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ABSTRACT

This paper summarizes a new approach that we recently

proposed for ranking and selection problems, one that max-

imizes the expected NPV of decisions made when using

stochastic or discrete-event simulation. The expected NPV

models not only the economic benefit from implementing

a selected system, but also the marginal costs of simulation

runs and discounting due to simulation analysis time. Our

formulation assumes that facilities exist to simulate a fixed

number of alternative systems, and we pose the problem as

a “stoppable” Bayesian bandit problem. Under relatively

general conditions, a Gittins index can be used to indicate

which system to simulate or implement. We give an asymp-

totic approximation for the index that is appropriate when

simulation outputs are normally distributed with known but

potentially different variances for the different systems.

1 INTRODUCTION

We summarize recent work from Chick and Gans (2005).

That work proposes a new approach to the simulation selec-

tion problem, one that focuses on the expected net present

value of decisions that are supported by simulation, as op-

posed to more typical approaches that focus on statistical

aspects involved with ranking and selection approaches to

discrete optimization with simulation.

The premise is that managers must decide the operating

characteristics of their firm’s manufacturing, supply chain,

or service delivery systems. Often the decision reflects the

choice of one among a number of competing designs. To aid

their decision-making managers may use stochastic or dis-

crete event simulation. Simulation represents a widely-used

and relatively low cost ‘insurance’ mechanism to estimate

the performance of alternative systems and to improve the

chances that the best system is implemented.

If there is a fixed set of k alternative designs, one must

decide how long to simulate each alternative and, given the

simulation results, which design to implement.
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The most common approach for selecting the best of a

finite set of simulated systems is ranking and selection, and

the last 10 years have seen exciting progress. Both Bayesian

and frequentist approaches are possible (Chick 2005,

Chen et al. 2000, Kim and Nelson 2005), and large-scale

numerical comparisons have identified the strengths and

weaknesses of each approach (Branke et al. 2005). The

application of these types of procedures has typically con-

sidered the time and financial costs of simulation separately

from the value of the output: good procedures minimize

the mean number of replications that a procedure needs

to reach a desired level of evidence for correct selection.

This is a flexible approach which allows one to assess a

wide variety of operational and other measures of system

performance. The assessment does not usually consider the

financial costs of the analysis itself.

When system and simulation results are themselves

financial measures, as when simulation is used at a tactical

or strategic rather than operational level, a more direct

economic approach may be appropriate. If the manager’s

goal is to maximize the expected net present value (NPV) of

high-level system design choices, then the manager is faced

with two countervailing costs. On the one hand, uncertainty

about the expected NPV of each alternative compels the

manager to simulate more to reduce the opportunity costs

associated with an incorrect selection. On the other, a

lengthy simulation analysis incurs direct costs and reduces

the NPV of the system that is ultimately implemented, due

to discounting.

We can formulate and solve a simulation selection

problem in which the manager seeks to maximize expected

NPV. Our formulation is Bayesian: we assume that the

manager has prior beliefs concerning the distribution of

the NPV of each of the alternatives and that she uses

simulation output to update these beliefs. The system which

the manager ultimately chooses to implement maximizes

expected NPV with respect to the posterior distributions of

her beliefs, as well as analysis costs and discounting costs.
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Section 2 defines the problem, and Section 3 identifies

links to existing simulation and probability literature. Sec-

tion 4 observes that the simulation selection problem can be

expressed as a variant of the multi-armed bandit problem,

a so-called stoppable bandit process. As a result, a variant

of the well known Gittins-index policy is an optimal way

to decide which system to simulate next and when to stop

simulating in favor of implementing a system. At each

step of the sequential procedure, the system with the largest

Gittins index is identified. If the statistics of the system with

the largest Gittins index fall into a continuation set, then

that system is simulated one more time and its Gittins index

is updated. If the statistics fall outside of the continuation

set, then simulation stops and that system is implemented.

The boundary of the continuation set therefore determines

whether one should “learn” (by simulating) or “earn” (by im-

plementing a system). Section 4 requires few distributional

assumptions other than joint independence and bounded

expectations. Simulation run times of the different systems

are initially assumed to be equal.

