3, for more details.)

Since we are interested in the behavior of the system

over only a finite time horizon, the “initial conditions” C
(i.e., conditions under which the system starts) can have

a large impact on the performance measure. For example,

queueing simulations often start with no customers present,

which would be the conditions C in this setting.

In a transient simulation, we have the following

Goal: To compute

µ = E(X), (1)

where X is a random variable representing the (random)

performance of the system over some finite horizon and E

denotes expectation (or average).

We now examine some examples of transient perfor-

mance measures.

Example 1 Consider a bank vestibule containing

an ATM. The vestibule is only open during normal banking

business hours, which is 9:00am to 5:00pm, so customers

can access the ATM only during those times. Any customers

in the vestibule at 5:00pm will be allowed to complete their

transactions, but no new customers will be allowed in. Let Z

be the number of customers using the ATM in a day, and we

may be interested in determining the following terminating

performance measures:
37
• E[Z], the expected value of Z. To put things in the

framework of (1), we set X = Z.

• P{Z ≥ 500} = E[I(Z ≥ 500)], which is the proba-

bility that at least 500 customers use the ATM in

a day, where I(A) is the indicator function of an

event A, which takes on the value 1 if A occurs, and

0 otherwise. In the notation of (1), X = I(Z ≥ 500)
in this case.

The initial conditions C might be that the system starts out

empty each day, and the terminating event B is that it is past

5:00pm and there are no more customers in the vestibule.

Alternatively we might define Z to be the average

waiting time (in seconds) of the first 50 customers in a day.

We can then define the following performance measures:

• E[Z], the expected value of Z. In this case, X = Z

in the notation of (1).

• P{Z ≤ 30} = E[I(Z ≤ 30)], which is the proba-

bility that the average waiting time of the first

50 customers is no more than 30 seconds. Here,

X = I(Z ≤ 30) in (1).

In this case we might specify the initial conditions C to be

that the system starts out empty each day, and the terminating

event B is that 50 customers have finished their waits in

line.

2.2 Steady-State Performance Measures

Now we consider steady-state performance measures. Let

Y = (Y1,Y2,Y3, . . .) be a (discrete-time) stochastic process

representing the output of a simulation. For example, if

the vestibule containing the ATM in our previous example

is now open 24 hours a day, then Yi might represent the

waiting time of the ith customer since the ATM was installed.

Let Fi(y|C) = P(Yi ≤ y|C) for i = 1,2, . . ., where as before,

C represents the initial conditions of the system at time

0. Observe that Fi(· |C) is the distribution function of Yi

given the initial conditions C. We are now interested in the

behavior of the system over an infinite time horizon, and it

is often the case that the effects of the initial conditions C
become negligible after a sufficiently long time has elapsed.

Definition: If

Fi(y|C) → F(y) as i →∞ (2)

for all y and for any initial conditions C, then F(y) is called

the steady-state distribution of the process Y. If Y is a

random variable with distribution F , we say that Y has

the steady-state distribution, and we sometimes write this

as Yi
D→ Y as i → ∞, which is read as “Yi converges in

distribution to Y .”

Nakayama
E Y []

Transient Densities

2010 30 40

fi

i . . .

E[Y |I]i

Figure 1: Densities fi of an Output Process (Y1,Y2, . . .)

The interpretation of (2) is that for all i sufficiently

large,

Fi(y|C) ≈ F(y), for all y. (3)

The value of i for which the approximation holds depends

very much on the particular system being simulated. Note

that (3) does not mean that the values of the Yi are all

the same for large i, but rather that the distribution of Yi

(given the initial conditions C) is close to F for large i.

Indeed, the steady-state random variable Y (and also the Yi

for large i) may still have plenty of variability. When Y is

a random variable with distribution F , E(Y) is a steady-

state performance measure. It can be shown under great

generality that E(Yi|C) → E(Y) as i → ∞ for all initial

conditions C when (2) holds. Figure 1 gives an example

of density functions fi approaching some limiting density

f as i gets larger.

Many systems do not have a steady state. For example,

consider our previous example of an ATM that is accessible

only during business hours. Let Yi be the waiting time of the

ith customer to arrive since the ATM was installed. Then,

the process Y does not have a steady state because the first

customer of each day always has no wait, whereas other

customers may have to wait. For example, suppose 500

customers are served on the first day, so day 2 begins with

customer 501, who has no wait since there is no one ahead

of him on that day. Since this happens every day, (2) cannot

hold. On the other hand, if the ATM were accessible 24 a

day, then a steady state may exist.

In the above example where the ATM is only available

from 9:00am to 5:00pm, we may be able to obtain a process

Y that does have a steady state if we define the Yi differently.

