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ABSTRACT 

Optimization via simulation came true; most discrete-event 
simulation packages have some kind of optimization rou-
tines but the optimum search can become very time-
consuming as the factor number increases. This paper ob-
jectives show how Factorial Designs help the optimization 
via simulation to reach the optimum solution by reducing 
number of factors. A comparative study between an opti-
mization without planning and an optimization planned 
based on Factorial Designs is carried out. Results are pre-
sented where the reduction of the number of runs needed to 
find the optimum is showed. This work concludes with 
brief considerations on the Factorial Designs and optimiza-
tion via simulation integration. 

1 INTRODUCTION 

The manufacturing system simulation modeling is dated 
back to at least the early 1960´s (Law and Mccomas 1998) 
and became one of the most popular and powerful tools 
employed to analyze complex manufacturing systems 
(O’Kane 2000; Banks 2005). According to O’Kane (2000), 
one way to forecast the behavior of these systems is using 
discrete-event simulation which consists in modeling a sys-
tem where changes occur at discrete-time intervals. It is 
appropriated for manufacturing systems as their behavior 
changes in such way. 

Some manufacturing issues addressed by simulation 
include specifying the need and quantity of equipment and 
personnel, performance evaluation, and evaluation of op-
erational procedures (Law and Mccomas 1998). The simu-
lation’s objectives are classified as performance analysis, 
capacity/constraint analysis, configuration comparison, op-
timization, sensitivity analysis and visualization (Harrell et 
al. 2000). 
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The optimization via simulation deserves a special at-
tention. Harrell (2000) define optimization as the process 
of trying different combinations of values for the variables 
that can be controlled in order to seek the combination of 
values that provides the most desirable output from the 
simulation model. However, as the number of variables in-
creases, the optimization phase becomes more time-
consuming. So, planning the variables which will com-
pound the search space is the best choice to be performed 
before the optimization. To plan the optimization, experi-
ments could be done using factorial designs, for example. 

In this paper, a comparative study between an optimi-
zation without planning and an optimization planned 
through Factorial Designs carried out. The objective of this 
work is to show how Factorial Designs can help the simu-
lation optimization to reach the “best” solution. 

To accomplish this objective, a manufacturing cell is 
modeled and experimental research is done. This method-
ology is appropriated because of the facility to establish 
cause and effect relationship (Bryman 1989).  

The remainder of this article is organized as follows: 
Section 2 introduces discrete-event simulation and presents 
some considerations on performing a simulation. Section 3 
introduces optimization via simulation and gives a very 
brief Genetic Algorithm (GA) description. The considera-
tions on the construction of cell’s simulation model are 
presented at section 4. The experiments and results analysis 
are at section 5. The article concludes with some consid-
erations on the integration between Factorial Designs and 
optimization. 

2 DISCRETE-EVENT SIMULATION 

Simulation is the process of designing a model of a real 
system and conducting experiments with such a model. 
This is done with the purpose of understanding the behav-
ior of the system and/or evaluating various strategies for 
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the operation of the system (Shannon 1998). Some simula-
tion advantages are: 

 
• One can simulate systems that already exist as 

well as those that are capable of being brought 
into existence. 

• Simulation allows one to identify bottlenecks in 
information, material and product flows and to 
test options for increasing flow rates. 

• It allows one to gain insights into how a modeled 
system actually works and to understand which 
variables are most important to performance. 

• A significant advantage of simulation is its ability 
to let one experiment with new and unfamiliar 
situations and to answer “what if” questions. 

 
Some simulation disadvantages are model building re-

quires special training, simulation results can be difficult to 
interpret, simulation modeling and analysis can be time 
consuming and expensive, and the misuse of simulation to 
solve problems when analytical solution is possible or even 
preferable, and each run of a stochastic simulation model 
produces only estimates of model’s true characteristics for 
a particular set of input parameters (Law and Kelton 2000, 
Banks et al. 2005). 

In this study, a discrete-event simulation is used which 
concerns the modeling of a system as it evolves over time 
by a representation in which the state variables change in-
stantaneously at separate points in time (Law and Kelton 
2000). This methodology is ideal to be applied to manufac-
turing systems because they exhibit discrete production 
changes (O’Kane et al. 2000). 

Some characteristics founded on problems to be ana-
lyzed that justified the use of simulation are (Strack 1984, 
Law and Kelton 2000, O’Kane et al. 2000): 

 
• real-word systems with stochastic elements cannot 

be accurately described by a mathematical model 
that can be evaluated analytically; 

• it is easier to obtain results from a simulation 
model than using an analytical method; 

• experimentation is impossible or very difficult in 
a real world system; 

• the need of long-period time studies or alterna-
tives that physical models do not provide. 