Gittins indices are typically difficult to compute exactly

in Bayesian problems. Section 5 motivates asymptotic ap-

proximations for the Gittins index associated with normally

distributed simulation output. The approximations apply

when simulation output is independent across systems with

unknown means and known, potentially different, variances.

The approximation is determined by the solution of a free

boundary problem for a heat equation that shares character-

istics with financial options. The selection procedure that

is implied is presented in Section 6.

The theory is applied to examples in Section 7. Section 8

indicates that some of the strong sampling assumptions made

in Section 5 can be relaxed. See Chick and Gans (2005)

for a fuller description, proofs, and an explanation of how

these results can be implemented.

2 PROBLEM DESCRIPTION

A manager seeks to develop one of k projects, labelled

i = 1, . . . , k. The net present value (NPV) of each of the i
projects is not known with certainty, however. The manager

wishes to develop the project which maximizes her expected

NPV, or to do nothing if the expected present value of all

projects is negative. We represent the “do nothing” option

as i = 0 with a sure NPV of zero.

2.1 Uncertain Project NPV’s

Let Xi be the random variable representing the NPV of

project i, where X0 ≡ 0. If the manager is risk neutral

and the distributions of all Xi’s are known to her, then

she will select the project with the largest expected NPV,

i∗ = arg maxi{E[Xi]}.
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Although we model NPVs as simple random variables,

the systems that generate them may be quite complex.

For example, a particular project’s sequence of cash flows

may involve the composition of several interrelated random

processes describing the evolution of investments, I(t),
revenues, R(t), and operating costs, O(t), over time. Nev-

ertheless, given a continuous-time discount rate δ > 0,

each realization of these processes, ωi, yields a sample

X(ωi) =
∫ ∞

0
[R(t, ωi)−O(t, ωi)− I(t, ωi)]e

−δtdt.
It may also be the case that the distributions of the Xi’s

are not known with certainty by the manager. Rather, she

may believe that a given Xi may come from one of a family

of probability distributions, PXi|θi
, indexed by parameter

θi. We model her belief as taking the form of a probability

distribution on θi, which we call PΘi
. For example, the

manager may believe that Xi is normally distributed with

a known variance, σ2
i , but unknown mean. Then PΘi

represents a probability distribution for the mean. To ease

notation, we will sometimes refer to the distribution as Θi.

In this case, the expected NPV of project i > 0 is E[Xi] =

E[X(Θi)]
∆
=

∫∫

X(θi)dPXi|θi
dPΘi

. We denote the vector

of distributions for the projects by Θ = (Θ1, . . . ,Θk).
Remark 1 This notation is consistent with the liter-

ature on the Bayesian bandit problem (Chang and Lai 1987,

for example). It is not consistent with much of the literature

on simulation selection. In the latter, capital Θi would refer

to a random variable, rather than to a distribution function.

2.2 Simulation to Select the Best Project

If the distributions of the Xi’s are not known, then the

manager may be able to use simulation as a tool to reduce

distributional uncertainty, before having to decide which

project to develop. She may decide to simulate the outcome

of project i a number of times, and she views the result of

each run as a sample of Xi. She uses Bayes’ rule to update

her beliefs concerning Θi.

We model the running of simulations as occurring at

sequence of discrete stages t = 0, 1, 2, . . ., and we represent

Bayesian updating of prior beliefs and sample outcomes,

{(Θt,Xt) | t = 0, 1, . . .} as follows. If project i > 0
is simulated at stage t with sample outcome xi,t, then

Xi,t = xi,t and Xj,t = 0 for all j 6= i. In turn, Bayes’ rule

is used to determine Θt+1:

dPΘi,t+1
(θi |xi,t,Θi,t) =

dPXi | θi
(xi,t | θi) dPΘi,t

(θi)
∫

θi
dPXi | θi

(xi,t | θi) dPΘi,t
(θi)

for all θi ∈ ΩΘi
, while Θj,t+1 = Θj,t for all j 6= i. So the

evolution of the manager’s beliefs regarding the distribution

of outcomes of each project is Markovian. We also assume

that simulation results, hence the evolution of the manager’s

beliefs, are independent from one project to the next.
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If, in theory, simulation runs could be performed at zero

cost and in no time, then the manager might simulate each

of the k systems infinitely, until all uncertainty regarding

the θi’s was resolved. At this point the problem would

revert to the original case in which the distributions and

means of the Xi are known.