In particular, suppose Yi is the average waiting time of all

the customers on the ith day since the ATM first became

operational. Then, Y may have a steady state. (It still may

not if the distribution of the number of customers in a day

depends on the particular day of the week, or if there are

seasonal variations, in which case (2) cannot hold.)
Example 2 Consider the ATM from before, but now

suppose that it accessible all the time. LetYi be the number of
38
customers served on the ith day of operation, and suppose that

over time, the system “settles down” into steady state; i.e.,

Yi
D→Y as i →∞. We now may be interested in determining

the following steady-state performance measures:

• E[Y], which is the expected steady-state number

of customers served in a day;

• P{Y ≥ 400}= E[I(Y ≥ 400)], which is the steady-

state probability that at least 400 customers are

served in a day.

Again, we may let the initial conditions C denote that the

system begins operations on the first day with no customers

present, and over time, the effects of the initial conditions

“wash away.”

3 OUTPUT ANALYSIS FOR TRANSIENT

SIMULATIONS

We now discuss how to analyze the output from a transient

simulation. Recall our goal is to calculate µ = E(X), where

X is a random variable representing the performance of the

system over some finite horizon with initial conditions C.

The basic approach to estimate µ using simulation is as

follows:

Method: Generate n ≥ 2 i.i.d. replicates of X , say

X1,X2, . . . ,Xn, and form the (point) estimator

X̄(n) =
1

n

n∑

i=1

Xi. (4)

We generate i.i.d. replicates of X by running indepen-

dent simulations of the system under study. We make the

replicates independent by using non-overlapping streams of

random numbers from the random-number generator. We

ensure the replicates are identically distributed by starting

each simulation using the same initial conditions C and

using the same dynamics to govern the evolution of the

system.

The law of large numbers guarantees X̄(n)≈ µ for large

sample sizes n. But how close is X̄(n) to µ? The central

limit theorem (CLT) provides an answer. Specifically, let σ2

denote the variance of X , i.e., σ2 = Var(X). We sometimes

also refer to the standard deviation of X , which is σ =
√

σ2.

Also, let

S2(n) =
1

n−1

n∑

i=1

(Xi − X̄(n))
2
, (5)

which is the sample variance of X1, . . . ,Xn, and is an estima-

tor of σ2. The sample standard deviation is S(n) =
√

S2(n),
which is an estimator of σ . A variant of the standard CLT

Nakayama
asserts that for n large,

√
n

S(n)
(X̄(n)−µ)

D≈ N(0,1), (6)

where N(a,b) denotes a normal random variable having

mean a and variance b and
D≈ means “has approximately

the same distribution as.” The approximation in (6) is usually

reasonable for n ≥ 50, and it becomes exact as n →∞.

We now use (6) to derive a confidence interval for

µ . First define the confidence level 1−δ with 0 < δ < 1;

typically, one chooses δ = 0.1, 0.05 or 0.01. Then, we

look up in a z-table the constant z ≡ z1−δ/2 for which

P{N(0,1) ≤ z} = 1− δ/2; e.g., z = 1.65 when δ = 0.1,

z = 1.96 when δ = 0.05, and z = 2.58 when δ = 0.01.

Virtually any introductory statistics book provides a z-table;

also see Table T.1 of Law and Kelton (2000) or Table A.3

of Banks et al. (2001). Then

1−δ = P{−z ≤ N(0,1) ≤ z}

≈ P

{
−z ≤

√
n

S(n)
(X̄(n)−µ) ≤ z

}
(7)

= P

{
µ ∈

[
X̄(n)± zS(n)√

n

]}
, (8)

where the approximation in (7) follows for large n from

(6). Note that (8) implies that when n is large, the interval

[
X̄(n)− zS(n)√

n
, X̄(n)+

zS(n)√
n

]
(9)

has roughly probability 1−δ of containing the true mean µ ,

and we call the interval in (9) an approximate 100(1−δ)%
confidence interval for µ . Thus, we arrive at the following:

Procedure to construct confidence intervals for transient

measure µ:

1. Specify a confidence level 1− δ with 0 < δ < 1
and a sample size n that is large. Also, look up in

a z-table the value of z such that P{N(0,1)≤ z}=
1−δ/2. Typically, one chooses δ = 0.1, 0.05 or

0.01, and one should choose n ≥ 50.

2. Generate n i.i.d. replicates X1,X2, . . . ,Xn of X .

3. Using the n data points X1,X2, . . . ,Xn, calculate

the sample mean X̄(n) using (4) and the sample

variance S2(n) using (5).

4. Use (9) to construct an approximate 100(1−δ)%
confidence interval for µ .

An interpretation of the approximate 100(1−δ)% con-

fidence interval for µ in (9) is that we are highly confident

(i.e., approximately 100(1− δ)% confident) that the true
39
mean µ lies in the interval (9). Thus, a confidence interval

provides a form of error bounds for our estimator X̄(n) of

µ . The half width Hn of the confidence interval in (9) is

Hn =
zS(n)√

n
, (10)

i.e., the confidence interval in (9) is X̄(n)±Hn. It can

be shown that S(n) ≈ σ for large n, so as the sample

size n increases, the half width decreases at rate 1/
√

n. In

particular, this means that to obtain one additional significant

figure of accuracy (i.e., increase accuracy by a factor of 10),

we need to increase the sample size n by a factor of 100.

