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ABSTRACT 

The realistic simulation modeling becomes very essential 
and effective for designing and managing of manufacturing 
systems, which needs to be addressed manufacturing dy-
namics. This research includes manufacturing uncertainties 
in the form of simulation intelligence to improve the sys-
tem’s performance in the high-mix low-volume manufac-
turing systems. It shows how simulation modeling can be 
used to evaluate alternative designs in a dynamic uncertain 
manufacturing environment. Fuzzy rule based machine, la-
bor and logistics uncertainties are addressed in this study. 
A combination of product mix and production volume is 
analyzed using intelligent simulation model for an optimal 
designing of the production system to meet future customer 
demands. Intelligent knowledge system shows significant 
close to real-life scenario. The proposed intelligent simula-
tion modeling is validated with real life application. 

1 INTRODUCTION 

In the 21st century high-mix low-volume manufacturing, 
competitive advantage is required to win the battle for cus-
tomers in the global marketplace. During the past decade, 
the manufacturing industry has undergone a dynamic trans-
formation. Recently, traditional manufacturers are inher-
ently subject to high-mix, low volume manufacturing as a 
business model. Mahoney (1998) presented manufacturing 
operations to facilitate the management decision-making 
process in a high-mix low-volume manufacturing envi-
ronment. Nagano (1999) presented real-time production 
control for low volume and high product mix manufactur-
ing. Current trend of information technology as well as 
automation technology, companies are urging a solution to 
produce varieties of products with low volume as market 
demand is fast changing into it. Simulation has been com-
monly used to study behavior of real world manufacturing 
system to gain better understanding of underlying prob-
lems and to provide recommendations to improve the sys-
tems. To observe real manufacturing systems is very ex-
pensive and sometimes cumbersome. Therefore, a 
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simulation model is an easier way to build up models for 
representing real life scenarios to identify bottlenecks, to 
enhance system performance in terms of productivity, 
queues, resources utilization, cycle times, lead time, etc. 
Azadeh (2000) develops an integrated simulation model 
for a heavy continuous rolling mill system and generates a 
set of optimum production alternatives. Choi (2002) dis-
cusses the initial efforts to implement simulation modeling 
as a visual management and analysis tool through the use 
of scenarios by varying the number of assembly machines 
and processing time. Altiparmak (2002) uses simulation 
metamodels to improve the analysis and understanding of 
decision-making processes of an asynchronous assembly 
system to optimize the buffer sizes in the system. Wiendahl 
(1991) uses the simulation tools in the field of assembly 
planning and due to different objectives of the different ef-
forts in simulation, the tools are divided into the four-
hierarchy classes assembly shop, cell, station and compo-
nent. In lean manufacturing environments of advanced 
manufacturing systems, the flexible production line is de-
signed to manufacture a variety of products in timely man-
ner with minimal inventories. A large number of factors 
are critical in the effective operations of such flexible pro-
duction lines including number of product options, manu-
facturing operation of each, product type, workstation ca-
pacity, processing time of the operations at each station, 
material handling capacity at each work station, and over-
all material handling capacity. This problem becomes more 
critical for high-mix low-volume manufacturing due to the 
changing needs in today’s supply system. The challenges is 
due to the combinatorial nature of highly complicated con-
straints such as unpredictable machine breakdowns (ma-
chine dynamics), unavailability of human resources (labor 
dynamics), varying operational requirements (operation 
dynamics), schedule variation of logistics for material arri-
val and shipping (logistics dynamics), and unpredictable 
customer orders (demand dynamics), etc. The mentioned 
manufacturing dynamics are addressed in this research. 
The machine dynamics, the labor dynamics, the opera-
tional dynamics and the logistics dynamics are considered 
for better representation of the manufacturing behavior in 
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the modeling. Three intelligent modules (labor, machine 
and logistics) using fuzzy rules are developed using Arena 
simulation to model real-life scenario. 

The paper is organized as follows: Section 2 presents 
the manufacturing systems uncertainty where fuzzy rule 
based machine, labor and logistics intelligence are included 
into the simulation-modeling environment. Section 3 de-
scribes the problem statement and the simulation model 
development for base model, redesigned model and intelli-
gent model. Section 4 is devoted to the validation of the 
proposed modeling in terms on throughput and cycle time 
and comparison of the proposed intelligent model with and 
without uncertainty consideration. The last part provides 
conclusions. 