But simulation runs do take time and cost money. We

assume that each run of system i costs $ci and takes ηi

units of time to complete. Thus, given a continuous-time

discount rate of δ > 0, the decision to simulate system i costs

the manager ci plus a reduction of ∆i =
∫ ηi

0
e−δsds < 1

times the expected NPV of the (unknown) project that is

eventually chosen.

There may also be associated up-front costs associated

with the development of the simulation tool, itself. For

example it may cost time and money to develop the under-

lying simulation platform, independent of which projects

end up being evaluated. Additional costs may be required to

be able to simulate particular projects. Furthermore, these

project-specific costs may be inter-related.

For the moment, we make two simplifying assumptions

regarding the costs of simulation. First, we ignore all

up-front costs for the simulation tool, assuming that the

necessary facilities exist to simulate all k projects. Second,

we assume that ηi ≡ η for all k projects. This allows us to

define a common ∆ ≡ ∆i for the projects as well. Section 8

argues that these assumptions may be relaxed.

Even with these simplifications, the availability of a

simulation tool to sample project outcomes makes the man-

ager’s problem much more complex. Rather than simply

choosing the project that maximizes expected NPV, she

must choose a sequence of simulation runs and, ultimately

select a project, so that the discounted stream of costs and

terminal expected value, together, maximize expected NPV.

We define a number of indices in order to track the man-

ager’s choices as they proceed. Let T ∈ {t = 0, 1, 2, . . .}
be the stage at which the manager selects a system to imple-

ment. For t < T , define i(t) ∈ {1, . . . , k} to be the index of

the project simulated at time t, and define I(T ) ∈ {0, . . . , k}
to be the ultimate choice of project.

A selection policy is the choice of a sequence of simu-

lation runs, a stopping time, and a final project. Define Π to

be the set of all non-anticipating selection policies, whose

choice at time t = 0, 1, . . . depends only on system his-

tory up to t: {Θ0,X0, . . . ,Θt−1,Xt−1,Θt}. Given prior

distributions Θ = (Θ1, . . . ,Θk) and a policy π ∈ Π, the

expected discounted value of the future stream of rewards

is

V π(Θ) = Eπ

[

T−1
∑

t=0

−∆tci(t) + ∆T XI(T ),T |Θ0 = Θ

]

,

(1)

where XI(T ),T is the unknown NPV of the selected system,

I(T ), when a system is selected (at time T ).
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Formally, we define the manager’s simulation selection

problem to be the to choice of a selection policy π∗ ∈ Π
that maximizes V π∗

(Θ) = supπ∈Π V π(Θ).

3 RELATED LITERATURE

Two broad classes of research are related to this work. One

is the ranking and selection literature, the other is the bandit

and optimal stopping literature. Both have substreams.

None of the ranking and selection literature has explic-

itly accounted for discounting costs due to elapsed simulation

times. Still, two lines of thought in ranking and selection

are related to this work, either through their use of sampling

costs, or of diffusion approximations to simulation output.

Chick and Inoue (2001) provided two-stage procedures

whose second stage allocation can trade off the cost of sam-

pling with an approximation to the Bayesian expected value

of information (EVI) of sampling. That approximation as-

sumes a large number of samples (small sampling costs), and

a Bonferroni-like bound for the EVI. The EVI is measured

with respect to either the posterior expected opportunity cost

(EOC) of a potentially incorrect selection, or the posterior

probability of incorrect selection (PICS).