Thus, the estimator X̄(n) converges to µ rather slowly.

If we construct the confidence interval (9) using the

above steps, the probability is approximately 1−δ that the

interval will contain µ . In other words, if we repeat these

steps m independent times, this will give us m different

confidence intervals. Some of them will contain (cover) µ ,

and others will not. The theory says that approximately

(1−δ)m of the m intervals should cover µ . For example,

if we constructed m = 1000 independent 95% confidence

intervals, we would expect that about 950 of them would

contain µ , while about 50 would not. In practice, though,

this does not always happen. The approximation in our

CLT (6) only becomes exact as the sample size n → ∞,

so the coverage is only approximately 1−δ for large but

finite n, i.e.,

P

{
µ ∈

[
X̄(n)− zS(n)√

n
, X̄(n)+

zS(n)√
n

]}

≈ 1−δ . (11)

The true probability that µ lies in the interval in (9) is

known as the coverage.

It would be nice to know when the approximation in

(11) is good, and when it is not. It turns out that the quality

of the CLT approximation in (6) is largely influenced by the

value of the skewness of X . The more symmetric the density

of X is, the better the CLT approximation in (6) is, which

leads to (11) being more accurate. If the density of X is

highly asymmetric (as is typical of queueing simulations),

the CLT approximation is not so good, and the coverage of

the confidence interval in (9) may be significantly less than

1−δ . In fact, it is not unusual for confidence intervals that

are supposed to have 90% coverage to actually only have,

say, 75% coverage. See p. 257 of Law and Kelton (2000)

for more discussion.

3.1 Pre-specifying Confidence Interval Widths

In the previous section we discussed so-called fixed-sample-

size methods for estimating a transient performance measure

µ = E[X], where X represents the random performance of

Nakayama
the system over some finite time horizon. These methods are

so named because the sample size is fixed prior to running

any simulations. However, before executing a simulation,

we usually do not know how large the resulting half width

(10) will be since it depends on the output generated. In

many situations, though, we would like to end up with an

estimator with a small prespecified error ε , i.e., we want

the 100(1−δ)% confidence interval to be X̄(n)± ε .

Example 3 Suppose we want to estimate the ex-

pected daily withdrawals from an ATM. If we want the

estimator to be within $500 of the correct value with con-

fidence level 1−δ , then we set the desired (absolute) error

to be ε = 500.

To achieve our goal of having a confidence interval

with half width ε , we set Hn in (10) equal to ε and solve

for n, yielding

n =

(
zS(n)

ε

)2

. (12)

This suggests that if we take n samples, where n is determined

by (12), then the resulting confidence interval should have

half width that is approximately ε .

We now describe a two-stage procedure to construct

a confidence interval with half width that is roughly a

prespecified value ε . In the first stage we generate n0 trial

runs and compute the sample standard deviation S(n0), and

then we substitute S(n0) into the right-hand side of (12) to

compute the total sample size required. The following is a

variation of a procedure developed by Stein (1945).

Two-stage procedure for absolute-precision confidence

intervals:

1. Select n0, a sample size for the set of trial runs. (In

practice, one should specify n0 ≥ 50). Also, select

the desired error ε . (In practice, one should specify

ε to be “small,” the meaning of which depends

on the context.) Also, specify a confidence level

1−δ with 0 < δ < 1, and look up in a z-table the

value of z such that P{N(0,1) ≤ z} = 1−δ/2.

2. Generate n0 (independent) pilot runs, yielding sam-

ples X1,X2, . . . ,Xn0
.

3. Calculate the sample variance

S2
1(n0) =

1

n0−1

n0∑

i=1

(Xi − X̄(n0))
2

of the pilot runs X1,X2, . . . ,Xn0
, where X̄(n0) =

(1/n0)
∑n0

i=1 Xi.

4. Calculate

Na(ε) =

⌈(
zS1(n0)

ε

)2
⌉

,

40
where dxe is the “round up” function.

5. Generate Na(ε) (independent) production runs

that are independent of X1,X2, . . . ,Xn0
. The

samples from the production runs are denoted

Xn0+1,Xn0+2, . . . ,Xn0+Na(ε).

6. Set

X̃(ε) =
1

Na(ε)

n0+Na(ε)∑

j=n0+1

X j

and

S̃2(ε) =
1

Na(ε)−1

n0+Na(ε)∑

j=n0+1

(X j − X̃(ε))2,

which are the sample mean and sample variance

of only the values from the production runs.

