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Abstract 

 
This paper offers a brief description and summary of the characteristics of complex 

adaptive systems. The use of computer software such as StarLogo and NetLogo is 

presented as a powerful way to explore the dynamics of such systems. The author 

suggests that these computer programs can vitally enhance the development of the 

scientific mind in users within a wide range of ages and levels of experience.  
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Modeling Complex Systems 

What is a complex system? 

A relatively recent area of scientific inquiry is the exploration of the dynamics of 

complex systems. A defining characteristic of complex systems is their tendency to self-

organize globally as a result of many local interactions. In other words, organization 

occurs without any central organizing structure or entity. Such self-organization has 

been observed in systems at scales from neurons to ecosystems. 

A complex adaptive system has the following characteristics: it persists in spite 

of changes in the diverse individual components of which it is comprised; the 

interactions between those components are responsible for the persistence of the system; 

and the system itself engages in adaptation or learning (Holland, 1995, p.4). To say that 

a system is complex is to say that it moves between order and disorder without 

becoming fixed in either state. To say that such a system adapts is to say that it responds 

to information by changing. 

Such systems abound. Not only the ant colony and the human body as a whole, 

but also various systems within the body such as the nervous system and the immune 

system fall into this category. These are systems that persist in spite of the continual 

changes of individual components, maintaining coherence and adapting in response to 

a phenomenal amount of information throughout the lifetime of the organism in which 

they function (Holland, 1995, pp. 2-3).  
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Adaptation and Finding Excellent Solutions 

Holland (1995) argues that adaptation itself builds complexity. Kauffman (1995) 

agrees, saying, "A living system must first be able to strike an internal compromise 

between malleability and stability. To survive in a variable environment, it must be 

stable, to be sure, but not so stable that it remains forever static" (p. 73). Thus, these 

systems survive and thrive in an evolutionary, or more accurately, a co-evolutionary 

context. 

Kauffman (1995) makes a case for the importance of the co-evolution of agents 

and their environments. As an agent changes, so does the environment, including other 

agents, and vice versa. Thus, agent and environment act as partners in the dance of 

evolution. This is easy to visualize when one thinks of the interrelationships in an 

ecosystem. But how does a particular agent "read" an environment of which it can only 

"see" a small part?  

Kauffman argues that in a system in which there is a large number of underlying 

conflicting constraints and interconnected variables, there exists an optimum size and 

number of "patches" or nonoverlapping domains which, acting locally by interacting 

only with the nearest neighbors, maintain the system in a state of maximum fitness with 

regard to evolution (pp. 256-257). Each agent in the system Kauffman models has access 

only to information in the local vicinity. (The reality is likely more complicated than this 

as, at the very least, many complex systems may be seen to be small-world networks. 

See Strogatz, 2001 and Watts, 2003 for more about this.) At the same time, each agent 

may be said to have a particular evolutionary goal of which it is unaware, but for which 
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it is suited by its evolutionary history. The ultimate goal, of course, is survival. In 

having achieved survival up to the present moment, the agent as a system and the 

larger system(s) of which the agent is a part have engaged in a particular kind of 

learning that is inherent in adaptation. This learning involves maximizing the system's 

fitness with regard to the larger environment. Complex adaptive systems exist at a wide 

range of scales, from neurons to social systems. Therefore, the environment in which an 

agent acts may be incredibly tiny or it may be vast, from the human perspective. 

However, it seems likely that the larger system in which an agent participates is always 

beyond the comprehension of the individual agent within it. According to the theory of 

complex adaptive systems, the scale of complex systems is of little importance, except, 

perhaps, in relation to the time involved in the interactions or in the life of the system as 

a whole (see Gell-Mann, 2003, pp. 51-52).  

Here the idea of maximum fitness (Kauffman, 1995, pp. 247-264) means to be 

able to find excellent solutions to difficult problems rather than being able to find the best 

solutions. Generally speaking, finding the best solution may be impossible due to the 

multitude of possible solutions and the limited amount of time available for exploring 

them. Thus, Kauffman argues, it makes more evolutionary sense to devise strategies for 

finding excellent solutions at the possible expense of not finding the best or perfect 

ones. 

Holland (1995) has worked extensively on this problem as well. He is well 

known for having devised the genetic algorithm and the ECHO software for computer 

simulation of complex adaptive systems. The agents in Holland's computer simulations 
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behave in much the same way that Kauffman describes, finding excellent solutions in 

the course of interacting with other agents and with the environment. 

Gell-Mann (2003) explains just how these systems are able to evolve such 

excellent solutions. Gell-Mann's terminology differs from Holland's in that what 

Holland refers to as an "adaptive agent," within a complex system, Gell-Mann refers to 

as a complex adaptive system in its own right. Thus, in Gell- Mann's nomenclature, a 

complex adaptive system may (and often does) exist within another complex adaptive 

system and/or it may be associated with other complex adaptive systems that 

aggregate to form a larger complex adaptive system, and so on (2003, p.51). Gell-Mann's 

description of the evolution of schemata in a complex adaptive system is elegant. 

A complex adaptive system receives a stream of data about itself and its 

surroundings. In that stream, it identifies particular regularities and compresses 

them into a concise "schema," one of many possible ones related by mutation or 

substitution. In the presence of further data from the stream, the schema can 

supply descriptions of certain aspects of the real world, predictions of events that 

are to happen in the real world, and prescriptions for behavior of the complex 

adaptive system in the real world. In all these cases, there are real world 

consequences: the descriptions can turn out to be more accurate or less accurate, 

the predictions can turn out to be more reliable or less reliable, and the 

prescriptions for behavior can turn out to lead to favorable or unfavorable 

outcomes. All these consequences then feed back to exert "selection pressures" on 

the competition among various schemata, so that there is a strong tendency for 
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more successful schemata to survive and for less successful ones to disappear or 

at least to be demoted in some sense. (Gell-Mann, 2003, p. 50). 