The indifference-zone (IZ) approach provides a fre-

quentist guarantor of selection procedure effectiveness

(Kim and Nelson 2005). Almost all IZ procedures focus on

probability of correct selection (PCS) guarantees for each

problem instance within a given class, in which probability

is defined as the (frequentist) probability the best system is

correctly selected for a given problem. Recent innovations

for IZ procedures (Kim and Nelson 2001) theoretically jus-

tify and use diffusion approximations to improve efficiency

in a sequential screening procedure.

In another stream of literature, Gittins (1979) offers

an early account of optimal of dynamic allocation indices

(later called Gittins indices) for infinite horizon, discounted

multi-armed bandit problems. Glazebrook (1979) provides

sufficient conditions under which these index results apply to

reward streams derived from stoppable arms. Gittins (1989)

shows that the results of Glazebrook (1979) hold under a

slightly weaker set of assumptions.

Gittins indices are difficult to compute exactly.

Chang and Lai (1987) derives approximations for the Git-

tins index for the infinite horizon discounted “Bayesian

bandit” problem. Brezzi and Lai (2002) uses a diffusion

approximation for the Gittins index of a Bayesian bandit,

motivated by ground breaking work on composite hypothesis

tests (Chernoff 1961, Breakwell and Chernoff 1964).

Chick and Gans (2005) provide a new approach to the

simulation-selection problem by directly accounting for the

economics of its discounting and simulation expenditures.

The idea is to link the selection problem to the bandit liter-

ature, and to develop diffusion approximations for Gittins

indices for special distributions.
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4 SIMULATION SELECTION AND BANDITS

The simulation selection problem is closely related to a class

of sequential decision problem known as the multi-armed

bandit problem. Chick and Gans (2005) demonstrate that

simulation selection problems can be reduced to multi-

armed bandits. The result implies that a class of simple,

index-based policies is optimal for simulation selection.

In the discounted multi-armed bandit problem, a

decision-maker chooses repeatedly among a finite set

of mutually-independent Markov chains that are indexed

i = 1, . . . , k. A choice of chain i at stage t yields an

expected reward that is specific to the state of chain i, and

it initiates a state transition for chain i. The k−1 chains not

chosen at stage t remain in their current states and earn no

rewards. The objective is to maximize the expected sum of

discounted rewards over an infinite horizon (Gittins 1989).

For the case in which expected one-period rewards are

bounded, so that Ri(Θi) < ∞ for almost all Θi ∈ ΩΘi
,

i = 1, . . . , k, Gittins and co-workers proved two impor-

tant sets of results which are relevant for our problem.

First, Gittins and Jones (1974) demonstrated that there ex-

ists a state-dependent index for each arm, Gi(Θi), which

is independent of all other arms, such that it is optimal to

choose at each stage, t, the arm whose index is the greatest

among all arms. Second, Gittins and Glazebrook (1977)

and Gittins (1979) demonstrated that this so-called Gittins

index has an appealing form.

The structure of the simulation selection problem de-

fined in Section 2 is clearly close to that of the multi-armed

bandit. Both have discrete-time discounting, independent

projects, and Markovian state transitions.

At the same time, the simulation selection problem

includes a stopping time, T , which changes the problem’s

decision structure. If, as in the simulation selection problem,

a “zero” arm is included, then the bandit problem has k +1
actions available for all t = 0, 1, . . . . In contrast, for

t ≤ T the simulation selection problem has 2k + 1 actions

available — decide t < T and choose arm i(t) ∈ {1, . . . , k}
to simulate, or decide t = T and choose an arm I(t) ∈
{0, . . . , k} to implement — and for t > T no actions are

available.

