
Proceedings of the 2006 Winter Simulation Conference 
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds. 
 
 
 

AN INVESTIGATION OF REAL-TIME DYNAMIC DATA DRIVEN  
TRANSPORTATION SIMULATION 

 
 

Michael P. Hunter 
 

School of Civil and Environmental Eng. 
Georgia Institute of Technology 

Atlanta, GA 30332, U.S.A. 

Richard M. Fujimoto 
 

College of Computing 
Georgia Institute of Technology 

Atlanta, GA 30332, U.S.A. 

Wonho Suh 
Hoe Kyoung Kim 

 
School of Civil and Environmental Eng. 

Georgia Institute of Technology 
Atlanta, GA 30332, U.S.A. 

   
   

 

ABSTRACT 

Widespread deployment of sensors in roadways and vehi-
cles is creating new challenges in effectively exploiting the 
wealth of real-time transportation system data.  However, 
the precision of the real-time data varies depending on the 
level of data aggregation.  For example, minute-by-minute 
data are more precise than hourly average data.  This paper 
explores the ability to create an accurate estimate of the 
evolving state of transportation systems using real-time 
roadway data aggregated at various update intervals.  It is 
found that simulation based on inflow data aggregated over 
a short time interval is capable of providing a superior rep-
resentation of the real world over longer aggregate inter-
vals.  However, the perceived improvements are minimal 
under congested conditions and most pronounced under 
un-congested conditions.  In addition, outflow constraints 
should be considered during congested flow periods, oth-
erwise significant deviation from the real world perform-
ance may arise.   

1 INTRODUCTION 

 Recently, in an effort to boost research on real-time 
data application/simulation, the National Science Founda-
tion (NSF) implemented research support aimed at Dy-
namic Data Driven Application Systems (DDDAS).  The 
NSF definition of DDDAS is as follows:  

 
DDDAS is a paradigm where application/simulations and 
measurements become a symbiotic feedback control sys-
tem. DDDAS entails the ability to dynamically incorporate 
additional data into an executing application, and in re-
verse, the ability of an application to dynamically steer the 
measurement process (NSF 2005). 
 
 Traffic management is an example of an area likely to 
benefit from DDDAS.  For example, at a local level, inter-
section based simulations may receive information from 
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individual sensors, perform corridor simulations, and opti-
mize signal control parameters to minimize delay.  In an 
area-wide implementation, as illustrated in Figure 1, a 
number of local area simulations (potentially residing on 
individual vehicles, intersection controllers, or dedicated 
base stations) may be operating concurrently within the 
vehicle and roadside infrastructure to accurately determine 
the current state of the system and provide predictions of 
potential future states.  This information may be utilized to 
provide desirable routes to travelers, optimize traffic signal 
timings, or to manage local area and system wide vehicle’s 
ingress and egress.   
 A key to the successful implementation of such dy-
namic data driven transportation simulations is the ability 
to convert real-time field data into useful information in 
order to predict traffic conditions more accurately and effi-
ciently.  As sensors on the roadway continue to proliferate, 
the transportation-related data will expand by orders of 
magnitude.  However, communications and computer proc-
essing are limited.  Therefore, it should be determined 
which data are most effective and at what resolutions the 
data should be collected.  
 This paper investigates an example use of transporta-
tion field data, particularly traffic flows, in a dynamic data 
driven simulation.  A simulation of the Georgia Institute of 
Technology (Georgia Tech) network is utilized to represent 
the real world, with flow data from the Georgia Tech 
model provided to a smaller simulation of two intersections 
within the network.   The “real-world” flow data (i.e. flow 
data measured from the large scale Georgia Tech model) is 
aggregated in different intervals and used to dynamically 
drive the two intersection model.  The desire of this study 
is to explore how well the small scale simulation model is 
able to reflect the real world scenario when fed data at dif-
ferent aggregation levels.  This paper explores congested 
(referred to as peak hour) and un-congested (referred to as 
non-peak hour) traffic demand at data five different aggre-
gation time intervals: 1 sec.,  10 sec., 30 sec., 60 sec., and 
300 sec.     
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Figure 1: Dynamic Data Driven Traffic Management 

2 EXPERIMENTAL DESIGN 

This section introduces the microscopic transportation 
simulation VISSIM, defines the study area, and discuses 
the simulation approach, vehicle generations, outflow con-
straints and scenarios.  