Thus, a complex adaptive system: 1) interacts with the environment, 2) creates 

schemata, which are compressed and generalized regularities experienced in those 

interactions, 3) behaves in ways consistent with these schemata,  and 4) incorporates 

feedback from the environment to modify and adapt its schemata for greater success. 

When Gell-Mann talks about "identifying" and "predicting" he is not necessarily 

referring to conscious events. For example, in the case of slime mold, which has no 

brain, the process is a purely biochemical one (Johnson, 2001, pp. 11-17). 

 

Self-Organization in Complex Systems 

The process by which a complex system achieves maximum fitness results in self-

organization by the system, that is, agents acting locally, unaware of the extent of the 

larger system of which they are a part, generate larger patterns which result in the 

organization of the system as a whole. This concept can be seen at work in ant and 

termite colonies, beehives, market economies, and can even be modeled on one's home 

computer using free software such as StarLogo  ("Starlogo", 2004) or NetLogo 

(Wilensky, 1999, 2004). The idea that an ant colony is a system that organizes itself 

without any leader is intriguing. Each individual ant, acting with limited information, 

contributes to the emergence of an organized whole. This new way of looking at 

organization as an emergent property of complex systems calls into question some 
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fundamental assumptions about organization in general, and about learning in 

particular. 

Not every system is a complex adaptive system; certain conditions must be met 

in order for a system to self-organize. First of all, the system must include a large 

number of agents. Constructing a simple model in StarLogo and adjusting the number 

of agents involved will readily demonstrate this principle. In addition, the agents must 

interact in a nonlinear fashion. As Kelso (1995) explains: 

If there aren't enough components or they are prevented from interacting, 

you won't see patterns emerge or evolve. The nature of the interactions must be 

nonlinear. This constitutes a major break with Sir Isaac Newton, who said in 

Definitions II of the Principia: "The motion of the whole is the sum of the motion 

of all the parts." For us, the motion of the whole is not only greater than, but 

different than the sum of the motions of the parts, due to nonlinear interactions 

among the parts or between the parts and the environment. (p. 16) 

 

Complex Adaptive Systems Summarized 

From this discussion, the following characteristics of complex adaptive 

systems can be extracted: 

1. Complex adaptive systems involve agents whose local, non-linear 

interactions result in self-organization by the system as a whole. 
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2. Complex adaptive systems exist in a mixed condition between order and 

chaos that enables them to achieve stability and flexibility 

simultaneously. 

3. The agents in a complex adaptive system thrive by devising excellent 

solutions to difficult problems, rather than by finding best or perfect 

solutions. 

4. Complex adaptive systems find excellent solutions by creating schemata 

based on regularities identified as successful, behaving in ways consistent 

with these schemata, and incorporating feedback to adapt the schemata 

for greater success. 

 

Modeling Complex Systems 

One way to examine what may be happening in self-organizing complex systems 

is through the use of computer simulations.  Two free software programs, StarLogo 

("Starlogo", 2004) and NetLogo (Wilensky, 1999, 2004), offer users opportunities to 

witness self-organization in action by modeling the dynamics of complex systems. The 

Logo language, which is the foundation of these modeling systems, was developed by 

Seymour Papert at MIT in order to teach children the basics of computer programming. 

As such, it is user-friendly and easy to learn. The novice can explore models that are 

included in the model libraries, manipulating the variables through sliders and simple 

commands. Those with greater interest or more experience can create models of their 
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own. Because of their accessibility and ease of use, these software programs can be 

found in labs and classrooms all over the world. 

The three main components of the modeling environment are turtles, patches, 

and the observer. The individual agents in the system are called turtles, although they 

can represent any kind of agent from a molecule to a person. The environment in which 

the turtles operate is divided into patches. Patch size and movement by turtles within 

and between patches is determined by the program designer. Patches are not 

necessarily passive but may be, and typically are, active components of the system. 

Commands may apply either to turtles or to patches. The third component, the 

observer, can issue commands that affect both patches and turtles. The observer also 

conducts maintenance and documentation of the turtle world. In NetLogo 2.1, 

documentation functions such as graphing are built into the interface. 

Variables within a model may be set up as sliders, and in many models the 

sliders can be manipulated while the model is running. This feature allows the user to 

alter variables and search for excellent solutions within the constraints identified by the 

model designer. For example, a simple model of an ecosystem might include agents 

identified as predators, other agents called prey and patches with food for the prey in 

varying amounts. The interactions between the two different kinds of agents, as well as 

between the agents and the patches, can be defined by simple commands that identify 

when predators eat prey, when prey eat food, under what conditions new agents are 

"born" and "die," and so on. If such a model is designed with sliders to control the 

numer of predators and prey, as well as the proportion of food available, the user can 
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experiment to try to determine how a change in one part of the system affects the 

system as a whole and how a system might adapt in order to survive or thrive.  

The beauty of these modeling tools with regard to building the scientific mind is 

that they provide the user with a dynamic visual and interactive medium through 

which to explore the concepts of complex systems. They are simple enough to be used 

by students in middle or high school, while at the same time they have the potential 

sophistication required of graduate level research. As such, the use of these free 

modeling tools opens up the world of complex systems to a broad audience, including 

those without advanced understanding of science and mathematics. The medium itself 

can describe and explain, through color, pattern and motion, concepts that previously 

might have been incomprehensible. 
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