In fact, the added stopping decision makes the

simulation selection problem an example of what

Glazebrook (1979) calls a stoppable family of alternative

bandit processes. Chick and Gans (2005) apply the results

of Glazebrook (1979) to show that the simulation selection

problem can be effectively reduced to a multi-armed bandit,

so that a Gittins indices result can be used to solve the sim-

ulation selection problem in Equation (1). The idea is to

modify the simulation stopping problem so that the optimal

value function satisfies the so-called Bellman equation:
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V
π∗

i

i (Θi,t)

= max {−ci + ∆E[V πi

i (Θi,t+1) |Θi,t, t 6= Ti],

(1−∆)E[X(Θi,t)] + ∆E[V
π∗

i

i (Θi,t)]
}

= max {−ci + ∆E[V πi

i (Θi,t+1) |Θi,t, t 6= Ti],

E[X(Θi,t)]} . (2)

Chick and Gans (2005) show how to transform optimal poli-

cies for the transformed stopping problems into an optimal

policy for the original simulation stopping problem. They

also prove that there is a Gittins index policy that is optimal,

and that the Gittins index for each arm is proportional to

the optimal value function in Equation (2). The optimal

value function, if it can be computed for each project indi-

vidually, can therefore serve as a Gittins index, as is needed

to optimally solve the simulation selection problem.

5 GITTINS INDEX APPROXIMATION FOR

NORMAL OUTPUT WITH KNOWN VARIANCE

At a high level, the optimal policy is straightforward. At

each t it compares the expected discounted value of optimal

stopping for each project and selects the one with the highest

V
π∗

i

i (Θi,t). If that project is i = 0, then abandonment is most

favorable and no project is further simulated or implemented.

If the best project is some i > 0 and t = T ∗
i then project i

is implemented. Otherwise, project i is simulated, Bayes’

rule is used to calculate Θi,t+1, V
π∗

i

i (Θi,t+1) is determined,

and the comparison begins again.

The foundation of the optimal policy is the repeated

determination of the various V
π∗

i

i (Θi,t)’s, as in Equation (2).

The calculation of each V
π∗

i

i (Θi,t), what we call the optimal

expected discounted reward (OEDR), is itself a difficult task

for which exact solutions are not available.

Chick and Gans (2005) develop diffusion approxima-

tions for these indices in the spirit of Chernoff (1961) and

Breakwell and Chernoff (1964). The diffusion approxima-

tions are asymptotically appropriate when the discount rate

over the duration of a simulation replication is small, as

is usually the case in simulation. Repeated sampling leads

to realizations of a scaled Brownian motion with drift.

This section summarizes the diffusion approximations of

Chick and Gans (2005).

The calculation of the OEDR involves the solution

of a so-called free boundary problem for a heat equation

that is obtained from the diffusion approximation. The

boundary is “free” since it is determined by equating the

two maximands in the value function, rather than on a known,

pre-specified boundary. A comparison of the maximands

in the continuous-time analogue of Equation (2) determines

the free boundary between a continuation set, C, in which it

is optimal to continue simulating a project, and a stopping

set, in which it is optimal to stop simulating and implement
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the project. If the boundary is never reached, then the NPV

of simulating forever is better than the expected NPV of

implementing a poor system.

The following approximation assumes that each

project’s simulation output is normally distributed with a

known variance. While this assumption may not satisfy

the uniform boundedness condition, the analysis below re-

sults in a well-defined finite OEDR when the initial prior

distributions for the unknown means are proper.

We will calculate the OEDR of a single project, so

we drop the system’s index, i, from subscripts to simplify

notation. Specifically, simulation replications Xj are i.i.d.

Normal

(

θ, σ2
)

for j = 1, 2, . . ., with a known finite vari-

ance σ2 and unknown mean θ. We suppose that θ has a

Normal

(

µ0, σ
2
0

)

prior distribution. Some of these restrictive

assumptions will be relaxed in Section 8.

Define n0 = σ2/σ2
0 , and redefine t = n0 +n, where n

is the number of simulation observations seen so far for the

single system in question. Set Yt = n0µ0+
∑n

j=1 Xj . This

transformation conveniently makes the posterior distribution

of θ a Normal
(

Yt/t, σ2/t
)

distribution, and will help to find

an optimal stopping time when there is k = 1 system. (When

we return to the original problem with k ≥ 1 in Section 6

below, each system will have its own time progression, ti,

and the time index will be t =
∑k

i=1 ti.)
Chick and Gans (2005) show the following points.