2.1 VISSIM 

Both the two intersection simulation and real world Geor-
gia Tech network simulation are modeled using the 
VISSIM microscopic surface transportation simulator.  
VISSIM is a discrete, stochastic and time step based mi-
croscopic simulation model developed to model urban traf-
fic and public transit operations.  The model is a useful tool 
for the evaluation of various alternatives based on transpor-
tation engineering and planning measures of effectiveness 
(PTV 2005). Individual vehicles are modeled in VISSIM 
using a psycho-physical driver behavior model developed 
by Wiedemann (PTV 2005).  The underlying concept of the 
model is the assumption that a driver can be in one of four 
driving modes: free driving, approaching, following, or 
braking.  The model was originally developed at the Uni-
versity of Karlsruhe, Germany during the early 1970s.  
VISSIM version 4.10, the latest release of the software at 
the time of this analysis, is used in this paper. 

2.2 VISSIM Traffic Assignment: Trip Chain 

Traffic assignment using the trip chain feature in VISSIM 
allows the traffic analyst to specify the traffic demand.  
Trip chains are assigned in an FKT file (Figure 2) and pro-
vide the simulation with detailed individual vehicle travel 
plans, including vehicle number, vehicle type, origin zone 
number, departure time, destination zone number, activity 
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number, and minimum stay time.  In this paper, each vehi-
cle is assigned a trip chain specifying the vehicle’s depar-
ture time (time the vehicle wishes to enter the simulation) 
and destination.    
 

 
Figure 2: VISSIM Trip Chain File 

2.3 Study Area  

Figures 3 illustrates the VISSIM networks utilized for this 
study.  The large network (solid line), which represents the 
real world, incorporates the eastern portion of the Georgia 
Tech campus.  It covers the area from Atlantic Drive on the 
east to West Peachtree Street on the west, with east-west 
connectivity provided via Fifth Street.  The large network 
contains 14 intersections.  The local network (dashed line) 
which receives data from the large model, consists of two 
signalized intersections along Fifth St. (Techwood Dr. and 
Spring St.), where Fifth St. crosses the I-75/I-85 downtown 
connector.  This section of Fifth St. was chosen as it repre-
sents a critical connection and potential bottleneck between 
the east and west sides of campus. 
 

 
Figure 3: Study Area 

 
 Geometric and traffic data for the models were col-
lected as part of a field survey.  Field data included signal 
data (cycle length, phase, phase sequence, and offsets), 
geometric layout (number of lanes, turn bay presence, link 
length, etc.), and directional traffic volume.  However, for 
this study notional volumes were generated to represent 
congested and un-congested conditions in the area of the 
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local simulation.  For the network, the vehicle fleet is as-
sumed to be 100% autos, each with an desired speed of 30 
mph.  The model was calibrated to ensure traffic operations 
were realistic and representative.  Performance measures 
for each local simulation presented in this paper are based 
on six replicate runs.   

2.4 Simulation Approach 

Figure 4 presents the VISSIM link illustration of the Geor-
gia Tech simulation model, that is, the large network simu-
lation (LNS).  Enclosed within the dashed box are the in-
tersections included within the local simulation (LS).  The 
simulation model executions in this paper assume that ve-
hicle inflow data are able to be collected and aggregated at 
Point A and Point D with the aid of advanced sensor tech-
nologies, such as loop detectors, video detectors, or in-
vehicle sensors.  The aggregate data are then transmitted to 
the local simulation, providing a dynamic (updating every 
aggregation interval) data driven arrival rate.  The per-
formance of the local simulation is tested using five differ-
ent update time intervals: 1 sec., 10 sec., 30 sec., 60 sec., 
and 300 sec.  