 
O’Kane et al. (2000) advise following a structured ap-

proach when using simulation in manufacturing system 
studies so that designers can identify within the model, 
elements of the design which are critical to success. Ac-
cording to these authors, before one begins to apply simu-
lation techniques to manufacturing systems, it is important 
to be aware of the problems that have to be overcome when 
attempting to provide solutions to real world situations. 
These problems comprise tasks as problem and objective 
197
definitions through model building, validation and data 
analysis. 

3 OPTIMIZATION VIA SIMULATION 

Optimization via simulation is the process of trying differ-
ent combinations of values for variables that can be con-
trolled in order to seek the combination of values that pro-
vides the most desirable output from the simulation model 
(Harrell et al. 2000). According to Fu (2002), the integra-
tion between optimization and simulation is recent and has 
been occurring since the end of the last millennium and the 
relationship commonly encountered in commercial soft-
ware is a subservient one where the optimization routine is 
an add-on to the simulation engine. This optimization rou-
tine needs the simulation engine outputs to find the pa-
rameter set which leads to the best solution. 

There are several techniques for optimization. Some 
are based on heuristics. According to Silva and Montevechi 
(2004), the heuristic techniques accomplish good solutions 
and even finding the optimum solution. However, it is not 
possible to state that the solutions found by these tech-
niques are the best ones. 

3.1 Genetic Algorithms 

One of the heuristic techniques used in optimization soft-
ware is the Genetic Algorithms (GA), proposed initially by 
John Holland in 1975 (Goldberg 1989). The Genetic Algo-
rithms are part of a bigger set called Evolutionary Algo-
rithms (EA). The GA’s are very attractive to simulation 
model optimization because they need neither a formal ob-
jective function nor mathematically expressed constrains, 
but the function result only (Silva and Montevechi 2004). 

The main idea behind the GA is the smart exploration 
of a response surface, where simultaneous searches are per-
formed through specific points from this surface. In a simi-
lar way to the Theory of Evolution proposed by Darwin 
(1936), the GA’s manipulate a population of points on the 
response surface or possible solutions from a proposed 
problem. This is done in such a way that worse solutions 
fade away, while the better ones continually evolve in their 
search for the optimum by exploiting diverse areas simul-
taneously from the response surface (Tanomaru 1995). 

In GA’s, each individual or possible solution is de-
fined by a chromosome which is also represented by a 
codification, usually a binary codification. The number of 
genes of this chromosome is equal to the number of vari-
ables of the proposed problem and the number of bits for 
each gene is defined according to the precision required. 
Figure 1 shows a representation of a possible solution 
(chromosome) for maximization problem of a function 
f(x,y,z,w) with four decision variables and six-bit preci-
sion, with f: ℜn →ℜ and search space S ⊆ ℜn.  
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Figure 1: Possible Solution Representation with Four Genes 
and Six Bits Each. (Source: Silva and Montevechi 2004) 

 
The fitness function defines the fitness or survival 

chance of each individual in a given population. This func-
tion sometimes is the function f(x,y,z,w) itself. However, 
there are situations where this function needs to be trans-
formed to better represent the fitness of an individual in the 
population. Hence, a fitness function for f(x,y,z,w) could 
be represented as G[f(x,y,z,w)]. To evolve the population, 
the GA’s apply genetic operators: selection, cross-over and 
mutation that have as objective to create new individuals. 

The Selection operator offers to the best individuals 
from population preference to reproduction process, allow-
ing these individuals to pass their characteristics to the next 
generations. The roulette method is the most utilized 
method for selection. In this method, n individuals are ran-
domly selected with replacement from a population with n 
individuals. Then, their fitness values define the probability 
of them being chosen, as showed by Equation (1). 
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where p(ci) is the probability of the ith individual to be 
chosen, α(ci) is the fitness value of the ith individual and n 
is the number of individuals. At the end, the resultant 
population has great chance of owning better individuals. 

The Cross-over operator creates new individuals com-
bining two or more individuals. The intuitive idea behind 
this operator is the change of information among different 
candidate solutions. 

The Mutation operator changes randomly an individ-
ual characteristic altering a bit value. Hence, the descen-
dant characteristics are limited to ascendant constitution; 
mutation allows new individuals with characteristics not 
yet identified to come out (Cunha and Pinto 2001). This 
change not only assures that the probability of reaching any 
response surface point is never zero, but it also avoids local 
optimum. 

