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1. Introduction 

This paper reports on a user study of a computer-based learning environment for college-
level Materials Science. MaterialSimTM (Blikstein & Wilensky, 2004, 2005) is an agent-based set 
of microworlds built by the authors within the NetLogo (Wilensky, 1999b) modeling 
environment. MaterialSim was created for investigating phenomena such as crystallization, 
solidification, grain growth and annealing. The design of MaterialSim emerged from extensive 
classroom observations followed by a literature review on engineering and Materials Science 
education, extensive classroom observations, analysis of class materials and interviews with 
students. Our observations (supported by the literature review) indicated that students’ 
understanding of the subject matter was problematic, and that the conventional teaching strategies 
and resources were not up to the challenge of the very complex content being taught. Based on 
this preliminary diagnosis, we created a set of exploratory computer microworlds and designed a 
user study for evaluating its effectiveness. A total of seventeen undergraduate students enrolled 
in a sophomore-level Materials Science course participated in the study in 2004 and 2005, which 
was comprised of a survey, pre-interview, interaction with the previously-programmed computer 
models, and students’ construction of new models. 

Our classrooms observations suggested that the ever-growing intricacy of college-level 
content in Materials Science is such that there is urgent need for new teaching and learning 
approaches. The reason is that the important equations and mathematical models in Materials 
Science, at this level of education, are often connected (in nontrivial ways) to multiple sets of 
other theories and other equations. As a result, a plain linear progression of equations, from 
simple to complex, is not sufficient. The result is that teachers have to resort to a multitude of 
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models to explain a single phenomenon, each of them requiring a different set of equations, some 
even situated in a different locus of mathematical modeling (statistical mechanics and geometrical 
modeling, for example). Our classroom observations revealed that, in a typical 30-minute period, 
students would be exposed to as many as 18 unique equations with 95 variables in total (not 
counting intermediate steps in a derivation) – which means approximately 1.5 minutes for each 
equation and 20 seconds for each variable. Our first research question was to investigate the 
consequences of this particular teaching strategy: what kind of understanding did this multiplicity 
of explanation levels and the “overloading” of equations foster in students? 

As the data suggested that student understanding was problematic, we started to 
investigate different design frameworks to address the issue. We chose to utilize the multi-agent-
based computer modeling approach (Collier, 2001; Wilensky, McKenzie, & Centola, 2000) 
within a Constructionist (Papert, 1980) framework. The multi-agent modeling approach, as we 
will explain in detail, enables modelers to depart from simple individual-level rules to generate 
complex collective behaviors. These simple rules capture fundamental causality structures 
underlying complex behaviors within a domain. Wilensky, Resnick and colleagues (Centola, 2000; 
Wilensky & Reisman, 2006; Wilensky & Resnick, 1999) have pointed out that such rules could 
be more accessible to students than many of the equations describing the overall, macroscopic 
behaviors of a system. We embed the multi-agent modeling approach with the Constructionist 
framework by designing materials and activities that enable students to explore multi-agent 
models and microworlds and then to choose an area of their interest and construct a model of a 
phenomenon in that area.  

The rationale for using agent-based modeling is that this perspective may foster different, 
and perhaps more generative and extensible understanding of the relevant scientific phenomena. 
Instead of multiple models or numerous equations, this framework focuses on a small number of 
elementary behaviors which can be applied to a variety of scientific phenomena. Instead of a 
many-to-one relationship (many equations to one phenomenon), we attempt here a one-to-many 
(one set of local rules to many phenomena) relationship. In this approach, scientific phenomena 
are not “stand-alone” entities, disconnected one from the other, but emergent properties of the 
same set of local rules. Our second research question was: What kind of understanding do 
students develop of the Materials Science content when they study it from this agent-based, one-
to-many perspective? 

A third research question was to investigate the learning outcomes of students who build 
their own computer models. In other words, does coding (i.e., programming) multi-agent-based 
models generate deeper understanding of the scientific phenomena, as opposed to just interacting 
with ready-made models? 

To answer our research questions, we present evidence in the form of excerpts and 
samples of students’ work, which demonstrates that the experience with MaterialSim enabled 
them to identify and understand some of the unifying principles in Materials Science and to use 
those principles to effectively construct new models. 
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2. A new scenario in engineering education 

Engineering teaching and learning have not changed much in the past few decades. This 
conservatism, which has been pinpointed as early as the sixties (Brown, 1961; Jerath, 1983; MIT 
Center for Policy Alternatives, 1975) is still prevalent in numerous engineering schools. In recent 
years there have been calls for reform from the engineering education community and several 
schools have proposed a number of reform initiatives (Einstein, 2002; Haghighi, 2005; Russell & 
Stouffer, 2005). A popular approach has been to introduce design-based curricula which include 
hands-on engineering design, oftentimes using modeling and simulation software (Colgate, 
McKenna, & Ankenman, 2004; Lamley, 1996; Martin, 1996; Newstetter & McCracken, 2000). 
Some of the reasons mentioned for this push for curricular reform in Engineering are the declining 
interest of American high-school students for an engineering career (down 18% since 1991), the 
changing workforce demographics, the new industrial dynamics brought about by “mass 
customization” and other new manufacturing needs and techniques (Katehi et al., 2004). 

Apart from the broader societal changes, technical advances have also been an important 
driving force for engineering education reform programs. As basic science and engineering become 
increasingly intertwined in fields such as nanotechnology, molecular self-organization, molecular 
electronics, and microbiological synthesis (Roco, 2002), students and professionals have to deal 
with time scales from the nanosecond to hundreds of years, and sizes from the atomic scale to 
thousands of kilometers (Kulov & Slin'ko, 2004). The wide range of subjects and problems makes 
it prudent not to try to cover all the relevant knowledge so that students master the knowledge in 
each domain, but instead to help students develop adaptive expertise (Hatano & Oura, 2003) 
which they can apply to new problems and situations. 

Many researchers and industrial leaders in the field have been pointing out that reform 
initiatives are falling short of those new challenges. Bazzo (1998) and Blikstein (2001) criticized 
the “banking” (Freire, 1974) approach to curricular reform – simply adding new courses to the 
curriculum but not making structural changes to it. Hurst (1995) pointed out that syllabi and 
curricula were so overloaded with transient or excessively detailed knowledge that there was no 
time for fostering students’ fundamental understanding of content matter. In fact, most of those 
reform initiatives were based on grand views about “blocks” of content or general skills needed 
for future engineers, or even socio-economic needs of whole countries (Munjal, 2004), rather than 
detailed studies on how engineering students learn. 