 

 
Figure 4: Georgia Tech Large Network Simulation and Lo-
cal Simulation - VISSIM Link Diagram 

2.5 Vehicle Generations 

At the beginning of the large network simulation run, the 
system is empty.  Vehicles are generated at the entry nodes 
of the network, based on the selected input volumes and an 
assumed headway distribution.  This initial research effort 
utilized a negative exponential distribution (May 1990) to 
simulate the arrival of vehicles at the large network entry 
nodes.  Thus, vehicles are generated with time headways 
according to: 
 

)]1ln([ RHh −−×= . 
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 where: 
 

H = mean headway for the time period (sec.) 
h = headway separating each generated vehicle (sec.) 
R = random number (0 to 1.0) 
 
The arrival rate for the local simulation at Point A and 

Point D is based on the aggregate arrivals measured on the 
large simulation.  The local simulation vehicle generation 
during an aggregation interval follows a uniform distribu-
tion for the given arrival rate.  Thus, over the analysis pe-
riod, the total number of vehicles generated at Point A and 
Point D of the large network simulation and the local simu-
lations are identical.  This allows for a direct comparison 
(or pairing) of an individual vehicle’s trip characteristics, 
i.e. arrival time at an intersection, delay, travel time, etc., 
in the large network and its simulated trip characteristics in 
the local network.  
   

 
Figure 5: Simulation Snapshot at Peak Hour  

2.6 Traffic Demands and Scenarios 

As stated previously, the objective of this analysis is to ex-
plore how well the local simulation reflects the large net-
work simulation based on the different aggregation inter-
vals.  For this study it is also desired to determine the 
impact on the local simulation performance when the real 
world situation is deemed either congested or un-congested.  
In order to model these traffic conditions, representative 
travel demands and arrival patterns were generated.   
 Four un-congested scenarios and four congested sce-
narios were modeled.  In the large simulation un-congested 
scenarios 1 and 2 and congested scenarios 5 and 6, traffic 
is generated such that the local simulation will receive ve-
hicles from traffic streams at traffic inputs 1, 2, and 3, and 
in the remaining scenarios from traffic inputs 1 and 3 (Fig-
ure 4).  Local simulation arrival streams are generated at 
the intersecting points (dashed box in Figure 5) with the 
large network simulation, at the given aggregation interval.  
Each model is run for a total of 120 minutes.   The un-

Point A

Point B Point C

Local Simulation (LS) Point D
6
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congested and congested scenarios modeled are given in 
Table 1 and Table 2, respectively.    
 

Table 1: Non-Peak Traffic Input (Un-Congested) 
Scenario 

No 
Traffic 

Input No. 
Time 
(min) 

Input 
(vphpln) 

Outflow 
Constraint 

1 0-120 240 
2 0-120 240 1 
3 0-120 500 

No 

1 0-120 240 
2 0-120 240 2 
3 0-120 500 

Yes 

1 0-120 480 
2 0-120 0 3 
3 0-120 500 

No 

1 0-120 480 
2 0-120 0 4 
3 0-120 500 

Yes 

 
Table 2: Peak Traffic Input (Congested) 

Scenario 
No 

Traffic 
Input No. 

Time 
(min) 

Input 
(vphpln) 

Outflow 
Constraint 

1 0-30 240 
1 30-90 360 
1 90-120 240 
2 0-30 240 
2 30-90 360 
2 90-120 240 
3 0-30 500 
3 30-90 750 

5 

3 90-120 500 

No 

1 0-30 240 
1 30-90 360 
1 90-120 240 
2 0-30 240 
2 30-90 360 
2 90-120 240 
3 0-30 500 
3 30-90 750 

6  

3 90-120 500 

Yes 

1 0-30 480 
1 30-90 720 
1 90-120 480 
2 0-30 0 
2 30-90 0 
2 90-120 0 
3 0-30 500 
3 30-90 750 

7  

3 90-120 500 

No 

1 0-30 480 
1 30-90 720 
1 90-120 480 
2 0-30 0 
2 30-90 0 
2 90-120 0 
3 0-30 500 
3 30-90 750 