7. Then

[
X̃(ε)− zS̃(ε)√

Na(ε)
, X̃(ε)+

zS̃(ε)√
Na(ε)

]

is an approximate 100(1−δ)% confidence interval

for µ , the half-width of which should be approxi-

mately ε .

If ε is small (as is usual in applications), then Na(ε)� n0

(i.e., Na(ε) will be much larger than n0) so that throwing

away the first n0 pilot observations in forming the estimators

X̃(ε) and S̃2(ε) is not going to affect the procedure much.

The previous procedure results in an absolute-precision

confidence interval, but in many contexts, one desires

relative-precision intervals. For example, we may want

our confidence interval to be ±5% of the point estimator.

To achieve this, we change the total sample size from Na(ε)
to

Nr(ε) =




(
zS̃1(n0)

X̄(n0)ε

)2



,

where X̄(n0) is the first-stage sample mean and ε is the

desired relative precision. For example, for a confidence

interval that is ±5%, set ε = 0.05.

4 OUTPUT ANALYSIS FOR STEADY-STATE

SIMULATIONS

We now discuss the estimation of steady-state performance

measures. There are two cases to consider:

1. Discrete-time process: Y = (Yi : i = 1,2, . . .) is an

output process with an integer-valued time index,

and our goal is to estimate (and produce confidence

Nakayama
intervals for) ν , where ν is defined such that

1

m

m∑

i=1

Yi → ν (13)

as m →∞.

2. Continuous-time process: Y = (Y (s) : s ≥ 0) is an

output process with a continuous-valued time index,

and we want to estimate (and produce confidence

intervals for) ν , where ν is defined such that

1

s

∫ s

0

Y (u)du → ν (14)

as s →∞.

We previously saw in Section 2.2 some examples of

steady-state measures for a discrete-time process. For ex-

ample, Yi could be the waiting time of the ith customer to a

queueing system, so ν represents the steady-state expected

waiting time. We now give an example of a continuous-time

process.

Example 4 Suppose that the ATM from before is

accessible 24 hours a day, and let Y (s) denote the number

of customers waiting in line at time s. We define the

continuous-time stochastic process Y = (Y (s) : s ≥ 0), and

assuming that Y has a steady state (which would not be the

case if the distribution of the number of customers waiting

depends on the time of day), then we may be interested in

calculating ν defined in (14), which in this case is the long-

run time-average number of customers waiting. Another

possible measure is

lim
s→∞

1

s

∫ s

0

I(Y (u) ≥ a)du,

which is the long-run fraction of time that at least a customers

are waiting.

4.1 The Difficulties of Output Analysis of Steady-State

Simulations

We will concentrate on discrete-time processes (continuous-

time processes can be handled in a similar manner). Our

goal is to estimate and produce confidence intervals for the

steady-state parameter ν . First, we examine how to produce

a point estimator for ν . As we can see in (13), the parameter

ν can be viewed as the long-run average level of Yi. Thus,

if we set

Ȳ (m) =
1

m

m∑

i=1

Yi,
41
then

Ȳ (m) ≈ ν

for large sample sizes m. In other words, running a “long”

simulation (i.e., taking m large) will result in an estimator

Ȳ (m) that is “close” to ν . Hence, the problem of constructing

an estimator for ν is easily solved.

However, the task of constructing a confidence interval

for ν is more delicate. For virtually all reasonably behaved

systems possessing a unique steady state, one can show that

a central limit theorem for Ȳ (m) is valid; i.e., there exists

a constant σ̄ such that

√
m

σ̄
(Ȳ (m)−ν)

D≈ N(0,1) (15)

for m sufficiently large.

Definition: The parameter σ̄2 is called the time-average

variance constant of the steady-state simulation.

Unfortunately, it is not so straightforward to use the CLT

in (15) to construct a confidence interval for ν . The problem

lies in the fact that it is a non-trivial matter to estimate σ̄
(or equivalently σ̄2). The sample variance S2(n) in (5) used

to estimate σ2 in the transient-simulation setting is only

valid for i.i.d. data. In steady-state simulations, Y1,Y2, . . .
are typically not i.i.d. Thus, we cannot use (5) applied to

the Y1,Y2, . . . to estimate σ̄2.

4.2 Method of Multiple Replications

The method of multiple replications offers one escape from

this difficulty of estimating σ̄ . Suppose that rather than

simulating one long replicate of length m, we simulate r

independent and identically distributed replications, each

of length k = m/r. We should choose r small, say 10 ≤
r ≤ 30, so that the length k of each replication is large.

We need k large since we are interested in the long-run

behavior of the process Y. We achieve independence of the

replications by using non-overlapping streams of random

numbers for the different replications. We obtain identically

distributed replications by starting each with the same initial

conditions and using the same system dynamics to generate

each replication. Because we now have r independent

observations, we can form a sample variance across the

replications. This is the basic idea underlying the method

of multiple replications.