In addition, the technological tools used in those reform initiatives (such as modeling and 
design software) are the same employed by professional engineers in their everyday practice and 
not especially designed for learning. This might be due to the belief that “doing”, most of the 
times, leads to “learning” (see, in contrast, Soloway, Guzdial & Hay, 1993). For instance, most 
software tools used in engineering courses do not afford insight into the computation underlying 
their design and functioning. For engineering practice, indeed, a tool has to yield reliable and fast 
results – understanding what’s “under the hood” is not necessarily useful. But in some particular 
areas, such as Materials Science, this could be disadvantageous, especially for learners. The 
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computational procedures might embody an essential, perhaps crucial, aspect of the subject 
matter—how the conventional formulas and representations capture the phenomena they purport 
to model.  Evidently, no computer modeling environment can uncover all of its computational 
procedures – it would be impractical, for example, to have students wire hundreds of transistors 
so as to understand the underlying logic of the modeling environment. Nevertheless, we believe 
that the level of opaqueness of the environment, in many cases, should be made more transparent 
to students, after careful analysis of the content matter being taught. 

Moreover, in Materials Science, many of the traditional formulas themselves are 
opaque—they embody so many layers of accumulated scientific discovery into such a complex 
and concise set of symbols that they do not afford common-sense insight and grounding of the 
causal mechanisms underlying the phenomena they purport to capture. Thus, although using 
formulas and conventional engineering representations is perhaps conducive to successful doing 
(designing a new alloy, for example) it does not necessarily lead to conceptual understanding 
(knowing how each of the chemical elements interact and alter the properties of the alloy). 
Particularly, we are interested in generative, extensible understanding – learning principles from 
one phenomenon that could be transferable to other related phenomena. 

This is not to say that traditional formulaic representations are intrinsically negative - 
Sherin (2001), for example, showed how the manipulation of formulas can lead to conceptual 
understanding in Physics. Our work so far has suggested, nevertheless, that the exclusive use of 
formulaic representations could constitute an obstacle for conceptual understanding in some 
domains of engineering, especially in areas in which microscopic interactions of millions of 
elements (such as atoms or molecules) happen simultaneously. In those areas, it seems to be 
especially beneficial to unpack, and deconstruct the traditional representations, restructuring 
domains of knowledge around the study of local phenomena (Wilensky, 2006; Wilensky & 
Papert, 2006; Wilensky et al., 2006). 

For the most part, professional engineering tools target modeling-for-doing, which 
emphasizes “aggregate”-level (Wilensky & Reisman, 1998; Wilensky & Stroup, 2001) 
simulations to predict macroscopic variables. For example, temperature is a macroscopic, 
aggregate description of a microscopic state of individual molecules (their speed or energy), just 
as pressure is an aggregation of the number of collisions between gas molecules and the walls of 
the container. At an aggregate level, those variables are dependent on a number of different 
events and phenomena, and thus numerous equations and models have to be employed to predict 
them, oftentimes “mixing-and-matching” different levels of explanation and mathematical 
modeling approaches. On the other hand, we posit, in the multi-agent perspective, the number of 
events and phenomena influencing a local interaction is dramatically lower than at an aggregate 
level, due to the fact that the many of the variables observed macroscopically are just emergent 
properties of the local rules. In this paper we propose a learning design framework which 
benefits from this fact, focusing on simple agent-level behaviors (i.e. atomic-level interactions) 
from which complex macroscopic behaviors emerge. 
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We believe that this framework is especially useful in a scenario of increasing 
technological complexity and specialization. Materials Science, for example, has transformed 
itself considerably over the last decade, with the advent of nano- and bio-materials, as well as the 
explosion of computational materials science as a core research strand. The number of materials, 
alloying elements, fabrications techniques, and industrial applications has grown so quickly and 
vastly that “covering” all the knowledge by simply adding new courses to the curriculum would 
be infeasible. Additionally, the high level of abstraction that the new advances in Materials 
Science are bringing makes it increasingly difficult to give students any real world “feel” for the 
ideas learned in the classroom, as well as clear connections with their previous knowledge. While 
many archetypal problems in introductory Physics would involve one falling body or two 
colliding objects, typical undergraduate problems in Materials Science involve simultaneous 
interactions of billions of atoms. Those interactions generate cascading effects which are hard to 
predict or understand with conventional mathematical equations. We posit that unifying, 
“anchor” multi-agent models are useful for generating solid understanding of generative principles, 
in order to bridge the micro- and macro-levels (Wilensky & Resnick, 1999). Therefore, the new 
computational tools should not be simple add-ons to the present curriculum, but part of their 
backbone. 

Our approach is one attempt in this direction. It builds up from previous research on the 
use of multi-agent simulation tools in school and research environments, to investigate a variety 
of phenomena in chemistry and physics (Stieff & Wilensky, 2003; Wilensky, 1999a; Wilensky & 
Reisman, 2006; Wilensky & Resnick, 1999; Wolfram, 2002). From our literature review, 
however, it appears that no research has been done in using multi-agent computer-based modeling 
for teaching topics in Materials Science, even though this technique is widely used in Materials 
Science research. 

Wilensky & Resnick (1999) first noted the need to pay attention to “levels” and 
highlighted the importance of the understanding of emergent behaviors for Science learning. 
Wilensky, Papert and colleagues have argued that computational  representations have reached a 
point of development where we can embark on a program of radical “restructuration” of the 
science curriculum using these representations (Wilensky & Papert, 2006; Wilensky et al., 2006). 
Goldstone and Wilensky (2005) have called for such a restructuration of science curricula using 
common transdisciplinary “patterns” such as energy minimization, positive feedback and 
simulated annealing. 

We will present and discuss a user study of a computer-based learning environment 
designed within a multi-agent modeling framework and a Constructionist pedagogy, which tries to 
address the aforementioned challenges by offering students opportunities to build their 
knowledge by designing and understanding simple computational behaviors that generate complex 
collective behaviors. The MaterialSim materials we developed focus on the topic of grain growth 
in materials. The user study was comprised of classroom observations, pre/post interviews and 
surveys, and data analysis from individual sessions with students using the materials.  
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3. Research Design & Methods 

The research took place during two spring quarters at the Materials Science Department 
of a Midwestern liberal arts university. In the first year (2004), six sophomore year 
undergraduate students (volunteers) participated in the study, all enrolled in the “Microstructural 
Dynamics” undergraduate course. In the second year (2005), eleven students volunteered to 
participate. The average class size in both years was 15 students, although the average class 
attendance was around 13 students. Each student participated in two individual sessions. The 
first, 75 minutes long, was comprised of the following parts:  

�  Short Likert-scale/open-ended pre-survey to assess students’ familiarity with 
computers and their attitudes about the course.  