8 

3 90-120 500 

Yes 

2.7 Outflow Constraint 

As seen in Tables 1 and 2, for several of the scenarios an 
outflow constraint is referenced.   This refers to an outflow 
constraint placed at Point C (Figure 5) in the local simula-
tion.   This constraint meters the outflow from the local 
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simulation model, allowing for a potentially more accurate 
reflection of the large simulation network.  The need for 
outflow metering is particularly critical where traffic con-
straints outside the boundaries of the local simulation may 
result in a spillback of congestion into the region being 
modeled.  Figure 5 provides a snapshot of such a scenario, 
where congestion on Fifth Street and Spring Street is a re-
sult of a traffic bottleneck outside the bounds of the local 
simulation (dashed box).  For the experiments in this ef-
fort, the local simulation outflow constraint is provided by 
utilizing the VISSIM reduced speed zone module.  This 
module forces vehicles within the zone to reduce their 
speed.  By reducing the vehicle speeds at Point C to the 
speeds being experienced in the large simulation, it be-
comes possible to better reflect the large network opera-
tions.  Currently, vehicle speed data at Point C are col-
lected and aggregated in ten minutes intervals and then 
transmitted to the dynamic data driven local simulation.  

3 PERFORMANCE MEASURE COMPARISONS 

To examine how well the data driven application (local 
simulation) reflects the real world transportation system 
(large simulation) data collection points are placed at the be-
ginning and end of the link connecting Point B and Intersec-
tion C.  For each vehicle, the time the vehicle arrives at 
Point B and the delay on the link (where delay is the differ-
ence between actual and desired travel time) between Point 
B and Intersection C (i.e. the key link over the freeway) is 
measured in both the large and local simulation.  The pri-
mary consideration in this analysis is the difference in the 
vehicle’s modeled arrival and delay values.  The differences 
are computed for each vehicle pair (i.e. the vehicle in the 
large simulation model and the simulation of that vehicle in 
the local model) and then aggregated in thirty minute inter-
vals, where average and root mean square error (RMSE) 
values are calculated for each thirty minute interval.   

The results for the un-congested (non-peak) conditions 
are presented first, followed by the congested (peak) condi-
tions.   

3.1 Non-peak Conditions 

Table 3 presents un-congested condition arrival time dif-
ferences at Point B for the five local simulation inflow ag-
gregation intervals during the 60 to 90 minute time inter-
val.  Figure 6 provides an example of large vs. local 
simulation individual vehicle arrival time differences.   It is 
readily seen that the local network with one second aggre-
gation intervals provides the highest degree of agreement 
with the large simulation, with  an 0.0 sec. to 0.2 sec. aver-
age arrival time difference and 1.0 sec. to 2.0 sec. RMSE.  
The 1-second scenario does not provide an exact replica-
tion of the large model arrival pattern as vehicle generation 
in the local model is limited to the nearest second.  For ex-
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ample, a vehicle that arrives at Point A at 10.4 sec. in the 
large network is generated at time 10.0 sec. in the local 
network, leaving 0.4 sec. difference with the large network 
simulation.  Also, the VISSIM trip chain feature utilized to 
generate the traffic in the local maintains a strict minimum 
headway between vehicles during vehicle generation.  
Thus, a tight platoon in the large simulation model might 
be slightly dispersed in the local simulation.   
 For the remaining aggregation scenarios, the average 
arrival time differences stay relatively low, ranging from   
-9.7 sec. to 2.2 sec.  The scenario 3 and 4, 300 sec. aggre-
gation interval simulation even achieves an average arrival 
time difference of 0.0 sec.  However, there exists a clear 
trend of increasing RMSE values as the aggregation inter-
val increases.  Thus, even though the average arrival time 
values may be similar between the large and local simula-
tions, there is a clear sense of increasing variation in actual 
arrival patterns between the two simulations and poten-
tially significant arrival time differences between individ-
ual vehicles.  Figure 6 presents an example plot of the ve-
hicle arrivals over a 300 second time interval for all 
aggregation intervals.  From these results it can be seen 
that the average arrival time difference alone is likely not a 
good indicator of the ability of a data driven simulation to 
reflect the real world operations.  Measures of variation 
such as RMSE should also be considered.  
 