2 MANUFACTURING SYSTEMS UNCERTAINTY 

The variation with in the systems, with in the operations 
are exist in manufacturing systems. Some variations are 
dependent and some are independent. The dependent varia-
tions are more critical to manage as it depends on various 
factors or sub-systems. Time varying (dynamic) behavior 
of factory floor is becoming a growing concern in today’s 
competitive manufacturing environment. Forrester (1961) 
defines industrial dynamics as the study of the information-
feedback characteristics of industrial activity to show how 
the decision and actions interact to influence the success of 
the enterprise. Lane (1997) precisely summarizes Forres-
ter’s approach and use computer simulation the means of 
inferring the time evolutionary dynamics endogenously. 
System dynamics has been applied to a wide range of prob-
lem domains. Sterman (1989) suggests that the decision-
making process is dominated by locally rational heuristics 
due to the complexity of the system and time pressure. In-
dustrial dynamics show how the decisions interact to influ-
ence the success of the enterprise. Interaction between sys-
tem components can be more important than the 
components themselves. Dynamic model deals with time 
varying interactions. The close dynamic model is one that 
functions without connection to externally supplied vari-
ables that are generated outside the model. The close 
model can exhibit interesting and informative behavior 
without receiving an input variable from an external 
source.  
 Manufacturing flexibility is a difficult and multifac-
eted concept that because of its inherent complexity and 
fuzziness. Fuzzy logic offers a suitable framework for 
measuring flexibility in its various aspects, which deals 
with the measurement of machine flexibility. If the data 
and knowledge are not precise, fuzzy-logic modeling 
should be employed by transforming the human expertise 
into IF-THEN rules and membership functions. Uncer-
tainty is handled by probability theory under the assump-
tion that probabilities can be obtained precisely. Mandel-
baum and Buzacott (1990) examine the meaning and use of 
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flexibility in decision-making processes for real-world 
problems with increased complexity. Fuzzy modeling im-
plication methods are used in a flexibility measurement 
methodology that is easy for a manager to interpret and 
use. Sethi and Sethi (1990) used flexibility for various 
types of machining operations in uncertain manufacturing 
environment and argued that it allows production with im-
provement. Yang and Peters (1998) proposed robust ma-
chine parameters over a rolling horizon planning time win-
dow. Human operator, expertise, analogy and intuition play 
a preponderant role in the piloting, the control and the de-
cision-making in a production system characterized by un-
certain environment. Li et. al. (1994) considered uncertain 
future demand, machine breakdowns, and processing time 
estimates, which cause any detailed schedule to become 
outdated, and the effects may propagate throughout the 
schedule, affecting product delivery dates. A fuzzy optimi-
zation is developed using lagrangian relaxation technique 
to evaluate the performance in a dynamic environment. 
Ramakrishnan and Wysk (2002) developed a real-time 
simulation-based architecture for deriving active control 
policies for manufacturing systems.  Evans and Karwowski 
(1986) define labor dynamics of individual personalities 
prevail which is differing from machine dynamics. Aggar-
wal (1993) mentioned, the life time of the machine can be 
broken into five fuzzy time periods as “very new”, “new”, 
“normal”, “old”, “very old”. An effective approach for 
scheduling considering uncertain arrival times, processing 
times, due dates, and part priorities which is based on a 
combined Lagrangian relaxation and stochastic dynamic 
programming (Luh 1999).  
 Fuzzy Logic can be useful in modeling and solving 
scheduling problems with uncertain processing times, con-
straints, and set-up times. The uncertainties can be repre-
sented by fuzzy numbers using the concept of an interval 
of confidence and integrated with other methodologies 
(e.g., search procedures, constraint relaxation). Slany 
(1994) stresses the imprecision of straightforward methods 
presented in the mathematical approaches and introduces a 
method known as fuzzy constraint relaxation, which is in-
tegrated with a knowledge-based scheduling system. His 
system was applied to a steel manufacturing plant. Grabot 
and Geneste (1994) use fuzzy logic principles to combine 
dispatching rules for multi-criteria problems. On the other 
hand, Krucky (1994) addresses the problem of minimizing 
setup times of a medium-to-high product mix production 
line using fuzzy logic. A realistic model in simulation is 
still under study. Most of the commercial simulation soft-
ware does not provide the functionalities to include unex-
pected variations in the system, i.e., dynamics. So a com-
bination knowledge-based-system for dynamics 
representation appears to be a promising approach for solv-
ing real-life problems such as manufacturing scheduling. 
Representing the objects, events, and major decision rules 
used will help make the model more understandable; this 
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can also make the underlying model more robust and reac-
tive by considering fuzzy rules to predict real situations. As 
realistic models of discrete event simulation are still under 
development to capture all static and dynamic information, 
an intelligent simulation model is proposed to represent a 
more realistic model and design optimal production re-
quirements for product mix and dynamic scheduling sys-
tems, which may help the manager to make real-time op-
erational decisions. 