�  Pre-interview about grain growth and related phenomena, in which students were 
asked the following questions during a semi-structured interview: 

1. What is a grain? 
2. What is a grain boundary? 
3. What is grain growth? 
4. Could you indicate in this picture which grain will grow and which will 
shrink? (Students were presented with a schematic drawing showing grains 
of different size in a material)  
5. What is the driving force for grain growth? 
6. What is the driving force for recrystallization? 
7. What is the effect on grain growth of dispersed precipitates? Why? 
8. In grain growth, grain boundaries always migrate toward their center of 
curvature. How does this decrease the free energy? 
9. In recrystallization, the new grains migrate away from their center of 
curvature. How does this lead to a decrease in the free energy? 
 

�  General presentation of the NetLogo programming environment. 

�  Demonstration of five canonical agent-based models from the NetLogo models 
library (fire spread, virus contamination, racial segregation, gas molecules in a 
container, and a chemical reaction). 

�  Hands-on interaction with one MaterialSim model: grain growth (with 
simultaneous interview). 

As homework, they were asked to pick a challenging and/or interesting topic from the 
course and think of a model to build, which would be implemented during the next session. 
Students also had the option of just extending the functionality of the existing grain growth 
model. 
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The second session (150 minutes) was dedicated to: 

�  Introduction to the primitive commands of the NetLogo modeling language. 

�  Implementation (i.e., coding) of the new model. 

�  Final interview. 

We scheduled the sessions to happen approximately one week after students’ exposure to 
this topic in their regular classes. 

All sessions were videotaped, and students’ computer interactions were recorded using 
real-time continuous screen-capture software. Approximately 50 hours of video were captured, 
40% of that total was selectively transcribed and analyzed. Experiments done by students, as 
well as the models they built, were saved and analyzed. The first author attended the 
Microstructural Dynamics course both in 2004 and 2005, analyzed the class materials and related 
literature. The classroom observations also generated data about the number of equations, 
variables, drawings and plots explained during the class periods (and exact time spent in each 
item). Finally, participants were asked to fill up an anonymous web-based post-survey, as to 
assess their (self-reported) interest and motivation doing the study, as well as usefulness of 
computer simulation for understanding certain topics in Microstructural Dynamics. 

4. Computer-based methods vs. traditional methods for Grain Growth 
modeling 

Most materials are composed of microscopic “crystals”. Even though we commonly 
associate the term ‘crystal’ with the material used in glassware manufacturing, its scientific 
meaning is different. A crystal is just an orderly arrangement of atoms, a regular tridimensional 
grid in which each site is occupied by an atom. In Materials Science, scientists use the term 
“grain” to refer to such an arrangement. 

Among other properties, grain size determines how much a material will deform before 
breaking apart, which is one of the most important issues in engineering design. For example, a 
car built with steel with a wrong grain size could significantly increase the risk of serious injury 
for the passengers. But grain size can change, too – high temperature is the main driving force. 
This phenomenon, known as grain growth, is exhaustively studied in Materials Science: small 
grains disappear while bigger ones grow (the overall volume is maintained). Airplanes turbines, 
for instance, can reach very high temperatures in flight – an incorrectly designed material could 
undergo “grain growth” and simply break apart. The following photographs (magnified 850x) 
show typical results. 
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Figure 1: Metallic sample before and after grain growth (Blikstein & Tschiptschin, 1999) 

Burke (Burke, 1949) was one of the first to introduce a law to calculate grain growth and 
proposed that the growth rate would be inversely proportional to the average curvature radius: 

nktR =  

where R is the mean grain size at a given time, t is time, k is a constant that varies with 
temperature, and the theoretical value of n is 0.5. 

In other words, Burke’s law states that large grains (lower curvature radius) grow faster, 
while small grains (high curvature) have slower growth, or shrink. The mathematical formulation 
of Burke’s law also reveals that, as grains grow, the growth rate decreases. A system composed 
of numerous small grains (see Figure 1, left) would have a very fast growth rate, while a system 
with just a few grains (see Figure 1, right) would change very slowly. One of Burke’s 
approximations was to consider grains as spheres with just one parameter to describe their size 
(the radius). For most practical engineering purposes, this approximation yields acceptable 
results – however, as we previously discussed, its practical efficacy does not necessarily mean 
that this approach is the best way to understand the phenomenon. 

Massive computing power, in the early eighties, has made a new and promising approach 
possible: computer simulation of grain growth. Anderson, Srolovitz et al. (Anderson, Srolovitz, 
Grest, & Sahni, 1984a, 1984b) proposed the widely known theory for computer modeling of 
grain growth using the Monte Carlo method and a cellular-automata approach. This kind of 
simulation not only made predictions faster and more accurate, but also allowed for a completely 
new range of applications. Researchers were no longer constrained by approximations or general 
equations, but could make use of more precise mechanisms and realistic geometries. As stated by 
Anderson, Srolovitz et al.: 

“While it is generally observed that large grains grow and small grains shrink, 
instances where the opposite is true can be found. [...] The results indicate the 
validity of a random walk description of grain growth kinetics for large grains, and 
curvature driven kinetics for small grains.” (Anderson et al., 1984b) 

In other words, Anderson et al. state that the classic rule-of-thumb for grain growth 
(“large grains grow, small grains shrink”) is not always valid, and that randomness plays an 
important role. Given the microscopic dimensions and small time scale of the phenomenon, 
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practically the only way to visualize this new finding is through computer simulation. In 
contrast, the traditional methods for investigating grain size and growth reflect the tools (and 
visualization techniques) that were available in the fifties: mathematical abstractions, geometrical 
modeling, approximations, and empirical data. 

Both traditional methods and computer-based methods of investigating grain growth rely 
on modeling. It behooves us to remember a “secret” of science. The scientific enterprise is the 
process of creating models that are the best approximations to reality we can find. The models of 
each time period reflect the tools available at that time.  Traditional scientific models employed 
the best representational tools available – mathematical equations. But the recent availability of 
computational representations and tools enables new kinds of models. Given this rapid growth of 
tools, we argue that engineering schools should prepare students not only to use existing tools, 
but also to have the adaptive expertise needed to redesign tools in light of technological 
innovations or in the presence of new engineering challenges.  

5. Software Design: NetLogo and MaterialSim 

NetLogo (Wilensky, 1999b) is a freely-available, integrated multi-agent modeling 
environment, developed at the Center for Connected Learning and Computer-Based Modeling at 
Northwestern University, under the direction of Prof. Uri Wilensky. It includes a graphical user 
interface for exploring, experimenting with and visualizing models, as well as a multi-agent 
modeling language (MAML) used for authoring models. Such languages enable users easily to 
create and manipulate thousands of graphical agents and define simple rules that govern the 
agents’ behavior. The NetLogo agents can perform simple rule-based behaviors, such as to seek 
or to avoid being surrounded by other agents. Such simple agent rules, however, give rise to 
complex emergent aggregate phenomena, many of which are congruent with their traditional 
macroscopic formula-based descriptions. In addition to the modeling language itself, NetLogo 
includes a graphical user interface with advanced visualization features, such as multiple 
topologies and 3D. It also includes some specialized tools such as BehaviorSpace (Wilensky, 
2000), which enables users to explore a wide parameter space by running multiple experiments 
and automatically logging the data. 