Table 3: Arrival Time Comparison (Non-Peak, 60-90min.) 

Scenario /  
Agg. Interval 1sec 10sec 30sec 60sec 300sec 

AATD* 0.2 0.3 -1.2 -4.6 -9.7 1 
RMSE 2.0 3.5 10.3 15.6 26.4 

AATD* 0.2 0.3 -1.2 -4.6 -9.7 2 
RMSE 2.0 3.5 10.3 15.6 26.4 

AATD* 0.0 0.0 1.7 2.2 0.0 3 
RMSE 1.0 1.8 10.3 13.0 17.1 

AATD* 0.0 0.0 1.7 2.2 0.0 4 
RMSE 1.0 1.8 10.3 13.0 17.1 

AADT* - Average Arrival Time Difference (LNS – LS) 
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Figure 6: Arrival Time (Non-Peak, 4000 sec.-4300sec.) 
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 It is also noted from Table 3 that the performance dif-
ference is partially dependent upon the arrival pattern.   For 
example, the average arrival time differences for the 60 
sec. and 300 sec. aggregation intervals under scenarios 1 
and 2, (-4.6 sec. and –9.7 sec., respectively) are signifi-
cantly less than those under scenarios 3 and 4 (2.2 sec. and 
0.0 sec., respectively).  In addition, the RMSE values are 
greater in scenarios 1 and 2.  These results imply that the 
vehicle arrival pattern will impact the quality of a dynamic 
data driven simulation.  In these scenarios, there is some 
evidence that as the likelihood of vehicle platooning is 
minimized and the quality of coordination between signals 
deteriorates (e.g. the more random the vehicle arrivals) the 
local dynamically driven simulation will more closely re-
flect the large simulation.  Future efforts will attempt to 
support and quantify the impact of vehicle arrival pattern 
on the data driven simulation.     
 The calculated average vehicle delay difference and  
RMSE on the link from Point B to Intersection C are 
shown in Table 4 and Figure 7.  The delay comparisons re-
flect characteristics similar to the arrival time comparisons.  
Minor differences in average delays are seen as the aggre-
gation interval increases, however the RMSE clearly in-
creases with the aggregation interval.  Once again the vehi-
cle arrival pattern is also shown to impact the how well the 
local simulation is able to reflect the large simulation.  
 

Table 4: Delay Comparison (Non-peak, 60-90min.) 
Scenario /  

Agg. Interval 1sec 10sec 30sec 60sec 300sec 

ADD* 0.0 -0.9 -0.6 -0.5 0.6 1 
RMSE 5.8 6.9 10.6 14.5 20.0 
ADD* -0.1 -0.9 -0.7 -0.5 0.6 2 
RMSE 6.0 7.1 10.6 14.5 20.0 
ADD* -0.2 -0.5 -0.7 -0.1 -0.3 3 
RMSE 6.2 5.9 11.2 13.4 15.9 
ADD* -0.3 -0.6 -0.8 -0.1 -0.3 4 
RMSE 6.1 6.4 11.2 13.4 15.9 

ADD* - Average Delay Difference (LNS – LS) 
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 Figure 7 displays the delay difference for a series of 38 
vehicles, with the delay difference being the delay experi-
enced by the vehicle in the large simulation minus the 
same vehicle’s simulated delay in the local simulation.  
The minimal variation is clearly seen at the lower aggrega-
tion levels with the large variations at the longer aggrega-
tion intervals.        
 Finally, for the un-congested conditions little differ-
ence is seen between those scenarios with and without the 
outflow constraint.  This is a reasonable result as in un-
congested conditions, vehicles are able to maintain their 
desired speed on Spring St., the location of the modeled 
outflow constraint.  Thus, the speed constraint is consis-
tently near the free flow speed, offering minimal hindrance 
to vehicles exiting the local network.  