2.1 Uncertainly Representation 

Machine uncertainty, labor uncertainly and logistics uncer-
tainty are considered for simulation intelligence. Analo-
gous to a real world dynamics can be constructed into two 
components. One component is in charge of physical enti-
ties as body while the other is concerned with controlling 
the activity and performance of the body; as brain. The 
brain accommodates the integrated mapping knowledge 
about the mapping field and the integrated inference 
mechanism to use the knowledge. The body encompasses 
an entity processing mechanism, feature set, and attribute 
set of the real-life element. This structure diagram is shown 
in Figure 1. The behavior of the body is controlled by the 
brain via feature set, while the brain uses the mapping 
knowledge to drive the feature value on the basis of attrib-
ute set from the body. Typical categorization of machine 
knowledge is shown in Table 1. For labor knowledge, fea-
ture set is considered as processing time, rejection rate, ef-
fectiveness, absentee, and physical attribute set is consid-
ered as skill, age, working environment, and workmanship 
respectively. For logistics knowledge, feature set is consid-
ered as supplier behavior profile, timely delivery, delivery 
time, cost, and physical attribute set is considered as com-
mitment, network, and transportation. 

 

Integrated
KnowledgeBase

Integrated Inference
Mechanism

Feature
Set

Attribute
Set

Module  
Figure 1: Structural Diagram of Module Design 

 
Fuzzy membership functions are used for uncertainty 

representation. Five fuzzy sets are used to represent input 
(I) such as skill as VL (very low), L (low), M (middle), 
H(high), and VH (very high) and output (O) such as main-
tenance time. According to experience, fuzzy membership 
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Table 1: Intelligent Machine Configurations 
Feature set Feature 

value 
Physical at-
tribute set 

Attribute 
value 

Time be-
tween fail-
ure 

Very 
long 
Long 
Medium 
Short 
Very 
short 

Machine life
time 

Very new 
New 
Medium 
Old 
Very old 

Processing 
time 

High 
Medium 
Low 

Flexibility Low 
Medium 
High 

Setup time High 
Medium 
Low 

Flexibility Low 
Medium 
High 

Maintenance
time 

Short 
Medium 
Long 

Maintenance 
labor 

Skill 
Ok 
New 

 
functions are shown below.  

VH
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H
I

M
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I
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VH
O
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O
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O

L
O

VL
OFout
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 where VL = Very low , L = Low, M = Middle, H = 
High, VH = Very High, Fin = Input, Fout = Output,  I1, I2, 
I3, I4, I5 = Fraction of input, O1, O2, O3, O4, O5 = Fraction 
of output 
 
 It is obvious that there is some relationship between 
input (skill) and output (maintenance time). In a general 
way, if the demand is high, the supplier commitment will 
be high.. 