MaterialSim is a set of exploratory models built by the authors of this paper within the 
NetLogo environment. Currently there are models for investigating crystallization, solidification, 
casting, grain growth and annealing. 

The system was conceived to enable four kinds of activities: 

�  One-dimensional exploration: users can change variables, draw microstructures and 
observe their behavior over time. 

�  Multi-dimensional exploration: students can run experiments altering multiple 
parameters to find out rules, mathematical relationships, and patterns. 
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�  “Multi-world” exploration: Students can connect real-world and virtual 
experiments, importing digital photos from real experiments and observing their 
“virtual” evolution.  

�  Model building: students can change, create or extend the system by coding their 
own procedures or modifying existing ones, using the NetLogo modeling language. 

 

Figure 2. MaterialSim’s grain growth model 

We chose the NetLogo modeling-and-simulation environment as a platform as it is well 
adapted to all of those activities. Using a constructionist design framework combined with a 
multi-agent approach, NetLogo’s “low-threshold, no-ceiling” (Papert, 1980; Tisue & Wilensky, 
2005) design enables learners to achieve sophisticated results within a relatively short period of 
time. Moreover, its built-in visualization tools allow dynamic, flexible, and customizable views. 
In addition, NetLogo and other multi-agent simulation tools have been used in many school and 
research environments to investigate a variety of phenomena in chemistry and physics (Stieff & 
Wilensky, 2003; Wilensky, 1999a; Wilensky & Reisman, 2006; Wilensky & Resnick, 1999; 
Wolfram, 2002). 

MaterialSim’s grain growth module has a number of features that were specifically 
designed as learning tools: 

�  Users can start either from a random arrangement of atoms or from a pre-set stage, 
which can be drawn by the user or converted from a digital picture. 
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�  The appearance of the “atoms” can be changed for better visualization of particular 
aspect, such as number of grains, alignment of atoms etc. (see Figure 3). 

Hex-
Solid 

Solid-
line 

Circles Lines Spheres 

     

Figure 3. Different visualization modes 
 

�  Users can change the temperature, which increases the likelihood of non-energetically-
favorable orientation flips. In addition, a user-determined percentage of second-phase 
particles can be introduced in the sample, which alters the rate of grain growth. 

In addition to the Grain Growth model, which was the main focus of this study, 
MaterialSim includes models for diffusion, solidification and crystallography. 

6. Approaches to Materials Science learning 

Materials science and engineering has grown considerably from its roots in experimental 
metallurgy and, recently, a significant part of the research breakthroughs have been driven by 
advances in computational methods. Thornton and Asta (2005) recently conducted a 
comprehensive survey about the state of computational Materials Science in undergraduate and 
graduate courses at the 20 leading programs in the United States. While many universities are 
creating or planning to create Computational Materials Science courses, one striking conclusion 
from their work is that the prevailing mindset in most of those institutions is that one should 
learn modeling after learning the science. In other words, computer modeling is regarded as “icing 
in the cake” for scientific understanding, and not an integral part of science learning. Our work 
purports to evaluate the usefulness of a different approach: learning the science by modeling. 

Even though the new computational research tools are making a different understanding of 
the various phenomena in Materials Science more accessible, they have not yet reached the 
classroom. Common practice in teaching grain growth is to think of grains as spheres (which they 
are not), “boundaries” as real entities (whereas they are just imaginary lines between grains), and 
to make use of numerous metaphors and rules-of-thumb (e.g., “dislocations climb”, “grains 
swallow others”, “particles hold boundaries” etc.) to describe and predict changes in the grain.  

This teaching practice is widespread in engineering education: traditional engineering 
teaching relies on a large number of ad-hoc models, approximations, metaphors, and shortcuts, 
which have been accumulating over decades. They constitute a web of ideas of very different 
natures, granularities, levels of analysis, and mathematical descriptions. Due to the applied and 
integrative aspect of engineering research and practice, oftentimes explanations are drawn from a 
variety of sources: geometrical proof, thermodynamics, algebraic deductions, and statistical 
mechanics. Grain growth is one example: our classroom observations revealed that at least three 
of sources were employed during the class covering the phenomenon:  
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�  The Laplace-Young equation for pressure is commonly used in Fluid 
Dynamics to calculate surface tension in liquid-gas interfaces (such as a drop 
of water). It basically states that the surface tension grows as the pressure 
difference is increased, and as the radii of curvature decreases. In other 
words, any small grain (with a low radius of curvature) will have high surface 
tension, as opposed to large grains. The equation is written as follows:  
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where !  and !  are the outside and inside pressures, R is the spherical 

particle radius, du the change in chemical potential, and cV the partial molar 

volume. 

�  The Flux equation (based on statistical mechanics), which states that the 
probability of an atom to jump to a neighboring grain increases exponentially 
with temperature, and therefore the mobility of a grain boundary also grows 
with temperature. The equation is written as follows: 
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where F is the flux, 2A  is the probability of being accommodated in the other 

grain, 1n  the number of atoms in grain 1 in position to make the jump, 1!  the 

vibrational frequency of an atom in grain 1. 

�  Geometrical approximations is a common technique used to calculate grain 
size and also the effect of second-phase particles in grain growth. Here, the 
force (P) is applied by a particle to grain boundaries. The model assumes the 
particles as spheres and boundaries as lines or surfaces. sin(2)Pr!"#=

 
where P is the force, !  is the angle with the grain boundary, r is the particle 
radius. 

Later in this paper, we suggest that although this many-to-one modeling approach might 
be efficient for predicting properties of materials is real world setting, this multitude of models 
could be an obstacle to student understanding. 

Multi-agent simulation of grain growth offers a different perspective. Its principle is the 
thermodynamics of atomic interactions – one of the extensible, transferable, anchor models, 
which we mentioned in section 1 (Introduction). The first step is to represent the material as a 
hexagonal 2D matrix, in which each site corresponds to an atom and contains a numerical value 
representing its crystallographic orientation. Contiguous regions (containing the same orientation) 
represent the grains. The grain boundaries are fictitious surfaces that separate volumes with 
different orientations. MaterialSim’s grain growth algorithm is described below: 
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�  Each element (or agent) of the matrix has its free energy (Gi) calculated based on 
its present crystallographic orientation (Qi, represented by an integer) and its 
neighborhood (the more neighbors of differing orientation, the higher its free 
energy). Figure 4 (left side) shows the central agent with four different 
neighbors, hence the value of its initial free energy (Gf) is 4. 