• The Gittins index can be approximated by solving

the following partial differential equation:

0 = −c− δB +
y

t
By + Bt +

σ2

2
Byy (3)

on the continuation set C, along with the condition

that the (free) boundary, ∂C, of C be determined

by equating the value function with the value of

stopping to implement,

B(y, t) = D(y, t), on ∂C. (4)

Here, B(y, t) is a diffusion approximation to the

OEDR, where y is the realization of Yt at time t,
and subscripts on B represent partial derivatives.

• When c = 0, Equations (3-4) represents what might

be called a perpetual American call option on reg-

ular (not geometric) Brownian motion, with un-

known drift that is inferred through time.

• The diffusion in Equation (3) has three parameters.

One can reparameterize the problem so that only

one standardized problem must be solved to handle

any values for δ > 0, c ≥ 0, and σ > 0.

• The diffusion approximation is reasonable under

conditions that are typically valid in simulation.
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Chick and Gans (2005) describe numerical techniques,

based on ideas from Chernoff and Petkau (1986), that im-

plement the necessary calculations in a tractable amount

of time. The boundary depends upon a function that they

call b1(·), whose argument is a function of the number of

samples that have been observed.

The OEDR of the standardized problem is defined by

a function B1(·, ·) with two arguments that are functions of

the sample mean of the simulation output and the number

of replications that have been observed so far.

They denote the OEDR of the original (not standardized)

problem by V`,i for each alternative i = 0, 1, . . . , k, where

` = 1 when c = 0 (case 1), and ` = 2(κ) when c > 0
(case 2), and the parameter κ depends upon the values

of δ, c and σ. The continuation set C and OEDR V`,i

are readily-computed functions of b1(·), B1(·, ·), and the

parameters

α = δ1/2σ−1, β = δ−1/2σ−1, γ = δ, and κ = δ3/2σc−1.

6 SIMULATION SELECTION PROCEDURE

Table 1 is the simulation selection procedure that results from

the above analysis, which assumes independent, normally

distributed output with known variances.

Table 1: Simulation Selection Procedure

1. Identify economic parameters (discount factor δ >
0 and costs ci ≥ 0 per replication). Provide prior

distributions for each of the k alternative systems

and initialize yi, ti for each system (see below).

Include system 0 as an option (‘do nothing’ option

with a guaranteed NPV of V0 = 0) if appropriate.

2. Compute the OEDR V`,i for each alternative

i = 0, 1, . . . , k, and set t =
∑k

i=1 ti, where

` ∈ {1, 2(κ)}, depending on the values of ci, δ, σi

(see the last paragraph of Section 5).

3. While (a system is not yet implemented):

(a) Increment t← t + 1.

(b) Identify the system with largest index, i(t) =
arg maxi=0,1,...,k V`,i (break ties randomly).

(c) If (yi(t), ti(t)) is not in the continuation set,

C`,i, then stop simulating and implement the

appropriate system, otherwise run a simulation

for that system to get output xi,ti(t)+1.

(d) Update yi(t) ← yi(t) + xi,ti(t)+1; ti(t) ←
ti(t) + 1 and V`,i(t) for system i(t).

Step 1 of the procedure requires prior distributions

for the unknown means. There are at least two options for

generating these initial priors. Expert judgment may provide

a prior distribution, Normal (µ0i, σ0i), for the unknown
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means θi, for i = 1, 2, . . . , k. If that is done, initialize ti =
σ2

i /σ2
0i and yi = tiµ0i. Alternatively, default assessments

can be implemented by running n0 replications for each

system and setting yi =
∑n0

j=1 xi,j and ti = n0.

Chick and Gans (2005) describe how to compute the

OEDR V`,i and boundary, b1(·). The continuation set in

Step 3c corresponds to yi(t)/ti(t) < β−1
i(t)b1(1/γti(t)) −

ci(t)/δ = σi(t)

√
δb1(1/δti(t)) − ci(t)/δ. This formulation

allows for different sampling costs ci for each system.

It is possible that the system being implemented is the

‘do nothing’ option, which has a known NPV of V0 = 0.