Suppose that we have run r i.i.d. replications, each

having run length k, and the output from all the simulations

ama
Nakay

is

Y1,1 Y1,2 Y1,3 · · · Y1,k,
Y2,1 Y2,2 Y2,3 · · · Y2,k,

...
...

...
. . .

...

Yr,1 Yr,2 Yr,3 · · · Yr,k.

(16)

The entries in the first row are the k observations from the

first replication, the entries in the second row are the k

observations from the second replication, and so on. Now

let X ′

j be the average of the entries in the jth row; i.e.,

X ′

j =
1

k

k∑

i=1

Yj,i.

Thus, X ′

1 is the average of the observations in the first

row of (16), X ′

2 is the average of the observations in the

second row of (16), and so on. Then X ′

1,X
′

2, . . . ,X
′

r are i.i.d.

observations with E(X ′

j) ≈ ν for each j = 1,2, . . . ,r, if k is

sufficiently large by virtue of (13). So we can use classical

statistics to form a point estimator and confidence interval

using the observations X ′

1,X
′

2, . . . ,X
′

r . Specifically, let

X̄ ′(r) =
1

r

r∑

j=1

X ′

j

and

S′2(r) =
1

r−1

r∑

j=1

(X ′

j − X̄ ′(r))2

be the sample mean and sample variance, respectively, of the

X ′

j . Then, an approximate 100(1−δ)% confidence interval

for ν is given by

[
X̄ ′(r)− tS′(r)√

r
, X̄ ′(r)+

tS′(r)√
r

]
,

where t ≡ tr−1,1−δ/2 is chosen such that P{Tr−1 ≤ t} =
1−δ/2 and Tr−1 is a Student-t random variable with r−1
degrees of freedom. Virtually all introductory statistics

books provide t-tables giving values of t for various δ
and degrees of freedom; also see Table T.1 of Law and

Kelton (2000) or Table A.5 of Banks et al. (2001). (Here

we use the critical point from a t-distribution rather than

a standard normal distribution because the number r of

replications is often small.)

A major problem with the method of multiple replica-

tions is that, while the technique permits simple estimation

of the variance, the multiple-replicate estimator X̄ ′(r) can be

significantly contaminated by the presence of initialization
42
bias. Specifically, the law of large numbers guarantees that

X ′

j =
1

k

k∑

i=1

Yj,i ≈ ν

for large k. However, since each replicate is typically

started with initial conditions C that are atypical of the

steady state (e.g., queueing simulations are often started

with no customers present), it often follows that for any

finite k,

E

[
1

k

k∑

i=1

Yj,i

]
6= ν .

Thus, we conclude that if the number of replicates r is large

relative to the run length k of each replication, then the

estimator X̄ ′(r) may be significantly biased by the initial

conditions.

A partial solution to this problem is to use initial-data

deletion, which we now describe. Suppose that we somehow

can determine the first c observations of the simulation are

significantly contaminated, i.e., not very representative of

steady state. Also, suppose all observations Yi with i > c are

not significantly contaminated. Then in each replication,

we will delete the first c observations when calculating

the sample mean of the replication. Specifically, for each

replication j = 1,2, . . . ,r, let

X j =
1

k− c

k∑

i=c+1

Yj,i

be the sample mean of the (non-contaminated) observations

Yj,c+1,Yj,c+2, . . . ,Yj,k, in replication j. After simulating the

r replications, compute

X̄(r) =
1

r

r∑

j=1

X j

and

S2(r) =
1

r−1

r∑

j=1

(X j − X̄(r))2,

which are the sample mean and sample variance, respec-

tively, of the X j. Then, an approximate 100(1−δ)% con-

fidence interval for ν is given by

[
X̄(r)− tS(r)√

r
, X̄(r)+

tS(r)√
r

]
.

For more details on initial-data deletion, including some

heuristics to determine c, see Section 9.1 of Law and Kel-

ton (2000).

Nakayama
One problem with initial-data deletion is that in each of

the r replications, we have to delete c observations. Thus,

we are throwing away a total of rc observations over all

of the replications. If we used a single-replicate algorithm

(i.e., one with r = 1), then we would only delete a total of

c observations.

4.3 Single-Replicate Methods

Typically in practice, two observations Yi and Yi+p are almost

independent when p is large, for each i. For example,

suppose Yi is the waiting time of the ith customer in a

queueing system. Then we would expect that the waiting

time of the 100th customer to be almost independent of the

10th customer’s waiting time.