�  One new random crystallographic orientation is chosen for that agent (Qf), 
among the orientations of its neighbors. In this case, as observable in Figure 4, 
the current value of the central agent is “2”, and the new transition value is “1”. 

�  The agent’s free energy is calculated again (Gf), with the new proposed 
crystallographic orientation (Qf=1). Figure 4 (right side) shows that there are 
only two different neighbors in the new situation, thus the final free energy (Gf) 
decreases to 2.  

 

 

 

 

Figure 4: Initial and final free-energy calculations. Black and white arrows denote 
different or equal neighbors. 

�  The two states are compared. The value that minimizes the free energy is 
chosen. In this case, Gi=4 and Gf=2, so the latter value is lower and constitutes 
a state of greater stability. 

Pre-test/interview explanations 
The pre-test was conducted as a semi-structured interview, and students could also do 

free drawing to illustrate their thinking. It was an “open-book” interview, i.e., students could 
resort to any class material, book or website to answer the questions. The first author asked the 
questions listed in section 3 (Research Design & Methods).  

Below we have a commented transcription of some excerpts of Question 1 (all names 
were changed for anonymity). The goal in this section is to show and discuss student 
understanding of core ideas in Materials Science.  

Interviewer: How would you explain what a grain is? 
Bob: A grain is just an orientation of a crystal structure, a group of atoms in a crystal 
structure, a specific orientation, it is just molecules aligned [pause] in one direction and 

1

1

1 1

2

2

2 2

21

1

1 1
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then you have various grains and each grain has its own directions and when they meet 
[there is a] grain boundary. 
Erika: A grain is just when you have got everything the same, same structure and 
everything, and then you have a boundary around it and it doesn't line up with the 
neighboring crystals. [...] One is oriented differently but basically they are the same. 
Betty: If you have a metal and you are looking at it under an microscope, at the surface of 
the metal, where different [pause] what I call grains grow, and these grains are just areas 
where the atoms collect and the boundaries in between the grains are [pause] sinks and 
sources for dislocations and [pause] vacancies and so.  
Liz: It is so hard to explain... When I think of grain, those kinds of pictures that we see, 
what comes to [my] mind […] I feel that it is a word that we use in the English language 
and you always associate with something small, that is individual, you can see its limits 
and stuff like that. So when you use it in class, you just associate it with... like... I mean, a 
grain of rice... it is just one, out of many, that you can see right now. 
Ken: A grain is basically a region of materials where there are no dislocations to it. 
Ella: A grain? There is the material... A material is just made up of grains... I guess if 
you... Like, I could say something about the boundaries, grain sizes are different, they can 
change, with temperature and other variables... I guess I'm not really explaining what a 
grain is. 

 
These first excerpts illustrate how dissimilar (and, oftentimes, incorrect) students’ 

explanations were, which might be surprising as they are all Materials Science majors and have 
attended classes about the same topic just a week before the interview. What is more, However, 
as diSessa (1993) extensively discussed on his work with Physics learning, students’ 
understanding is strongly influenced by previous knowledge, phenomenological primitives (p-
prims) and ad-hoc theories. The idea and description of a grain is a reasonably basic notion in 
Materials Science, from which a large number of important concepts derive. Bob and Erika offer a 
reasonably complete explanation, close to what we would find in a textbook. Most of the other 
students, on the other hand, diverge from that version. This divergence is not coherent: the 
starting points for the answers are rather different, as well as students’ approaches to it. Betty 
based her explanation on the visual appearance of a grain seen under the microscope. Liz utilizes 
her previous knowledge about the morphology of a “real-world” grain. Ken mixes the definition 
of a grain with another topic in the course, dislocation theory. Ella apparently understands what 
a boundary is, but has a difficult time explaining what they enclose. Students resort to a variety 
of metaphors and explanations for characterizing a grain: the surface under the microscope, the 
grain of rice or the atoms with same orientation. Many responses to this first question did not 
diverge completely from the acceptable concept. However, the questions were structured in a 
growing level of complexity and “dynamicity”. The first one dealt with a definition of a static 
entity (grain), whereas the third, for example, refers to a phenomenon which evolves with time 
(grain growth). As students went on in the interview and questions started to deal with more 
complex and dynamic processes, their diversity of explanation models increased, as we will see in 
the following commented excerpts. 
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Interviewer: How would you explain what grain growth is? 
Bob: Grain growth is just when a grain, when more molecules [pause] come into one grain 
and line up that same direction. The driving force is [long pause]… 
Interviewer: Why don’t they stay the way they are? 
Bob: Well, I mean [pause] I know the method of it, it is diffusion. 
Interviewer: But what is the reason they grow? 
Bob: Well, grains grow through diffusion, through vacancy diffusion, and atomic 
diffusion, for one, it is all over the place, temperature increases, molecules move around 
faster and they just... [pause] but the reason that they would grow [pause] I guess they 
grow... the driving force is to lower the free energy, overall, there is excess free energy due 
to dislocations and impurities in the grains, so by growing out, they can get rid of those 
and thus lower the free energy. 
Betty: So when you heat-treat a metal, so when you deform a metal first the grains shrink 
and become compacted, you get all sorts of dislocations then, like twin boundaries, stuff 
like that, so if you do a high temperature anneal, then the grains all grow because you 
increase the energy of the system when you heat it, and so it tends to decrease its internal 
energy, so the grains become bigger and anneal out the dislocations because [pause] there 
is a high mobility for the atoms to move, and so they move to the lower energy positions 
which is into the grains and the grain decrease.... ahn... the grain size increases, and the 
total area of the grain boundaries decrease, which decreases to decrease the overall energy 
of the system. 
Liz: It is because, it wants to be more energetically stable, or have less energy in the 
crystal, so it will grow, just to form one big grain, because that’s the least energy 
configuration, and it does this because, by the whole radius of curvature idea, where it 
starts shrinking. 
Chris: Grain growth is... The smaller grains have higher curvatures and higher curvatures 
is not good, so they will want to shrink and become smaller and smaller, and bigger grains, 
with a lower radius of curvature will want to expand and so sooner or later will consume 
the smaller grains. 
Peter: Molecules with high energy, which are over here, will jump over to the low energy 
spot and that's a more desirable position, and that's why grain growth grows. 
Interviewer: Ok, when you say high energy or low energy, is it a general kind of energy, 
or are you talking about a specific kind? 
Peter: It's called “free energy”, but I don’t really know how to explain that. 
 