2.2 Simulation module design 

A module in Arena is simply a modeling construct that is 
used to represent some components of a system. There are 
two types of modules: base modules and derived modules. 
Base modules are the lowest level modules in Arena and 
correspond directly to the SIMAN blocks and elements. 
Derived modules are built up from base modules. The logic 
of the module can be developed when the new resource or 
module is defined by using base blocks. A module has op-
erands that define values associated with the module. The 
module creator defines the characteristics of each operand, 
including the position of the dialog box, user prompt, de-
fault value, permissible values, etc. The operands of a de-
rived module may supply values for operands of its com-
ponent modules from which it is constructed. Dialog boxes 
are forms that display parameter choices and solicit and 
accept input (Collins 1993).  After building the derived 
modules, all modules are gathered in a template.  
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As a manufacturing system becomes more complex, 
more and more activities and behavior cannot properly be 
described by simply using fixed delay or random statistical 
distribution. Various types of knowledge are needed to rep-
resent the systems. System dynamics exists within the pro-
duction scenario regardless of the change in time dependent 
or time independent. Conventionally, dynamics are repre-
sented as random variables. The dynamics’ qualitative rela-
tion tendency to upper and lower bounds are known, but the 
quantitative relations are unknown. These types of dynamics 
are called fuzzy dynamics. The three dynamics will be con-
sidered for product mix and dynamic scheduling:. 

2.2.1 Machine uncertainties 

The machine dynamic behavior is the most important fac-
tor in manufacturing systems. The machine lifetime, 
breakdown conditions, maintenance, time between failures, 
time between repairs, and quality are necessary to address 
in order to improve the accuracy of simulation resources. 
Those must take into account fuzzy dynamics for a realistic 
scenario. A simulation resource is defined for machine dy-
namics in order to represent all behavior changes in the 
machine. The feature set and attribute set are used to repre-
sent above-mentioned issue.  The key behavior and charac-
teristics of the machine include past processing time, part 
rework rate, machine down time, and machine mainte-
nance period. A feature may be time varying, state varying, 
or invariant parameter. The attribute set is a collection of 
the all-important information about a resource. Machine 
knowledge is defined with the range of machine life (Max-
Min), reject number (Max-Min), fault time (Max-Medium-
Min), etc. Machine fault times at different life spans are 
considered for machine fuzzy knowledge and the machine 
working state. Down time is the non-operating period 
when the machine is idle or under maintenance. Change-
over time depends on the complexity of the product. Some 
products may require changes in the entire software pro-
gram and fixtures while others may only be required to 
make modifications on program configuration. Mainte-
nance period is the time spent for preventive maintenance 
activities. Maintenance has two possibilities: good or poor. 
If maintenance is good, then the fault time and reject num-
ber will be low. Otherwise, maintenance is poor, resulting 
in normal fault time and reject number. Further, mainte-
nance time will depend on the worker’s skill level. The 
machine dynamics configuration is done in the Arena 
simulation template-building environment. The dialog in-
terface for simulation modeling of dynamic machine be-
havior is represented in Figure 2. The user can assign the 
desired parameter and choose different combinations of 
fuzzy sets for the machine configuration. This designed 
module could be also used as internal operations of any 
simulation modules where the behavior will act as a back-

ground. 
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2.2.2 Labor uncertainties 

Labor dynamics are considered for better representation of 
the operator’s performance on the shop floor. The techni-
cians/operators are classified as skilled, medium, and nor-
mal. The working environment is also another factor for 
labor dynamics. The working environment is considered as 
good, okay and poor. The absentee rate is also another fac-
tor in shop floor assembly systems. The absentee rate is 
considered as long, medium, or short. The age of the op-
erator/technician also affects the operation. Maintenance 
technician skill levels are also considered for non-fuzzy 
knowledge. The satisfaction of the operation gives them 
encouragement to do the right job at the right time. The la-
bor dynamics operand window is shown Figures 3. 

2.2.3 Logistics uncertainties 

The behavior/pattern of the suppliers and customers affects 
logistic decisions. Inbound and outbound logistics are 
needed for capturing upstream and downstream logistics 
dynamics. The delivery pattern, routing, and priority are 
set into the model. The service level will be set as a spe-
cific level for a different group of customers and suppliers. 

3 VALIDATION 

Validation is necessary to show that the proposed model 
has the acceptable level of confidence in the performances. 
Validation is also concerned with whether the proposed 
model is indeed an accurate representation of the real sys-
tem. There are several ways to validate the model. Balci 
(1989) shows how to assess the acceptability and credibil-
ity of simulation results. If the interval is too large, the 
model might not show real representation. Statistical meth-
ods are used to check for accuracy of results. There are a 
few goodness-of-fit tests, such as the chi-square t-test, 
which could be applied to fit distribution. A t-test valida-
tion technique is used to see whether the proposed simula-
tion model shows significant improvement or not. Com-
parison between the actual throughput and the simulated 
one is used for the proposed model validation. The cycle 
time comparison is done, which also proves the validity of 
the intelligent simulation model. 

