
Self-Stabilizing Structured Ring Topology P2P Systems

Ayman Shaker and Douglas S. Reeves
Departments of Electrical and Computer Engineering and Computer Science

N. C. State University
{ashaker,reeves}@ncsu.edu

Abstract

We propose a self-stabilizing and modeless peer-to-
peer(P2P) network construction and maintenance protocol,
called the Ring Network(RN) protocol. The RN protocol,
when started on a network of peers that are in an arbitrary
state, will cause the network to converge to a structured P2P
system with a directed ring topology, where peers are or-
dered according to their identifiers. Furthermore, the RN
protocol maintains this structure in the face of peer joins
and departures.

The RN protocol is a distributed and asynchronous
message-passing protocol, which fits well the autonomous
behavior of peers in a P2P system. The RN protocol re-
quires only the existence of a bootstrapping system which
is weakly connected. Peers do not need to be informed of
any global network state, nor do they need to assist in re-
pairing the network topology when they leave. We provide
a proof of the self-stabilizing nature of the protocol, and ex-
perimentally measure the average cost (in time and number
of messages) to achieve convergence.

1. Introduction

P2P systems are decentralized and have several attrac-
tive properties like fault tolerance, load-balancing and self-
scaling[3]. P2P systems construct and maintain overlay
networks with different network topologies, depending on
application requirements. Structured P2P systems impose
specific local relationships between the peers, which gives
rise to a global structure. The advantage of this structure is
that it can then be used by the P2P system for efficient data
placement, search, and retrieval.

Current protocols for the construction and maintenance
of specific structures generally rely on simplifying assump-
tions that are either undesirable or unrealistic. First, most
such systems require or assume a specific initial configura-
tion of the peers. Second, the construction and maintenance

protocols assume that the network remains in an ideal or
close to ideal topology at all times. If the topology of the
network deviates from this ideal, then these construction
and maintenance protocols may cease to function correctly.
Third, a dynamic network, in the sense that peers arrive and
depart continuously, can become partitioned. If this hap-
pens, the construction and maintenance protocols generally
have no way to bring the network back to the desired topol-
ogy. One result of these limitations is the difficulty of merg-
ing two structured P2P networks efficiently and smoothly.
Existing construction and maintenance protocols generally
do not allow such merging, even if each network individu-
ally has the desired structure.

In this paper we propose the Ring Network(RN) proto-
col; a distributed construction and maintenance protocol
that gives rise to a sorted Ring Network, starting from an
arbitrary topology. This protocol is able to correctly merge
two P2P networks into a single ring, or fix a network that
is somehow partitioned. Furthermore, the protocol does
not require the manual creation of a “seed” network, un-
like most structured P2P systems. The protocol also does
not require peers to be informed of or monitor the global
state of the network, before deciding what updates to per-
form. Each peer simply runs the proposed construction and
maintenance protocols, without specific knowledge of the
current state of the network topology, and independently of
other peers.

Existing methods of constructing structured P2P over-
lay networks generally adopt a top-down view of topology
construction and maintenance. These methods may require
central coordination, may have difficulty keeping up with
the rate of change of typical P2P systems, and/or may not
tolerate or recover from errors or failures. Efforts to contain
or eliminate these problems sometimes lead to complex pro-
tocol “fixes”. Our method, in contrast, may be thought of as
a bottom-up approach to constructing structured networks,
in a way that is simple, robust, and fully distributed.

The next section presents the network model and a for-
mal definition of the problem. Section 3 is a review of re-
lated work. Section 4 describes the proposed protocol. Sec-

tion 5 evaluates the correctness and the performance of the
protocol. The paper is concluded in section 6.

2. Problem Statement

A P2P network is a logical overlay network formed on
top of a fixed infrastructure network, such as the Internet.
Therefore, any peer u in the network can communicate or
send a message to any other peer v directly, if u knows the
network address of v. In such a case, v is said to be a neigh-
bor of u.

A P2P network topology is defined by the set of peers
in a network, and the neighbor relationships between those
peers. This topology can be represented by a graph, with
vertexes representing peers, and a directed edge from vertex
u to vertex v if v is a neighbor of u. Let the neighbors
of peer u be denoted as u.Γ. 1 We further denote the ith
neighbor of peer u by u.Γi. The 0th neighbor, u.Γ0, is a
special neighbor of u and is also called the successor of u.
If v is the successor of u, then u is a predecessor of v. If v
is the ith neighbor of u, v = u.Γi, then let u.index(v) = i.