This question brings about at least three different ways to explain grain growth. The 
diversity of models and explanation paths is even more apparent. Bob, for example, uses the 
metaphor of free will (“molecules come into the grain and line up”), and employs ideas about 
diffusion, dislocation and impurities in contradictory way. He does not resort to the Laplace-
Young equation, for instance, to explain the process of decreasing free energy by simply 
increasing the curvature radius. To him, excess free energy is due to impurities or imperfections in 
the crystal structure (known as dislocations). “Purity” is taken as a synonym for low energy, 
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whereas the Laplace-Young equation (studied in class) stated a very different idea. Impurities are 
not eliminated by grain growth, and growth can exist in 100% pure materials. Apparently, he 
imagines that grain growth drives impurities to the outside of the material, “cleaning” it. Here we 
can notice that students “mix-and-match” models that appear superficially to be related, such as 
“grain growing” and “grains pushing impurities out”. Betty goes even further searching for 
explanations. The phenomenon she describes (deformation and recrystallization) was taught in a 
previous section of the course but is, in fact, very different from grain growth. In 
recrystallization, similarly, crystals grows, but for different reasons, and with different kinetics. 
During the pre-test, when presented with a printed picture of grains, she incorrectly indicated 
that the small ones would grow (which would happen in recrystallization). Moreover, she 
mentions that grains “all grow” to decrease the internal energy of the system, whereas in fact 
some grow and some shrink (otherwise the material would expand). Liz’s explanation, on the 
other hand, is more coherent, relying on the idea of having “less” energy in the crystal being 
correlated to the “whole radius of curvature idea”, but without demonstrating how those things 
connect. Ken, similarly, was more coherent in his explanation, although using expressions such as 
“curvature is not good, so they will want to shrink”. 

Bob and Ken provided good additional examples of this “model mix-and-match” 
phenomenon. 

Interviewer: What is the effect of dispersed particles? 
Bob: I think that... I feel that particles constrict grain growth, and when a grain boundary 
meets a particle it bends around it, it kind of moulds around it, it will slow it down, it 
won’t make it stop completely, but it will slow it down. It hits the particle, it goes 
around it, and as it happens, there is a pull on the opposite direction that the grain 
boundary is moving. They slow... every time the grain boundary is moving out it slows 
down the growth. 
Interviewer: Is it good? 
Bob: It depends on how big you want your grain. You know, more particles, the closer 
they are together, the smaller the grains will end up being, in that case it will be a harder 
and strong material 
Betty: If you have a lattice around the impurity and that increase the energy of the 
system, and then that is bad, but if you have a lattice and you add particles of similar 
grain size, or, similar atom size, you can strengthen the material, because this small grains 
or atoms act to stop dislocation movement, and so it becomes harder and harder to push 
dislocations through so the plastic deformation becomes harder. The more particles you 
put [pause] in a system, the harder it is, [pause] the closer the spacing, the harder it will 
be to put dislocations through, so the harder the material will be. 
Liz: Basically, if there is an impurity, the grain boundary will just go around it so it will 
just do like this, viewing it from a top angle, this will be a grain boundary [showing a 
drawing] 
Interviewer: Will more particles affect grain growth? 
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Liz: [looks at her class notes for several seconds] As for now, I don’t think it does 
anything to grain size. 
Interviewer: What is the effect of dispersed particles? 
Ken: if you have two precipitations and if you have a dislocation line, you need to exert a 
force Tau on it, to move the dislocation line, but once it gets to the precipitation, it has to 
bow out and that will cost more energy so if you have precipitations it will strengthen the 
material and that depends on the density of precipitations.  
Interviewer: So grain growth slows down or is faster? 
Ken: That I am not very sure. 
 

Again, the students tried to employ a variety of models: a force-feedback model, where 
particles pull boundaries away, slowing grain growth (Bob); a dislocation movement model 
(Betty), and a purely geometrical one, with no consequences for the behavior of the material 
(Liz). Betty’s explanation draws from dislocation theory (another topic explored in class weeks 
before), but does not address grain growth; Liz does not see any relationship between grain size 
and dispersed particles; Bob only sees it as a factor that may decrease speed, but never “stop it 
completely”. Interestingly, Ken offers a reasonable explanation but fails to say if dispersed 
particles accelerate or slow down grain growth. His statement is very similar to Peter’s, and 
suggests that they might know a good part of the theory, but lack fundamental understanding of 
it. After an almost accurate explanation about grain growth, Peter says that the driving force is 
“called free energy, but I don’t really know how to explain that.” 

The pre-interviews, therefore, suggest that students’ explanations, sewn together on-the-
fly, leverage a variety of models, admix different topics (recrystallization, dislocations, grain 
growth), and often use the standard vocabulary and rules-of-thumb of the field, but express a 
weak sense of the interconnectedness, relationships, and contradictions of all those components 
which, in fact, are describing different aspects of atomic movement. This relates directly to our 
first research question. 

7. First session: introduction and model exploration 

As described in the Research Design and Methods section, the first session was dedicated 
to the exploration of existing models. The first activity was simple: observe and reflect on of 
curvature as a driving force for grain growth. Most of the students knew that large grains 
consume small ones, grains grow toward their center of curvature, and high-curvature boundaries 
tend to disappear. However, those concepts appeared to be isolated ideas, separate phenomena, 
and hardly connected to the Laplace-Young equation. This activity consisted in drawing two 
grains divided by a curved surface and observing their behavior. The pictures below are snapshots 
of the dynamic simulation that students observed. 

t=15 t=30 t=45 t=200 
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Figure 5. The evolution of a curved grain interface 

Before the simulation, most students were unsure of what would happen. As they saw 
grains growing toward their centers of curvature, they also observed random flipping of atoms. 
The following excerpt suggests that visualizing this evolution sparked some changes in Liz’s 
understanding: 

Interviewer: Can you describe what you see? 
Liz: Just because one grain has a concave side and the other has a convex side, so it comes 
in towards the concave, because... [pause] does line tension applies in this situation?  
Interviewer: Line tension? 
Liz: That might be from dislocations... I might be mixing them up. Just because... when 
you have something... part of the grain is like, curving in, mostly likely other parts of the 
grain are curving in, so the tension of the grain boundary lines, so the force outside is 
greater than the force inside, so it will like shrink, it looks like that probably be like 
straight in the middle, rather than entirely red... just because if the red part also has some 
concave thing that is off the screen it will just like go together. 
 

Liz is apparently mentioning the results of the Laplace-Young equation, which relates 
surface tension and curvature. However, she cannot yet think in the “micro” level: to visualize 
what is happening on the computer screen, she has to imagine a large circle going off-screen – 
which is probably a consequence of what she remembers from class, where grains were always 
approximated as spheres. She does not yet construe the local interactions along the curved 
interface as a driving force, but only the “macro”, aggregate level effect of curvature. 

The next activity was to draw a microstructure with many grains, but one of them a lot 
smaller than the others, as we can see in Figure 6. Liz continued with her line of reasoning. 