Now suppose that we run a single simulation of length

m, giving us observations Y1,Y2, . . . ,Ym. Suppose we group

the m observations into n large, non-overlapping batches,

each of size b (so m = nb), where the first batch consists

of the first b observations, the second batch consists of the

next b observations, and so on:

Y1 Y2 · · · Yb︸ ︷︷ ︸
Batch 1

Yb+1 Yb+2 · · · Y2b︸ ︷︷ ︸
Batch 2

Y2b+1 Y2b+2 · · · Y3b︸ ︷︷ ︸
Batch 3

· · ·

If b is chosen to be large, then most of the observations

in one batch should be almost independent of most of the

observations in any other batch. Essentially the only depen-

dence that exists is between observations in two adjacent

batches. Observations in batches that are not adjacent are

almost independent. Moreover, if we compute the sample

mean of each of the batches, then the sample means should

be almost independent when the batch size b is large. Also,

each sample mean will be close to normally distributed for

large b, since it is a sample mean and so it satisfies a CLT

(see (15)). Using the above observations, we now present

the following:

Method of batch means to construct confidence intervals

in steady-state simulations:

1. Select a total run length m, which is large. Also,

select a number of batches n. (Schmeiser 1982

suggests choosing 10 ≤ n ≤ 30.)

2. Run a simulation generating a total of m observa-

tions. This results in observations Y1,Y2, . . . ,Ym.

3. Then group the m observations into n batches, each

of size b = m/n. For j = 1,2, . . . ,n, the jth batch

mean is calculated as

Ȳj(b) =
1

b

jb∑

l=(j−1)b+1

Yl ,
4

which is the sample average of the observations in

the jth batch. Note that Ȳj(b) is the sample mean

of the b observations in the jth batch.

4. We then treat Ȳ1(b),Ȳ2(b), . . . ,Ȳn(b) as i.i.d. ob-

servations (note that they are not, but should be

reasonably close for large batch sizes b) and use

classical statistics to construct a confidence inter-

val. Specifically, compute

¯̄Y (n,b) =
1

n

n∑

j=1

Ȳj(b) =
1

m

m∑

i=1

Yi,

and

S2(n,b) =
1

n−1

n∑

j=1

(
Ȳj(b)− ¯̄Y (n,b)

)2

as the sample mean and sample variance, respec-

tively, of the n batch means, and an approximate

100(1−δ)% confidence interval for ν is

[
¯̄Y (n,b)− tS(n,b)√

n
, ¯̄Y (n,k)+

tS(n,b)√
n

]
,

where t ≡ tn−1,1−δ/2 is chosen such that P{Tn−1 ≤
t}= 1−δ/2 for Tn−1 a Student-t random variable

with n−1 degrees of freedom.

We can easily modify the above procedure to incor-

porate initial-data deletion by instead collecting a total of

m + c observations and removing the first c contaminated

observations. Then apply the method of batch means with

the remaining m data points. When using a single-replicate

method such as batch means, we only need to delete a total

of c observations to apply initial-data deletion, as opposed

to rc when using the method of multiple replications with r

replications. Whitt (1991) provides a mathematical analysis

that basically yields the following:

Rule of thumb: Single replicate procedures tend to be better

(as measured by the mean square error of the steady-state

estimator) than multiple-replicate procedures.

There has been a lot of recent work on improvements

to the batch-means method described above. See Schmeiser

and Song (1996) for a survey.

4.4 Other Methods

There are numerous other methods for statistically analyzing

simulation output in the steady-state context. These include

spectral (e.g., Anderson 1994), regenerative (Crane and

Iglehart 1975, Shedler 1993), and standardized time series

methods (Schruben 1983), but these techniques require more
3

Nakayama
sophisticated mathematics to understand and can be more

difficult to implement. For an overview of these other

techniques, see Bratley, Fox and Schrage (1987) or Law

and Kelton (2000). Finally, Nakayama (1994) presents

two-stage procedures for obtaining fixed-width confidence

intervals in steady-state simulations.

5 ESTIMATING MULTIPLE PERFORMANCE

MEASURES

Consider our previous example of an ATM that is accessible

only between 9:00am and 5:00pm, and suppose that we want

to compute

• µ1, the expected number of customers served in a

day;

• µ2, the probability that the number served in a day

is at least 1000;

• µ3, the expected amount of money withdrawn from

the ATM in a day.

These are all transient performance measures, and suppose

we use the same simulation to estimate all 3 measures by

running n independent replications. Let X1,i denote the

number of customers served in the ith replication. Let

X2,i be 1 if at least 1000 customers are served in the ith

replication, and 0 otherwise. Let X3,i be the amount of

money withdrawn on the ith replication.

After running n replications, suppose we construct a

95% confidence interval for each µs, s = 1,2,3. Let Is

denote the 95% confidence interval for µs, so if we ran

a sufficiently large number n of replications, then P{µs ∈
Is} ≈ 0.95 for each s = 1,2,3. But what can we say about

the joint coverage of the 3 confidence intervals; i.e., what

is P{µs ∈ Is, for all s = 1,2,3}?