Alternative systems with a known, positive expected NPV

can be included by replacing the 0-arm with the option of

implementing that better alternative if the maximum OEDR

is V0 = known expected NPV (e.g., for comparing mutually

exclusive alternatives with an existing system).

7 SIMULATION SELECTION EXAMPLES

This section comments on what the theory developed above

implies for realistic scenarios. Chick and Gans (2005) in-

dicate how to numerically approximate the Gittins indices,

and provide more graphs to supplement the examples here.

The first example shows how large the simulation output

mean must be before one stops to implement a system.

Assume that a firm uses a discount rate of 10%/year, that

the output of replications of a single simulated alternative

has standard deviation σ = $106 and has no marginal

cost (c = 0), but requires about 5.3 minutes to run. That

simulated time makes the discount rate per replication equal

to δ = 10−6(= 5.256× 0.10/365/24), so 106 replications

are required to get to scaled time τ = 1. Figure 1 indicates

that simulation should stop after 16 replications if the sample

mean is yt/t = $106 (which corresponds to a z-score of

z = (yt/t)/(σ/
√

t) = 4).

If the simulated system is implemented (with yt/t >
0), then the posterior probability of incorrect selection,

PICS, is the probability that the unknown mean is less

than the value of not implementing any system (NPV

= 0). Recall that the posterior probability for the un-

known mean is Normal

(

yt/t, σ2/t
)

, with density pt(θ) =

(
√

t/
√

2πσ2)e−(θ−yt/t)2t/2σ2

. If z = 4 when t = 16,

then PICS =
∫ 0

−∞
pt(θ)dθ = Φ[−z] = 3 × 10−5. If

the simulated system is selected as best, but the mean

turns out to be θ < 0, then the opportunity cost is

0 − θ. If z = 4 when t = 16, the posterior ex-

pected opportunity cost of potentially incorrect selection

is EOC =
∫ 0

−∞
(0 − θ)pt(θ)dθ = Ψ[z]σ/

√
t = 2. One

stops after 855 replications (3.12 days) if yt/t = $105

(z = 2.92; PICS = 1.7 × 10−3; EOC = 17), and after

29830 replications (108 days) if yt/t = $104 (z = 1.73;

PICS = 4.2×10−2; EOC = 99). In this example, a greater

potential upside means that one is willing to ‘stop simulat-
28
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Figure 1: Threshold for Stopping Simulation in Favor of

Implementing a Single Project (k = 1, σ = $106; δ = 10−6,

or 10% Per Year; c = 0).

ing and start building’ sooner, but a more stringent level of

evidence for correct selection is required (a higher z-score,

meaning a lower PICS and EOC).

Figure 1 shows that a long delay before implementing a

system can occur if variable costs of simulation are ignored.

Our second example shows that one stops simulating earlier

when these variable costs are included. Suppose now that

variable costs attributed to further simulation are $1/hour

(e.g., additional computer time), and all other parameters are

as in the first example. This makes the cost per replication

c = 5.256× $1/60 ≈ $0.0876, and the stopping boundary

shifts down by c/δ ≈ $87.6 thousand.

With those sampling costs, Figure 2 shows that the

inclusion of positive sampling costs reduces the size of the

continuation region. Other things equal, one would stop

sampling earlier, the greater the marginal cost of additional

samples, c. Figure 2 also plots a lower boundary. Below

that lower boundary, one would prefer to stop simulating

the single simulated option in order to implement the 0-arm.

That is, if the sample mean of the simulation output is suffi-

ciently low, and the variable cost of simulation replications

is nonzero, then one would prefer to stop simulating and

receive a sure NPV of zero rather than continuing to lose

money with a simulation analysis of an unfavorable system.

Chick and Gans (2005) further discuss how σ, c and δ
interact to determine the continuation region in the context

of stationary simulations.