Each peer has a unique identifier or ID, in the form of a
nonnegative integer. Let the largest possible ID assignable
to a peer be m − 1. We assume each peer knows the value
of m. The distance from a peer u to a peer v is defined by
a distance function, dm(u, v) = v − u, where subtraction
is performed modulo m.2 For simplicity of presentation,
we omit the subscript m from the distance function in this
paper. The smaller the value of d(u, v) the closer v is said
to be to u. For the purposes of this paper we define a P2P
network as being a ring network if for each peer u in the
network, u’s successor, v, is the peer closest to u from the
set of all peers and v �= u (unless the system consists of a
single peer, in which case the successor of u will be itself).
Note that the ring network is directed. If v is the neighbor
of u, then the opposite is not necessarily true.

We refer to a peer v as being between a peer u and a peer
w if v is closer to u than w is, or if v = w. As an alternative
representation, we will write u < v ≤ w when v is between
u and w. This definition is not dependent on the topology of
the network; it is simply the relative ordering of three peers,
according to their identifiers.

To fully define a P2P system, one has to take into consid-
eration bootstrapping, which is the method by which peers
are initially made aware of other peers in the system. Let
the peers known to the bootstrapping system, and whose
addresses are returned by the bootstrapping system in re-
sponse to queries, be termed the bootstrapping peers. The
bootstrapping peers and the neighbor connections between

1When referencing a variable v stored by peer u, we will write u.v.
2The distance function is unidirectional. The distance from v to u is

not necessarily the same as the distance from u to v.

them must form a weakly connected graph. A weakly con-
nected graph is a directed graph in which there is a path
between any two vertexes, ignoring the directionality of the
edges. In a strongly connected graph, there is a path be-
tween any two vertexes, considering directionality of the
edges. All strongly connected graphs are also weakly con-
nected, but the reverse is not true. We now prove that
weakly connected bootstrapping systems are necessary and
sufficient to ensure that all peers will be able to communi-
cate once they join together in a P2P network topology.

Proposition 2.1. For all peers to be able to communicate by
means of the topology created by a P2P system, if each peer
only queries the bootstrapping system once it is necessary
for the bootstrapping system to be weakly connected.

Proof. If the bootstrapping system is not weakly connected,
there there will be at least two peers u and v for which there
is neither a path from u to v, nor a path from v to u. It is
therefore impossible for u and v to communicate with each
other through any sequence of neighbors.

Proposition 2.2. For all peers to be able to communicate by
means of the topology created by a P2P system, it is a suf-
ficient condition for the bootstrapping system to be weakly
connected.

Proof. Assume that the every peer is connected to at least
one bootstrapping peer, and the bootstrapping peers are
weakly connected. If every peer u then notifies each of its
neighbors v of its address, and v forms a connection to u,
the resulting network will be strongly connected. Therefore,
every peer will be able to communicate with every other
peer through some set of peers.

Therefore, a weakly connected bootstrapping system is
the simplest and most general form of bootstrapping. We
call such a bootstrapping system a minimal bootstrapping
system. Ensuring the bootstrapping system is weakly con-
nected in general is not difficult. For instance, connecting
the bootstrapping peers together in an unordered chain will
make them weakly connected. In some previous works, the
bootstrapping system is replaced by a seed network. Most
seed networks are required to have a minimum size and/or
a specific structure, and this structure may be highly con-
strained. In fact, the seed network may need to be an in-
stance of the target topology which the construction pro-
tocol seeks to create and maintain. In contrast, a minimal
bootstrapping system imposes no such requirement, and is
appropriate for constructing arbitrary topologies.

We next give the definition of a self-stabilizing P2P sys-
tem. We define a self-stabilizing P2P protocol as one which
can give rise to a desired topology starting from the simplest
of necessary and sufficient assumptions.

Definition 2.3 (Self-Stabilizing P2P system). A P2P sys-
tem that constructs a desired topology, starting with each
non-bootstrapping peer having an arbitrary set of neigh-
bors (including no neighbors). To achieve this, the P2P sys-
tem relies only on the existence of a minimal bootstrapping
system.

Some P2P systems may function when the bootstrapping
system is minimal, but impose requirements on the initial
neighbor relationships of non-bootstrapping peers. Such
P2P systems will not be self-stabilizing, because they de-
pend on a specific initial topology. In addition, a P2P sys-
tem that assumes the bootstrapping system is strongly con-
nected is not a self-stabilizing P2P system.