3.1 Capacity Comparison 

Because the operation sequence of each product is different 
and operation time is different, the production capacity of 
the system varies. Thus the capacity of each product is 
identified first for product mix and production volume. We 
assume four different types of power drive products and 
consider a typical sequence for those products, and identi-
fying each capacity per day. A steady-state system is iden-
tified first to eliminate initial bias. All replications are run 
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for an equivalent of 80 hours of production. The data from 
the simulation model is gathered from the consecutive 10 
replications of 16 hours (double shift), 80 hours (weekly, 
double shift) and 500 hours (yearly, double shift). The rep-
lications can be identified to obtain a satisfactory confi-
dence interval for the power drive cases. Figure 4 presents 
the throughput of the different scenarios of power drive as-
1924
sembly systems. The output has improved significantly 
from scenario 1 to scenario 6, since the bottleneck station 
has been identified and balanced by adding one station and 
reorganized material management systems. By improving 
material management systems, the non-value-added time is 
reduced, which leads to improvement in the operation time. 
The improvement of 
 

 
Figure 2: Machine Dynamics Configuration 
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Figure 3: Labor Dynamics Operand Window 

 
throughput is found after using the proposed model strat-
egy, which represents a more realistic scenario, and 
eliminating the bottleneck of the systems. The capacity of 
the production line is set into a database. If the environ-
ment of the assembly systems changed, the model could 
be run to get new or modified capacity and revise the pro-
duction scheduling. In this way, we can get real-time ca-
1925
pacity status for the power drive assembly. If any new 
product comes, it can be identified from the flow se-
quence, then it can easily be modeled from the proposed 
power drive modeling systems to analyze the system to 
get better performance and identify how to fit into the ex-
isting assembly line to identify the capacity level for that 
particular product. The simulation model is a tool to do 
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becomes more stable. 
 
the “what if” analysis. A similar analysis is done for three 
production scenarios to identify the optimal buffer size to 
meet the expected future customer’s need.  
 

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11

Scenario

Pr
od

uc
tio

n

 
Figure 4: Annual Production Comparison 

3.2 Throughput 

The throughput validation has been done through statisti-
cal analysis. A paired t-test is considered to test the dif-
ference between the real-life throughput and the simulated 
throughput. The production throughput of the power drive 
is used to compare the results of the actual, proposed 
simulation with and without dynamics consideration. The 
simulation environment is also used in the same scenario, 
including machine and labor dynamics. The production 
environment is considered for four weeks (one month), 
each week for five days, and each day for two shifts for 
throughput validation purposes. A degree of confidence 
level must also be considered for the analysis. A 95% 
confidence interval is considered for throughput and cycle 
time analysis. The sample mean of the difference is 42.7. 
The sample variance is 17642. The sample standard de-
viation is 132.8. The test statistic is 1.017. The t distribu-
tion critical value for 9 degrees of freedom and a 95% 
confidence interval is 2.262. From the t-test, the calcu-
lated value of the test statistic is t = 1.017 and the t distri-
bution critical value is t9,0.025 = 2.262. As the calculated 
value of the test statistic is less than the t distribution 
critical value (t < t9, 0.025), the result falls within the 95% 
confidence interval. Since the calculated value of the test 
statistic does not fall in the rejection region, we do not re-
ject it. Thus, data does not present sufficient evidence to 
indicate that the results can be rejected. The confidence 
interval of throughput is 851.2 < μ < 892.4. The confi-
dence interval for actual throughput is 702.3 < μ < 955.9. 
The actual data range is high, because sometimes one 
week’s production is counted in another week, and there 
is variation in customer orders and systems. The t-test for 
simulated output and actual output falls within the confi-
dence interval. Thus, the model does have an accuracy 
level to indicate that it is valid.  