     

Figure 6. Four large grains (yellow, green, light and dark blue) surround a small red grain 
(left), and a zoomed-in view of the structure showing a triple point (right) 

Watching the evolution of this microstructure was a key experience for Liz. She started to 
move from rote memorization and a topic-specific model to more general, principled knowledge. 
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This excerpt took place when she was observing a triple point, a region where three grains meet 
and the flipping probability is the same for all (as there are two atoms of each grain around the 
central element).  

Liz: Right here there is an equal position for red, yellow and blue, but it just happens to 
be that blue won, it keeps winning. 
Interviewer: How would you explain that? 
Liz: Because... it you look at one of those points, either of the three colors, they all have 
the same number of other colors around it, so it is not favorable to choose one or the 
other... 
Interviewer: What angle is here? 
Liz: Oh, so this is the 120 degree angle between the... [pause] 
Interviewer: Did you talk about it in class? 
Liz: Briefly. He [the professor] said that when you reach a triple junction, it will become 
120 degrees. 
Interviewer: So are you saying that there is an equal probability? 
Liz: Well, I just don’t understand why blue is doing so much better, in general. 
Eventually just one has to become bigger, because this is the most energetically favorable 
thing, so maybe... blue was bigger, but now yellow is coming back, so maybe next time 
blue gets bigger again, and they will just keep going. Maybe it will just be like that for a 
long time. 
Interviewer: So what happens to growth speed? 
Liz: Eventually they will get like... two big ones... and then it will take forever. 
Interviewer: So what could be the law? 
Liz: It will eventually taper off... to some point... because if you have a lot or grains then 
you will... the rate of increase will be faster, but when average grain size increases it gets 
harder and harder to increase the rest of them, so it just goes...  
Interviewer: Why is it harder and harder? 
Liz: Just because there isn’t a distinct... [pause] being in this orientation is more favorable 
than this other one so you have to pick and choose... the grains are doing that, but it is not 
happening quickly just because you know, either one can happen. 
 

In this very short time, working with MaterialSim, Liz was able to understand and 
generate hypotheses about two essential (and complex) ideas: triple points and the time 
dependency of grain growth. Without realizing it, she understood the reason for the triple point 
to be considered a “low-mobility” point in a microstructure. The central atom has two atoms of 
each of the surrounding grains as neighbors, so the switch probability is the same (1/3), and there 
is no preferred growth direction. She also realized that the time law is not linear, so growth speed 
decreases over time and eventually “tapers off”. The additional importance of this discovery is 
that, rather than being told, Liz arrived at this conclusion on her own, by drawing 
microstructures, changing variables and observing the dynamics of the simulation.  
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Generally, most students knew that the small grain was going to disappear. From their 
reactions while observing the simulation, they seemed to be expecting a unidirectional animation 
grains being “eaten” by the surrounding ones. This was consistent both with the heuristics and 
the types of results of aggregate tools, animations, and equations. However, what students 
observed was different: Behaviors emerge from local interactions, which take place with some 
degree of randomness. At times, the small grain would grow, but most of the times it would 
shrink. Some of the students wanted to slow down the simulation and use the “zoom” tool to see 
the process in more detail. But in doing that, students could only see the micro-level phenomenon 
(atoms jumping to different positions). By zooming out again, they could observe the emergent 
behavior: Curved surfaces disappearing as the Laplace-Young equation would predict. Thus, 
there is a qualitative difference between traditional learning tools and agent-based modeling: not 
only are students observing an expected outcome, but they are able to see the process unfolding. 
Therefore, not only is the simulation visually similar to the phenomenon, but also its algorithm 
loyally emulates the micro-level of the phenomenon’s underlying process. This is different from 
purely numeric simulations in which what students are able to compare are only outputs, and not 
the processes as they unfold. In addition, words commonly used in the classroom, such as 
“shrink”, “consume”, and “growth” acquired a new meaning. Those metaphorical terms, as our 
pre-test data suggested, can lead to misconceptions. Working in MaterialSim, students realized 
that grains were not being “consumed” or shrinking: atoms were just switching places. 

The last activity of the first day was the “BehaviorSpace” experiment. This NetLogo 
feature allows users to automatically run hundreds of simulations each under different parameter 
settings. Students ran at least one set of experiments, charted the data, and came up with theories 
to describe the phenomenon. Most students chose to model the influence of dispersed particles. 
Figure 7 has a sequence of images at the same time step for different percentages of dispersed 
particles, as well as the individual NetLogo plots and a chart showing a very good fit with the 
theoretical data (dotted line). In this activity, students could even further generate their own 
hypotheses and equations, having not only the dynamic visualization but also actual numerical 
data on the evolution of the microstructure. 
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Particles = 8 Particles = 4 Particles = 1 Particles = 0 

    

    

 
Figure 7. Sequence of screenshots from students’ experiments 

 
8. Second session: building their own models 

The tasks of the second session were learning the basics of the NetLogo language, and 
programming new additions to the models. Students were asked to come up with their own ideas 
for extending MaterialSim’s models. They pursued questions of their own and authored novel 
features for the models, which helped them elaborate on answers to their research questions. 
Student achievement was impressive. A comparison between the pre-test data, when students 
relied on ready-made statements about the phenomenon, and their performance on the last day of 
the study, when they built their own models relying just on fundamental thermodynamics, 
suggests that student contact with an agent-based environment effected conceptual gain. Even 
more than exploring the existing models, constructing their own models was a transformative 
experience for most students. 

Betty built a model that incorporates misalignment between grains: In her innovative 
model, the more misaligned, the harder it would be for an atom to jump from one grain to another. 
The construction of this model presented Betty with many challenges. The first was to convert 
the grain orientation’s angle, which could lie in any of the four quadrants, to a useful measure 
independent of the quadrant. Betty’s solution, after much thinking/drawing, was to use the 
arcsine function. The following picture shows some of her reasoning. From her drawing, we can 
observe that she was using ideas from geometry, but now in a “micro” level, taking into 
consideration the orientation of individual atoms. 
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The probability for an atom to jump to the next grain was no longer just a function of the 
number of different atoms around it, but also of the average misorientation among them. The 
higher the misorientation, the harder it will be for that atom to move to another grain. Very low 
misorientation, on the other hand, would promote easier growth. This all now seemed intuitive to 
Betty. 

 
Figure 8: Betty’s reflection about angles, sine and arcsine. 

 
Yet, aggregate and macroscopic models do not afford such insight. The agent-based 

approach, conversely, provided a “low-threshold” entry point for Betty to implement her ideas 
by constructing models. Her model was very consistent with known theory, even though she was 
not cognizant of this theory prior to the interventional study. 