Cross-over and mutation operators must not be applied 
to all individuals (Silva and Montevechi 2004). Hence, it is 
necessary to define the cross-over and mutation rates as 
well as the size of the population. But, there are not opti-
mum parameters since they are specific for each problem 
and each codification schema. In addition, they can not be 

Gene Bit 

Chromosome 
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adopted in a generic way as they compromise the global 
performance of the algorithm (Cunha and Pinto 2001). 
Other important parameter to be considered is the stop cri-
teria which depends on the problem and the computational 
effort required and one can adopt the maximum number of 
generations, the total duration or a minimum value of stan-
dard deviation of  individual fitness values (Silva and Mon-
tevechi 2004). 

4 SYSTEM MODELING 

To accomplish the paper’s objective, a manufacturing cell 
is modeled and it is intended to increase the throughput by 
adding new equipments. This model is deterministic. It 
means that no source of randomness is modeled and all in-
put data are constant (Law and Kelton 2000, Banks et al. 
2005). The project scope is a manufacturing cell called 
Group #1 from pistol slide shop of a defense material sup-
plier.  

In order to accomplish a comparison study, it is cre-
ated an investment scenario, that is, a loan is done to buy 
new equipments. The loan payment frequency is monthly 
and this payment is subtracted from monthly profit which 
is determined by the monthly production multiplied by uni-
tary profit. The problem is to select the optimum set of 
equipments which profit’s increase compensates the addi-
tional equipment’s purchase cost giving the best return. 
There are nine simulation model parameters which can be 
changed. They represent the quantity of equipments that is 
available to perform a specific task or operation. They as-
sume two values: 1 or 2. Table 1 presents these parameters. 

 
Table 1: Description of Simulation Model Parameters 

Parameter Description 
1 Neq_Op050 Quantity of equipment available to 

perform operation 50 
2 Neq_Op052 Quantity of equipment available to 

perform operation 52 
3 Neq_Op070 Quantity of equipment available to 

perform operation 70 
4 Neq_Op080 Quantity of equipment available to 

perform operation 80 
5 Neq_Op082 Quantity of equipment available to 

perform operation 82 
6 Neq_Op100 Quantity of equipment available to 

perform operation 100 
7 Neq_Op110 Quantity of equipment available to 

perform operation 110 
8 Neq_Op120 Quantity of equipment available to 

perform operation 120 
9 Neq_Op170 Quantity of equipment available to 

perform operation 170 
 
The optimum set of equipments is determined by two 

forms. The first form is performing some experiments to 
9
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identify the principal factors and using them as input for 
the optimization phase. The second one is an optimization 
using all nine factors. 

The following information was obtained on Group #1: 
composition (the entities), the amount of workers available 
(the resources), the activities and their durations, shifts and 
part routes. Table 2 summarizes this information and Table 
3 summarizes the activities of the process.. 

 
Table 2: System Element Summary 

Locations 9 machines 
Resources 14 workers distributed at two shifts  
Processes 37 activities 
Controls Shifts 

Part routes 
 

Table 3: Process Summary 
Quantity of operations 9 
Quantity of transportations 19 
Quantity of queues 9 
Total 37 

 
The Promodel 6.0 simulator was used to build the 

models. Promodel is a discrete-event simulator for manu-
facturing and material handle systems.  

Model verification and validation were performed by 
two ways. Initially, a plant expert analyzed whether the be-
havior of the model would appear reasonable. Then, real 
historical data was compared with simulated results. 

5 EXPERIMENTATION 

Initially, the experiments are planned to identify the most 
important factors of the model. Then, these factors are used 
as input data for optimization software. Also, this model is 
optimized using all factors as input data in order to com-
pare the results. The optimization software is Simrunner 
3.0 which uses Genetic Algorithms and is packaged along 
with Promodel 6.0. 

5.1 Identifying Important Factors 

According to Law and Kelton (2000), in simulation, ex-
perimental designs provides a way to deciding which par-
ticular configurations to simulate before the runs are made 
so the desired information can be obtained with the least 
amount of simulating. Considering that there are 9 factors, 
if it were done a full factorial experiment, it would be nec-
essary 29=512 runs. Therefore, a screening experiment 
must be done. 