In this paper, we assume an asynchronous, reliable
message-passing model. This means a message sent from
peer u to peer v is eventually delivered in a finite but un-
bounded time. Furthermore, we assume that messages sent
between two peers in the same direction follow the FIFO
rule, as would be the case over a single TCP connection.
We allow peers to execute steps of the protocol in an asyn-
chronous fashion. A synchronous protocol would assume
protocol execution occurs at the same rate (or even at the
same time) on all peers, and that message transmission time
is bounded. In many cases, this simplifies the analysis of
the protocol. On the other hand, asynchronous protocols as-
sume only that transmission time is finite, and do not make
any assumption about the relative speed of protocol execu-
tion on different peers. This leads to the following defini-
tion:

Definition 2.4 (Distributed Asynchronous P2P system). A
P2P system in which the form of communication between
peers is message-passing, where message transmission time
is finite but unbounded. Furthermore, there is no shared
memory or shared clock(s) between peers. All peers execute
the same protocol.

In our network model peer failures and departures follow
the fail-stop model as specified in [14]: peers are able to
perfectly detect the failure or departure of other peers in the
P2P network. We define a modeless P2P system as follows:

Definition 2.5 (Modeless P2P protocol). A modeless P2P
protocol is one in which it is not required for every peer to
be notified of each peer arrival or departure, or to be aware
of the total number of peers.

Modeless P2P protocols are highly desirable. They avoid
the need for global communication among peers, or the
need for periodic protocol synchronization, and are there-
fore faster and have lower overhead.

We now define our problem with reference to above
properties: Given are n peers, each with an arbitrary set of
neighbors (or no neighbors), and a minimal bootstrapping

process. Design a modeless and distributed asynchronous
P2P protocol that is self-stabilizing, and that results in the
construction of a ring network.

3. Related Work

The problem of organizing nodes in a distributed system
into a desired topology has been approached in many ways.
This review of related work focuses on two properties: (i)
whether the methods are self-stabilizing, and (ii) whether
the protocols are modeless or not.

P2P research has addressed the organization of peers into
a desired topological structure. Many structured P2P sys-
tems are based on distributed hash tables (DHTs) [9]. One
of the most widely-cited such P2P system is Chord [18].
In [14], Liben-Nowell et al. describe maintenance protocols
for Chord that may be run by each peer in order to keep
the topology from deviating substantially from a chordal
ring. The Chord protocols, however, always assume that
the topology has some partial structure. In the absence of
such minimal structure, the Chord protocols cease to guar-
antee convergence to the correct topology. Therefore, they
do not qualify as self-stabilizing.

In [1], Angluin et al. solve the problem identified in this
paper, i.e., starting from a weakly connected network, build
an ordered ring network. Though the protocols give rise to a
structured P2P network with low complexity, their solution
does not address failures or joins of peers. Furthermore, all
peers are required to start execution of the protocols at the
same time. Therefore, although the protocol presented in
this work is self-stabilizing, it is neither asynchronous nor
modeless.

Topology construction using gossip-based protocols has
been introduced in the T-Man protocol [7]. In this work,
peers are organized according to a ranking function to pro-
duce a desired network topology, such as ring or torus
topologies. T-man assumes that the network starts out with
a topology close to a random graph, which is a stronger re-
quirement than a weakly connected bootstrapping system.
In addition, global knowledge of the system size and loose
synchronization are required.

Li et al. propose Ranch [13], a set of protocols for the
construction of P2P systems with ring topologies. The main
contribution of this paper is the introduction of a provably
correct, asynchronous protocol that can handle concurrent
arrivals and departures of peers. However, the method as-
sumes that departing peers always perform clean-up proto-
cols prior to their departure. Furthermore, Ranch is not able
to guarantee the correct topology will be constructed if the
network is started from an arbitrary state.

Other structured P2P systems (CAN [5], Pastry [16],
Tapestry [20], and others [15, 8, 2, 10]) likewise cannot

construct the desired network topology starting from an ar-
bitrary initial state, and/or are synchronous rather than asyn-
chronous.

Another related field is resource discovery. One ap-
proach [12] is a distributed protocol that will construct a star
topology, given an initial weakly connected network. This
method requires one node to have special capacities, and is
completely dependent on the correct and timely functioning
of this central node. Kutten and Peleg [11] later introduced
an asynchronous protocol with the same goal. Their method
is self-stabilizing but is not modeless, and still targets the
star topology, with the drawbacks mentioned above.