3.2 Peak Condition 

In the peak congestion scenarios, the challenging, and 
more likely, case of congested conditions extending be-
yond the bounds of the local simulation is considered.  
Comparison of the arrival time at Point B for the congested 
scenario conditions is presented in Table 5.  Unlike the un-
congested conditions the average arrival time is considera-
bly different for a vehicle in the large simulation than that 
simulated in the local model.  Arrival time differences 
range from -10.8 seconds to 58.5 seconds.  There is also 
not a clear trend of the local simulation providing an im-
proved reflection of the large simulation under the smaller 
aggregation intervals.  Significant differences are also seen 
in the delay comparison between the large and local model, 
again with no clear advantage demonstrated between the 
different aggregation intervals in either the average values 
or the RMSE.  This result implies that the impact of con-
gestion on the ability of a data driven local simulation to 
reflect a portion of a real world network can dominate the 
impact of a selected aggregation interval.  The accuracy of 
the initial vehicle generation pattern does not help the local 
network effectively reflect the large network, as any bene-
fit of more accurate vehicle entrance times are lost in the 
inaccuracies of the congestion model.  
 

Table 5: Arrival Time Comparison (Peak, 60-90min.) 
Scenario /  

Agg. Interval 1sec 10sec 30sec 60sec 300sec 

AATD* 54.4 55.2 55.0 54.1 53.1 5 
RMSE 58.1 58.7 59.0 59.0 58.3 

AATD* 30.3 16.6 13.9 20.4 -10.8 6 
RMSE 43.5 51.5 53.6 40.7 67.8 

AATD* 56.3 57.0 56.8 55.9 58.8 7 
RMSE 60.1 60.7 60.8 61.1 63.4 

AATD* 21.5 28.4 14.1 8.7 37.0 8 
RMSE 61.7 54.5 53.0 54.5 52.5 

AATD* - Average Arrival Time Difference (LNS – LS)     
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 The impact of traffic arrival patterns is also over-
whelmed by the congestion.  For example, the scenario 5 
and 7 average arrival time differences, delay differences, 
and RMSE’s are similar for all aggregation intervals, even 
though the traffic arrival patterns are different.  These re-
sults imply that different arrival patterns do not have a sig-
nificant influence on the arrival time and delay under con-
gested conditions.  
 

Table 6: Delay Comparison (Peak, 60-90min.) 
Scenario /  

Agg. Interval 1sec 10sec 30sec 60sec 300sec 

ADD* 205.9 205.2 207.0 207.1 207.7 5 
RMSE 209.8 209.1 211.0 211.2 211.8 
ADD* 37.0 26.5 30.4 22.7 24.6 6 
RMSE 60.3 64.4 62.3 53.0 73.5 
ADD* 217.8 217.0 218.2 218.8 219.1 7 
RMSE 221.0 220.2 221.5 222.4 222.7 
ADD* 23.5 44.1 29.8 24.5 24.9 8 
RMSE 53.3 69.2 56.4 61.3 53.7 

ADD* - Average Delay Difference (LNS – LS) 
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Figure 8: Delay (Peak Without Outflow Constraint, 4000 
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 However, the use of the outflow constraints clearly 
impacts the quality of the local simulation’s reflection of 
the large simulation.  The results with the outflow con-
straint at Point C (scenarios 6 and 8) show significant im-
provements over the scenarios without the outflow con-
straint (scenarios 5 and 7).  For example, Figures 8 and 9 
illustrate the scenario 6 (no outflow constraint) delay and 
delay difference experienced by each vehicle for the time 
period 4000 sec. to 4300 sec.  It is readily seen that the lo-
cal simulation provides a very poor reflection of the large 
simulation.  The failure of the local simulation to capture 
the operation of the large simulation results from the se-
vere congestion on Spring St. due to a bottleneck that oc-
curs outside the area modeled by the local simulation.  The 
congestion on Spring St. spills back into the area modeled 
by the local simulation, resulting in severely degraded per-
formance at the intersection of Fifth St. and Spring St.  
With the congestion spillback from the downstream bottle-
neck, the Fifth St. intersection is unable to process the ve-
hicle capacity that is implied by the given signal control 
and intersection geometry.  Figure 10 shows a snapshot of 
the perceived congestion at the intersection of Fifth St. and 
Spring St. under the local simulation (without and with 
outflow constraint).  In both instances the same traffic de-
mand arrives at the Fifth St. intersection.  As seen in Table 
6 the delays measured on the local simulation without an 
outflow constraint are significantly less than that actually 
experienced in the large scenario.   
 