Bob had a different idea: he wanted to include a new parameter: the size of the dispersed 
solid particles. The idea was to allow users not only to change the percentage of particles, but 
also the radius, which was a complex challenge. Bob realized that given a certain percentage (in 
mass) of particles, their number had to be adjusted to compensate for the increased mass of each. 
That involved the calculation of the area of each particle (in a hexagonal grid) and the total area of 
the sample, to determine how many hexagon seeds would be necessary for a specific percentage. 
The first problem involved the conception of a formula for calculating the area of polygons 
placed in the hexagonal grid, which turned out to be an interesting mathematical exercise. Bob 
realized that a recursive procedure would be adequate, as new layers were being added after each 
iteration. After completing the model, Bob investigated the influence of particle size on grain 
growth: maintaining the same percentage in mass, how is growth affected by changing an 
individual precipitate’s volume? Bob was able to run large batches of simulations in 
BehaviorSpace, chart the data, and explore possible explanations. 

Anand did not want to investigate grain growth, and built a model from scratch. His idea 
was to explore in detail interfacial energies due to atomic misalignment. In other words, his model 
meant to determine how much energy was stored in an interface between two grains which did 
not match in terms of atomic spacing. We can observe his model in Figure 9: one of the grains (in 
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red), has a very large spacing between the atoms compared to the “blue” grain. This causes the 
interface between the two to store energy, as the atomic structure is somehow stretched. Anand 
built this model using the same “kernel” as the grain growth model: atoms look around and check 
the state of their neighbors, deciding what to do based on the proportion of equal and different 
neighbors. Even though this topic, in the regular curriculum, was separate from grain growth, he 
was able to identify a “transferable” model between the two phenomena.  

 

Figure 9 – Anand’s model for detailed study of interfacial energies 
 

These examples of student model building were implemented in less than two hours, 
including the time dedicated to learning the basics of the NetLogo language. The relative ease with 
which students developed their own models, even within such a short timeframe, shows that 
model building is an approachable task for undergraduate students and support one of our main 
claims: Agent-based modeling, for some fields of engineering, offers a more principled 
understanding of the natural phenomena, which, in turn, grants more autonomy for students in 
learning new content or deriving new theories on their own. Participant students had previous 
knowledge of the phenomenon from their class work. Nevertheless, during the pretest, they 
demonstrated difficulty in explaining related phenomena in a coherent fashion, resorting to a range 
of models and metaphors in a fragmented fashion. The implementation of their own model within 
an agent-based simulation environment, however, provided students with fewer, simpler rules 
that were closely related to the physical phenomenon, thus enabling students to better 
understand and extend the model by adding new proximal rules for the agents. 

Peter’s model was an excellent example of the generative, transferable aspect of the agent-
based approach. In the pre-survey, he identified diffusion control as one of the hardest topics in 
the course. In the second session, that was exactly his choice for building a model. He started it 
from scratch, and in less than two dozen lines of code and two hours, coded a model which 
complexity is far beyond what is expected from the Microstructural Dynamics course, 
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considering my classroom observations and analysis of class materials. Peter used the agent-based 
approach and some “kernels” from grain growth to create a diffusion model. Even thought the 
two phenomena have differences, he managed to identify the common kernels and copy them 
from one model to the other, with the necessary adaptations, in the same way as Anand and his 
Interfacial Energy model. When Peter told me his future plans for the model, at the end of the 
session, he explored another common agent-based heuristics: 

Peter: I did a liquid to solid model, now I want to be able to invert it, do a solid to liquid 
algorithm. 
Interviewer: and how would you implement it? 
Peter: It’s simple: I’ll just invert the probability. It’s just the opposite probability. I 
don’t have to change much. 

 

 

 
Figure 10. Results of Peter’s model with diffusion control (top, with diffusion speed = 

100), interface control (bottom, with diffusion speed = 20), and the chart from the textbook, where 
we can identify the exact same shape for the two concentration curves. Note that this last chart 

was rotated for clarity purposes. 
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9. Conclusion 

Design is now fashionable in many engineering schools. Robotics competitions, for 
instance, are common in various universities. However, not all of engineering is mechanical. Could 
we extend the powerful ideas about mechanical construction to fields such as Materials Science, 
with products quite different from robots? 

Rich, motivating learning is often achieved through an approach of learning-by-doing. In 
areas such as mechanical engineering doing and understanding could be tightly connected. When 
students are building a gearing system, all the components are visible and clearly laid out. In areas 
such as Chemistry, Atmospheric Science, Biology, and Materials Science, that is not the case. 
Learners might observe effects while having little understanding of the underlying causality, as 
the actual phenomenon it too removed from human size or time scale. Moreover, teaching tools in 
those disciplines often have relied on “aggregate”, formula-based descriptions. Our user study 
suggested that the fragmentation and opaqueness of such descriptions could constitute an 
obstacle to learning. Firstly, the traditional descriptions are more context-specific, and do not 
enable students to make broader inferences about phenomena with similar rules. Secondly, the 
descriptions often lead and heuristics that foster misconceptions. Students had memorized ideas 
about grain growth for which they have no “feel” or intuition. Thirdly, the traditional 
descriptions often background the actual physical phenomena. 

On the other hand, agent-based modeling seems to be a better fit for the content areas 
discussed in this paper, for three reasons: 

1) MaterialSim foregrounded the fundamental physical processes in the material, namely 
atomic movement and free-energy minimization. Not only the algorithm was exclusively based on 
those processes, but also the visualization scheme enabled students to see them unfolding in real-
time. Students observed both favorable and unfavorable atomic flips, grains growing and 
shrinking, expected and unexpected results. Our data suggests that the observation of those 
processes was important for student understanding. 

2) A core feature of this design is that students can apply a small number of transferable, 
generative models to capture fundamental causal structures underlying behaviors in a range of 
apparently disparate phenomena within a domain.  For example, a free-energy minimization 
model could enable students to understand not only grain growth, but a wide variety of related 
phenomena (annealing, interfacial energy, recrystallization, diffusion, phase transformations), 
which are traditionally taught as separate topics with their own models and equations. Most 
students were able to create their own models by transferring some “kernels” from a ready-made 
model.  

3) One of the pillars of Constructionist theory is the importance of students conducting 
personally-meaningful projects. We have some preliminary indication, to be confirmed in future 
work, that coding their own models was a valuable learning experience. Students had an 
opportunity to test and debug their theories, as well as reconcile them with previous knowledge. 
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In the post survey, students self-reported motivation in the model-building session to be one of 
the most positive aspects of the experience.  

However, we caution that not all modeling tools are created equal, and thus stress the 
importance of designing software that foregrounds key generative models, as to enable students 
to extend their knowledge into new phenomena by making use of them... The study, in 
conclusion, suggests that the knowledge and the exploration of just a few simple underlying rules 
of natural phenomena appear to be more generative for students than the more encapsulated 
aggregate, equation-based knowledge.  
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