The last example illustrates how the OEDR can be used

to identify which system to simulate or implement when there

are multiple systems. Figure 3 plots the OEDR V1(yti
, ti) =

β−1
i B1(βi(yti

/ti +ci/δ), 1/δti)−ci/δ, assuming the basic

setup of the first example, which has ci = 0 and βi =
δ−1/2σ−1

i = 10−3. If the parameters are different for each

system, then a different scaling for the OEDR would result

for each system.
4
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Figure 2: One Stops Sampling Earlier in Favor of Imple-

menting when the Marginal Cost of Sampling is $1/Hour

Rather Than Free (σ = $106; δ = 10−6, or 10% Per Year).

If default assessments are used for each unknown mean

NPV, then some number (e.g., 6) of replications is run for

each system, and the sample average (yi/ti) and the number

of replications (ti) are initialized. The system with the

highest sample mean is initially the one with the highest

OEDR (since the number of replications for each is initially

the same). That system is simulated until either the sample

mean crosses the implementation boundary (resulting in

simulation stopping and a system being implemented), or

until its OEDR drops below the OEDR of another system

(resulting in a change in which system gets simulated). The

process of simulating a single system, updating its OEDR,

and choosing whether to continue simulating, to switch

which system gets simulated, or to stop and implement a

system then repeats until a system is implemented.

8 EXTENSIONS

Section 5 assumed jointly independent Gaussian output

with known variances. Chick and Gans (2005) argue that

those approximations can be generalized to the following

scenarios, if a few additional technical conditions hold.

• Samples from a one-parameter member of the ex-

ponential family of distributions can be handled

(exponential, Bernoulli, Poisson, …).

• Autocorrelated output, if a “batch means” analysis

is appropriate. Such autocorrelation is typical for

the analysis of many queueing or inventory systems.

• Different runtime durations across systems.

The analysis above assumes that the cost and time for

implementing the simulation tool are zero. More recent

results with a PhD student show that the results can also be
285
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Figure 3: Contours of OEDR, V1(yti
, ti) for Last Example,

with Dashed Stopping Boundary.

extended to account for the monetary cost, $ḡi and h̄i units

of time required to build the simulation tool for system i
under certain conditions (one still has a stoppable bandit

problem and computable Gittins indix approximations if the

time and money spent building the simulation tool for one

system is independent of the costs of the tools for each

other system).

The Gittins index results apply when samples are inde-

pendent and normally distributed with unknown variance,

but the approximations of Section 5 do not apply when the

variance is unknown. A nonoptimal ad hoc solution would

be to plug in the sample variance for the true variance, or

apply some fudge factor (e.g., by plugging in the variance

of a Student random variable with the appropriate degrees

of freedom, ν = ti − 1, for the known variance). A better

approximation for the Gittins index of simulation selection

problems when the variance is unknown would be useful.

9 DISCUSSION AND CONCLUSIONS

This paper responds to the question of how to link financial

measures (a firm’s discount rate, the marginal cost of sim-

ulations) to the optimal control of simulation experiments

that are designed to inform operational decisions. The broad

answer, that index-based policies are optimal, is theoreti-

cally valid over a broad range of distributional assumptions,

provided the observations are independent across projects

and individual trials.

Asymptotically optimal approximations are appropri-

ate when simulation output is independent and normally

distributed with known variance. Some generalizations of

that distributional assumption are available.

The paper perhaps raises more questions than it answers,

however, from both the business and simulation perspectives.

From a business perspective, we did not include the fixed
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costs of developing simulation models, or even of deciding

what types of alternative configurations should be studied,

or how many. We did not address the issue of first-mover

advantage, or hard project due dates. Finite time horizons

would invalidate basic assumptions of the bandit results,

but the dynamic programming formulation espoused here

may perhaps lead to insights.

From a simulation perspective, we did not account for

common random numbers across systems. We also did not

account for unknown variances. For that, one could try a

plug-in estimator of the sample variance for the variance,

but this may cause some inefficiency when the number of

observations is small.

This work appears to open a number of research ques-

tions in simulation optimization. Much current research

focuses on asymptotic convergence guarantees for the prob-

ability of correct selection. This paper suggests that an al-

ternative approach may be useful: maximizing the expected

discounted NPV of decisions based on simulation analysis,

even at the expense of potentially incorrect selections.
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