     
(a)       (b) 

Figure 10: Simulation Snapshot (Peak at 90min.) (a) With-
out  & (b) With Outflow Constraint  
 
 Clearly, the impact of a bottleneck downstream of the 
local simulation can have a significant impact on opera-
tions within the area modeled by the local simulation.  
Thus, it is necessary to capture the repercussions of such 
bottlenecks in the local simulation.   Scenarios 5 and 7 cap-
ture the downstream bottleneck by enforcing an outflow 
constraint in which the average speed of vehicles on local 
simulation exit link (i.e. Point C - Spring St. south of Fifth) 
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are adjusted to match the speeds on the large simulation, 
essentially constraining the outflow from the local simula-
tion to be similar to that of the large simulation.  As a re-
sult, the delay model on the local simulation provides a 
significantly superior reflection of the large simulation 
(Figures 11 and 12).  However, even with the outflow con-
straint, differences between the local and large model exist 
at all aggregation levels.  Future research efforts will be 
centered on improving the performance of the dynamically 
data driven local simulation model under congested condi-
tions.   
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Figure 11: Delay (Peak With Outflow Constraint, 4000 
sec.-4300sec.) 
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Figure 12: Delay Difference (Peak With Outflow Con-
straint, 4000 sec.-4300sec.) 

4 CONCLUSIONS 

This paper began the exploration of the ability to cre-
ate an accurate estimate of the evolving state of a local 
transportation system using real-time roadway data aggre-
gated at various update intervals.  In the modeled “real 
world” traffic, the VISSIM trip chain feature is used as it 
has the advantage of allowing for the specification of indi-
vidual vehicle departure times and paths.  An assumption 
0
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of this effort is that vehicle flow data are able to be col-
lected, aggregated, and transmitted to a dynamic data 
driven local simulation at varying update intervals..   

For the un-congested conditions, there existed minor 
differences in the average value of the considered perform-
ance metrics (arrival time and delay) and the performance 
metric difference values for the tested scenarios.  However, 
there was a clear trend of increasing RMSE’s as the aggre-
gation interval increased.   Varying the upstream origin of 
the arrival streams also tended to influence the RMSE val-
ues more than the average values.  From these results it can 
be seen that under un-congested conditions, the average of 
performance metrics alone are likely not good indicators of 
the ability of a data driven simulation to reflect real world 
operations.  Measures of variation such as RMSE should 
also be considered.  
 Unlike the un-congested conditions, the average val-
ues of the performance metrics in congested conditions 
were considerably different for the large real world simula-
tion than the local simulation.  The RMSE values also were 
significantly greater that those in the un-congested scenar-
ios.  There is also not a clear trend of the local simulation 
providing an improved reflection of the large simulation 
when given the smaller aggregation intervals.  For the 
tested scenarios, the impact of congestion dominated the 
impact of a selected aggregation interval and upstream ar-
rival pattern.  The use of outflow constraints significantly 
improved the local model performance.  These constraints 
helped capture the impact on the local simulation of con-
gestion that occurs outside the local model boundaries.   
Where the boundaries of the congested region fall outside 
of the local simulation it becomes readily apparent that 
both the inflow and outflow parameters of the simulation 
must be dynamically driven to achieve a reasonable reflec-
tion of the real world conditions. 

As sensor technologies have advanced, the amount of 
available real-time field data has increased dramatically.  
The quantity of available real-time data is expected to con-
tinue to climb at an ever-increasing rate.  This tidal wave 
of real-time data opens the floodgates to potential data 
driven transportation applications.  This effort has begun to 
examine some of the innumerable potential uses of this 
data.   
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