Screening or characterization experiments are experi-
ments in which many factors are considered and the objec-
tive is to identify those factors (if any) that have large ef-
fects (Montgomery 2001). Typically, screening experiment 
1980
involves using fractional factorial designs and it is per-
formed in the early stages of the project when many factors 
are likely considered to have little or no effect on the re-
sponse (Montgomery 2001). Montgomery (2001) states in 
this situation it is usually best to keep the number of factors 
levels low, According to this author, two levels work well. 
So, the experimental design adopted was a two-level nine-
factor fractional factorial with resolution IV. Resolution IV 
means no main effect is aliased with any others main effect 
or with any two-factor interaction, but two-factor interac-
tions are aliased with each other (Montgomery 2001). The 
resolution IV designs available are 2 39−

IV =64 runs and 

2 49−
IV =32 runs. 

The 2 49−
IV  design was chosen because it has fewer runs 

than 2 39−
IV  design. If necessary the former design collapses 

into a five- or less- factor full factorial since preliminary 
studies have shown that five factors (Op070, Op080, 
Op082, Op110 and Op120) are critical to cell performance 
this design works well. The generators for this design are 
F=±BCDE, G=±ACDE, H=±ABDE and J=±ABCE and the 
defining relations are I = BCDEF = ACDEG = ABDEH = 
ABCEJ = ABFG = ACFH = ADFJ = BCGH = BDGJ = 
CDHJ = DEFGH = CEFGJ = BEFHJ = AEGHJ = 
ABCDFGHJ. Table 4 shows the factor assignment to the 
variables of the design. 

 
Table 4: Variable-Factor Association 

Variable Factor Low Level 
(-) 

High Level 
(+) 

A Neq_Op070 1 2 
B Neq_Op080 1 2 
C Neq_Op082 1 2 
D Neq_Op110 1 2 
E Neq_Op120 1 2 
F Neq_Op050 1 2 
G Neq_Op052 1 2 
H Neq_Op100 1 2 
J Neq_Op170 1 2 
 
Table 5 shows the design matrix for principal fraction 

with the results obtained for each run. The main factor ef-
fects are shown in Figure 2. It is noticed that factors 
B=Neq_Op080, C=Neq_Op082, E=Neq_Op120 have posi-
tive effect. These factors increase the profit when they are 
increased (high level). The other factors have negative ef-
fect that decrease the profit when they are increased (high 
level). This figure gives a good indication that only three 
factors must be changed, the other factors must not be 
changed. However, to have conclusive results, it is neces-
sary to verify the interactions among factors. 
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Table 5: The 2 49−
IV  Design Matrix Principal Fraction and Results 

Run A B C D E F=BCDE G=ACDE H=ABDE J=ABCE Profit 
1 - - - - - + + + + 280036 
2 + - - - - + - - - 299418 
3 - + - - - - + - - 299518 
4 + + - - - - - + + 280236 
5 - - + - - - - + - 314818 
6 + - + - - - + - + 295436 
7 - + + - - + - - + 315036 
8 + + + - - + + + - 295654 
9 - - - + - - - - + 299418 

10 + - - + - - + + - 280036 
11 - + - + - + - + - 280136 
12 + + - + - + + - + 260854 
13 - - + + - + + - - 295436 
14 + - + + - + - + + 276054 
15 - + + + - - + + + 295654 
16 + + + + - - - - - 315036 
17 - - - - + - - - - 309109 
18 + - - - + - + + + 270345 
19 - + - - + + - + + 270545 
20 + + - - + + + - - 270445 
21 - - + - + + + - + 285845 
22 + - + - + + - + - 285745 
23 - + + - + - + + - 391945 
24 + + + - + - - - + 391945 
25 - - - + + + + + - 270345 
26 + - - + + + - - + 270345 
27 - + - + + - + - + 270545 
28 + + - + + - - + - 270445 
29 - - + + + - - + + 285945 
30 + - + + + - + - - 285845 
31 - + + + + + - - - 398545 
32 + + + + + + + + + 359781 
The two-factor interactions are shown in Figure 3. It 
is noticed that the interactions between BC=Neq_Op080 
and Neq_Op082, BE=Neq_Op080 and Neq_Op120, 
CE=Neq_Op082 and Neq_Op120 lead to better results, 
whereas the interactions between DF=Neq_Op110 and 
Neq_Op050, GH=Neq_Op052 and Neq_Op100, 
AJ=Neq_Op070 and Neq_Op170 lead to poor results.  