Comparison of the model with and without uncer-
tainty is considered. The sample mean of the difference is 
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15.6. The sample variance is 751.6. The sample standard 
deviation is 27.42. The test statistic is 1.799. The t distri-
bution critical value for 9 degrees of freedom and 95% 
confidence interval is 2.262. From the t-test, the calcu-
lated value of the test statistic is t = 1.799 and t distribu-
tion critical value t9, 0.025 = 2.262. Since the test statistic 
for t with 9 degrees of freedom, with n = 10, is 1.799, the 
calculated value is 1.799 < 2.262. This means that there is 
no significant difference between the cases. As the calcu-
lated value of the test statistic is less than the t distribution 
critical value (t < t9, 0.025), the result falls within the 95% 
confidence interval. Since the calculated value of the test 
statistic does not fall in the rejection region, there is no 
sufficient evidence to reject the result. The confidence in-
tervals of throughput for the simulation model with dy-
namics and without dynamics are 815.2<μ<897.2 and 
815.2<μ<851.1, respectively. The t-test for simulated 
output and actual output falls within the confidence inter-
val. Thus, the both models do have an accuracy level to 
indicate that they are valid. The t-distribution is consid-
ered to check the confidence level of the simulation out-
put without considering dynamics. The sample mean of 
the simulated throughput without dynamic consideration 
is 871.8. The sample variance is 424.18. The sample stan-
dard deviation is 20.6. The test statistics is 6.56. From the 
calculation, it is found that the test statistics value is 6.56. 
The sample mean of the throughput with dynamic consid-
eration is 856.2. The sample variance is 865.29. The sam-
ple standard deviation is 29.42. The test statistics is 2.91. 
From the t-test, the calculated value of the test statistic is 
t1 = 6.56 without dynamics and t2 = 2.91 with dynamics. 
As the calculated value of the test statistic (t2) of with dy-
namics is less than the calculated value of the test statistic 
(t1) without dynamics (t2 < t1), the dynamic results are 
closer to real systems. Initially we have found that the 
simulated results validated the real systems, while the 
later part shows the dynamic model is a closer representa-
tion of the actual systems. 

3.3 Cycle Time 

The cycle time comparison is done both with dynamics 
and without dynamics in the model scenario. It is found 
that balancing the line and dynamics consideration sig-
nificantly impacts the cycle time scenario. Figure 5 repre-
sents the cycle time variation without dynamics and line 
balancing. Figure 6 depicts the cycle time scenario with 
the consideration of dynamics and line balancing. It can 
be easily identified from the figures that the cycle time 
variation in Figure 5 is much higher than in Figure 6. Af-
ter line balancing and dynamic consideration, cycle time 
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Figure 5: Cycle Time Variation without Uncertainties and Line Balancing 

 
Figure 6: Cycle Time Scenario with Uncertainties and Line Balancing 
 

4 CONCLUSIONS 

Simulation intelligence for manufacturing uncertainties is 
represented in this research. Intelligent simulation mod-
ules are developed to represent factory floor dynamics for 
labor and machine dynamics Fuzzy-rule-based systems 
are used for uncertainty representation. This proposed 
modeling technique would improve the modeling accu-
racy in terms of more realistic presentation of all activi-
ties. As knowledge acquisition and representation will be 
used to acquire the knowledge for better representation of 
the manufacturing scenario in the model. Using those in-
telligent modules, the intelligent simulation models are 
constructed in such a way that each model investigates 
dynamic performance of the overall system.  Thus the 
work develops an intelligent modeling tool in simulation, 
where the user can build up a more realistic model to 
identify bottlenecks and enhance system performance in 
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terms of productivity, queues, and work in process (WIP) 
as well as cycle time. A base model and a reconfig-
ured/redesigned model are developed to compare the per-
formances such as capacity, utilization, queue, etc. the 
models show significant improvement in reconfigur-
able/redesigned systems. The best satisfaction of the pro-
duction requirements is identified. An optimal buffer size 
also identified for the production requirements. Through-
put and cycle time validation are done for the proposed 
modeling to show the significant improvement. A real-life 
case study of power drive assembly system is considered 
to validate the proposed approach. The work of this re-
search study may be extended with real-time integration 
of the factory floor as well as to add more features to han-
dle uncertainty, and give more numerical examples, 
which may lead to building more robust systems. 
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