More generally, suppose that we are estimating q

means µs, s = 1,2, . . . ,q, and for each µs, we construct

a 100(1− δs)% confidence interval Is. What can we say

about P{µs ∈ Is, for all s = 1,2, . . . ,q}? In general, it is

difficult to determine the joint confidence level, but Bonfer-

roni’s inequality provides a lower bound for this probability:

P{µs ∈ Is, for all s = 1,2, . . . ,q} ≥ 1−
q∑

s=1

δs.

Thus, in our previous example in which we had three 95%

confidence intervals, the Bonferroni inequality implies the

joint probability that all three confidence intervals contain

their respective true means is at least 85%. Therefore, our

joint confidence level for all three intervals is less than

the confidence level for any single interval. If we want

the joint confidence to be at least 95%, then we might

set δs = 0.01 for each s. This would yield individual 99%

confidence intervals, with the joint probability being at least
44
0.97. Thus, to have high confidence that all of our individual

confidence intervals contain their respective means, we need

to construct the individual confidence intervals with even

higher confidence levels.

Often, one wants to compare different systems to see

which one is the “best.” For example, we may have 5

possible designs for a manufacturing system, and we want to

determine which has the highest expected daily production.

There is substantial literature on this topic, much of it in

the areas of so-called selection procedures and multiple-

comparison procedures. For an overview of these and

other simulation-optimization methods, see Fu, Glover and

April (2005).

6 OTHER USEFUL METHODS

We now briefly discuss some other techniques that can

be useful for simulations. Variance-reduction techniques

(VRTs), which are also known as efficiency-improvement

techniques, can lead to simulation estimators with smaller

error (variance) by typically either collecting additional

information from the simulation run(s) or changing or con-

trolling the way in which the simulation is run. Some of

the more widely used VRTs include the following:

• Common random numbers (e.g., see Section 11.2

of Law and Kelton 2000) can improve simulations

comparing two or more systems by running the

simulations of the various systems using the same

stream of (uniform) random numbers. In general

this leads to fairer comparisons in the sense that all

systems are subjected to the same random inputs.

This generally induces positive correlation among

the resulting estimators, which can be advanta-

geous when estimating differences of performance

measures between systems.

• Antithetic variates (e.g., see Section 11.3 of Law

and Kelton 2000) can improve results from simu-

lating a single system by inducing negative corre-

lations between pairs of replications.

• The method of control variates (e.g., see Section

11.4 of Law and Kelton 2000) collects additional

data during the simulation, where the mean of the

extra collected data is known before running the

simulation. For example, in a queueing simula-

tion, one often knows the mean of the service-time

distribution, and so one might additionally collect

the random service times that are generated dur-

ing the simulation. The data collected typically

is correlated with the simulation output, and this

correlation can be exploited to obtain an estimator

with lower variance than the standard estimator.

• Importance sampling (Hammersley and Hand-

scomb 1965, Glynn and Iglehart 1989) is often

Nakayama
used in rare-event simulations, such as for analyz-

ing buffer overflows in communication networks

and system failures of fault-tolerant systems. In

these settings, the event of interest, typically some

kind of failure, occurs very rarely, and importance

sampling changes the dynamics of the system to

cause the event to occur more frequently. Unbi-

ased estimators are recovered by multiplying by

a correction factor known as the likelihood ra-

tio. Heidelberger (1995) and Nicola, Shahabuddin

and Nakayama (2001) review importance-sampling

methods for rare-event simulations of queueing and

reliability systems.

Other VRTs include stratified sampling, conditional Monte

Carlo, and splitting. These and other methods are described

in Chapter 11 of Law and Kelton (2000) and Chapter 2 of

Bratley, Fox and Schrage (1987).

One is often interested in estimating derivatives of per-

formance measures with respect to system parameters. For

example, in a reliability system, one may want to know

how the mean time to system failure changes as a compo-

nent’s failure rate varies. This information can be useful

in designing systems by identifying components on which

to focus to improve overall performance. Also, derivative

information can be used with some simulation-optimization

methods (e.g., Andradóttir 1998). Techniques for estimating

derivatives using simulation include perturbation analysis

(Glasserman 1991, Ho and Cao 1991, Fu and Hu 1997) and

the likelihood-ratio or score-function method (Reiman and

Weiss 1989, Rubinstein 1989, Glynn 1990).

7 CONCLUSIONS

We have described some techniques for statistically analyz-

ing the output from a simulation. It is important to keep in

mind that the methods presented here are all asymptotically

valid, so large run lengths are needed to ensure that valid

inferences are drawn.

In addition to the references given throughout the pa-

per, other resources covering simulation-output analysis in-

clude Banks (1998), Banks et al. (2001), Fishman (2001),

Melamed and Rubinstein (1998), and Ross (2002).

REFERENCES

Anderson, T. W. 1994. The statistical analysis of time

series. New York: Wiley.

Andradóttir, S. 1998. Simulation optimization. Chapter 9.