Taking into consideration interactions DF, GH and 
AJ, it is clear that factors A, D, F, G, H and J must be kept 
at low level (1) and factors B, C and E must be changed to 
the high level (2). However, in order to check if it is the 
best solution, an optimization using these three factors is 
1981
performed. Following, an optimization using all nine fac-
tors is performed to compare their performance. 

5.2 Optimization Using Three Factors 

In this optimization phase, the three factors B, C and E are 
selected as inputs. The values these parameters can as-
sume are 1 or 2. The other factors are kept at their original 
values. The objective function is to maximize the profit as 
presented earlier in section 4. After 8 runs, the Simrunner 
stops the search. The best result found is 411.327 which 
corresponds to experiment #6, as presented in Figure 4. 
The parameter values are presented in Table 6. 
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Figure 2: Main Effects Plot for Profit 

 
Figure 3: Two-Factor Interaction Plot for Profit 
 

 
Figure 4: Simrunner’s Performance Measures Plot for Op-
timization Using Three Factors 
1982
Table 6: Best Solution for Optimization Using Three Factors 
Parameter Value 

Neq_Op080 2 

Neq_Op082 2 

Neq_Op120 2 

5.3 Optimization Using All Factors 

In this optimization phase, the nine parameters presented in 
Table 1 are selected as inputs. The values these parameters 
can assume are 1 or 2. The objective function is to maxi-
mize the profit, as presented earlier in section 4. 

After 98 runs, the Simrunner stops the search. The best 
result found is 411.327 which corresponds to experiment 
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#55 as presented at Figure 5. The parameter values are pre-
sented in Table 7. 

 

 
Figure 5: Simrunner’s Performance Measures Plot for Op-
timization Using All Factors 

 
Table 7: Best Solution for Optimization Using All Factors 

Parameter Value 
Neq_Op050 1 
Neq_Op052 1 
Neq_Op070 1 
Neq_Op080 2 
Neq_Op082 2 
Neq_Op100 1 
Neq_Op110 1 
Neq_Op120 2 
Neq_Op170 1 

 

5.4 Result analysis 

Table 8 shows the results obtained by the three procedures. 
The three procedures lead to the same results indicating 
that there is coherency among them. Taking into considera-
tion the number of runs necessary to optimize the model, it 
is clear the advantage of determining previously the main 
parameters and then proceeding the optimization using 
them versus to proceed the optimization using all factors. 
The former demanded 32+8=40 runs to obtain the best re-
sult against the 98 runs from the latter, a reduction of 59% 
in the number of runs. Considering only the runs used in 
the Factorial Design, 32 runs versus 98 runs from optimi-
zation using all factors, the reduction is about 67%. 

For this application, since the optimization factor lev-
els and the Factorial Design levels are equal, the optimiza-
tion using three factors seems meaningless. However, other 
applications where the optimization factors could have 
several levels or even were continuous, the Factorial De-
signs would only identify the main factors without specify-
ing their optimum values. 
 

1983
Table 8: Results from the Three Procedures 
Parameter Factorial 

Design 
Optimization 
using 3 fac-

tors 

Optimization 
using all fac-

tors 
Neq_Op050 1 1 (*) 1 
Neq_Op052 1 1 (*) 1 
Neq_Op070 1 1 (*) 1 
Neq_Op080 2 2 2 
Neq_Op082 2 2 2 
Neq_Op100 1 1 (*) 1 
Neq_Op110 1 1 (*) 1 
Neq_Op120 2 2 2 
Neq_Op170 1 1 (*) 1 

Result 
(profit) 

411327 411327 411327 

Number of 
runs 

32 8 98 

The parameters identified with (*) were not used as input 
for optimization. They were kept at low level (1). 

6 CONCLUSIONS 

The objective of this work was to show how the Factorial 
Designs can help the simulation optimization to reach the 
“best” solution. First, the more relevant model’s factors 
were identified using Factorial Designs. Afterwards, two 
optimization were carried out: one using the factors previ-
ously identified, and the other using all model’s factors. 

For this application, the solutions obtained from opti-
mization were the same but the numbers of runs were sig-
nificantly different. The Factorial Designs reduced up to 
59% of the numbers of runs needed to find the optimum 
solution. As the optimization factor levels and the Factorial 
Design levels were equal, the optimization phase was un-
necessary and the runs reduction went up to 67%. 

For complex system simulation, where the simulation 
itself is very time-consuming, the Factorial Designs make 
possible some special approaches as regression metamod-
els and response surface methodology (Kleijnen 1998) 
which are recommendations for future works.  
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