In Handbook of Simulation: Principles, Methodology,

Advances, Applications, and Practice, Ed. J. Banks.

New York: John Wiley and Sons.
45
Banks, J. 1998. Handbook of simulation: principles,

methodology, advances, applications, and practice.

New York: John Wiley and Sons.

Banks, J., J. S. Carson, II, B. L. Nelson, and D. M. Nicol.

2001. Discrete-event system simulation. 3rd edition.

Upper Saddle River, New Jersey: Prentice-Hall, Inc.

Bratley, P., B. L. Fox, and L. E. Schrage. 1987. A guide

to simulation. Second Edition. New York: Springer-

Verlag.

Crane, M. and D. L. Iglehart. 1975. Simulating stable

stochastic systems, III: Regenerative processes and

discrete-event simulations. Operations Research 23:

33–45.

Fishman, G. S. 2001. Discrete-event simulation: model-

ing, programming, and analysis. New York: Springer-

Verlag.

Fu, M., F. Glover and J. April. 2005. Simulation optimiza-

tion: a review, new developments, and applications. In

Proceedings of the 2005 Winter Simulation Conference,

ed. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and

J. A. Joines, 83–95.

Fu, M. and J. Q. Hu. 1997. Conditional Monte Carlo: gra-

dient estimation and optimization applications. Boston:

Kluwer Academic Publishers.

Glasserman, P. 1991. Gradient estimation via perturbation

analysis. Boston: Kluwer Academic Publishers.

Glynn, P. W. 1990. Likelihood ratio derivative estimators

for stochastic systems. Communications of the ACM

33: 75–84.

Glynn, P. W. and D. L. Iglehart. 1989. Importance sampling

for stochastic simulations. Management Science 35:

1367–1392.

Hammersley, J. M. and D. C. Handscomb. 1964. Monte

Carlo methods. London: Methuen.

Heidelberger, P. 1995. Fast simulation of rare events in

queueing and reliability models. ACM Transactions on

Modeling and Computer Simulation 5: 43–85.

Ho, Y. C. and X. R. Cao. 1991. Discrete event dynamic

systems and perturbation analysis. Boston: Kluwer

Academic Publishers.

Law, A. M. and W. D. Kelton. 2000. Simulation modeling

and analysis. 3rd edition. New York: McGraw-Hill.

Melamed, B. and R.Y. Rubinstein. 1998. Modern simulation

and modeling. New York: John Wiley and Sons, Inc.

Nakayama, M. K. 1994. Two-stage stopping procedures

based on standardized time series. Management Science

40: 1189–1206.

Nicola, V. F., P. Shahabuddin and M. K. Nakayama. 2001.

Techniques for fast simulation of models of highly

dependable systems. IEEE Transactions on Reliability

50: 246–264.

Reiman, M. I. and A. Weiss. 1989. Sensitivity analysis for

simulations via likelihood ratios. Operations Research

37: 830–844.

Nakayama
Ross, S. M. 2002. Simulation. 3rd Edition. Boston: Aca-

demic Press.

Rubinstein, R. Y. 1989. Sensitivity analysis and perfor-

mance extrapolation for computer simulation models.

Operations Research 37: 72–81.

Schmeiser, B. W. 1982. Batch size effects in the analysis of

simulation output. Operations Research 30: 556–568.

Schmeiser, B. W., W. T. Song. 1996. Batching methods in

simulation output analysis: what we know and what

we don’t. In Proceedings of the 1996 Winter Simula-

tion Conference, ed. J. M. Charnes, D. M. Morrice,

D. T. Brunner, and J. J. Swain, 122–127.

Schruben, L. W. 1983. Confidence interval estimation us-

ing standardized time series. Operations Research 31:

1090–1108.

Shedler, G. S. 1993. Regenerative stochastic simulation.

San Diego: Academic Press.

Stein, C. 1945. A two-sample test for a linear hypothesis

whose power is independent of the variance. Annals

of Mathematical Statistics 16: 243–258.

Whitt, W. 1991. The efficiency of one long run versus inde-

pendent replications in steady-state simulation. Man-

agement Science 37: 645–666.

AUTHOR BIOGRAPHY

MARVIN K. NAKAYAMA is an associate professor in the

Department of Computer Science at the New Jersey Institute

of Technology. He received a Ph.D. in operations research

from Stanford University. He won second prize in the 1992

George E. Nicholson Student Paper Competition sponsored

by INFORMS and is a recipient of a CAREER Award

from the National Science Foundation. He is the stochastic

models area editor for ACM Transactions on Modeling and

Computer Simulation and an associate editor for INFORMS

Journal on Computing. His research interests include ap-

plied probability, statistics, simulation and modeling. His

e-mail address is <marvin@njit.edu>, and his web

page is <web.njit.edu/˜marvin>.
46

	MAIN MENU
	PREVIOUS MENU
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