4. The Ring Network(RN) Protocol

This section presents the RN protocol, which constructs a
ring network starting from an arbitrary state. We start with
an overview, followed by a description of the protocol, and
conclude with detailed pseudocode.

The RN protocol is a distributed protocol in which every
peer independently and asynchronously executes the same
procedure, and peers communicate by asynchronous mes-
sage passing. In this protocol, each peer periodically initi-
ates a search for a successor candidate. Peers that assist in
this search will make note of the information contained in
any message they propagate. Using information returned by
successor searches, the bootstrapping process, or gleaned
from message propagation, each peer will independently
select a (closest) successor node. This process repeats in-
definitely, allowing rapid adaptation to changes in the set of
peers.

Local information stored by each peer includes:

• Γ: the set of current neighbors of the peer.

• W : the set of peers returned by Closer-Peer Searches.

• B: the set of peers learned by the Search Monitor pro-
tocol.

• s: a peer selected randomly from the current successor,
and peers returned by the bootstrapping system.

The three steps of the protocol are now described in more
detail.

4.1. The Closer-Peer Search

Each peer x will periodically initiate a search for a peer that
is closer to it than its current successor. x contacts for this
purpose a peer s that is randomly chosen from its current
successor x.Γ0, or a peer returned by the bootstrapping ser-
vice. The peer s receiving this request forwards it to that
neighbor of s to which x is closest. The receiver of this re-
quest message propagates this request in a similar manner,

in an attempt to get closer and closer to x. When a peer
u receiving such a request finds that the initiator x of the
request is closer to u than any of u’s neighbors, the search
terminates. u then sends to the initiator x the address and
identity of its own successor u.Γ0, which x adds to its set
W . The frequency of this search affects only the perfor-
mance of the protocol, not its correctness. The evaluation
of performance factors is addressed in section 5.2

10

9 50

23

30

40

60

(a) A P2P network

10

9 50

23

30

40

60

(b) Closer-Peer Search

Figure 1. Examples of a P2P network in the
process of converging into a ring network. Cir-
cles represent peers; numbers inside circles
are peer IDs. Edges represent successor
connections. (a) A topology consisting of 7
peers. (b) A possible result of the execution
of the Closer-Peer Search by peer 50, starting
from peer 30.

The result of this search will depend on the current topol-
ogy of the network. If the network is already a ring network,
a Closer-Peer Search will terminate at the peer that initiated
the search, and no change will occur. Otherwise, the search
may terminate at a peer u to which x is close. In such a case,
x will be between u and u.Γ0, and u.Γ0 will be a promising
candidate to be x’s successor. As an example, in figure 1(a)
peer 50 starts a Closer-Peer Search starting at peer 30. The
search terminates at peer 40, which notifies peer 50 about

70

60

30

40

50

1

1

0

0

0
0

(a) Before neighbor update.

70

60

30

40

50

2
1

1

0

0

0
0

(b) After the neighbor update.

Figure 2. A possible outcome of a neighbor up-
date performed by peer 30. Edges represent
neighbor connections. An edge labeled with
the number i at its tail, points to the ith neigh-
bor.

its successor 60. Peer 50 then adds the new successor can-
didate 60 to peer 50’s set W .

4.2. The Search Monitor

A peer u will monitor each Closer-Peer Search request that
it receives. A search request initiated by x (x �= u) and
terminating at u means that x is closer to u than u’s current
successor u.Γ0. u as a result adds the address and identity
of x to its set B. In the previous example, peer 40 in figure
1(a) adds 50 to its set B, because the Closer-Peer Search
initiated by 50 terminated at 40.

4.3. Neighbor Update

Each peer u will frequently check whether it has learned of
a closer peer than its current successor u.Γ0. It examines
for this purpose its current list of neighbors, a bootstrap-
ping peer returned by the bootstrapping process, the set W
of candidates returned by completed Closer-Peer Searches,
and the set B of candidates it compiled while propagating
search request messages on behalf of other peers. The peer
closest to u from among the union of these is chosen to be
the new successor, u.Γ0. In figure 1(a), after W and B have
been updated, peer 40 and peer 50 update their successors
as shown in figure 1(b).

In parallel with successor updating, each peer u will up-
date its list of other neighbors, starting from u.Γ1, proceed-
ing to u.Γ2, and so forth. u sends a message to neighbor
u.Γi asking it to return the identity of u.Γi’s ith neighbor.
When u.Γi responds with the identity of such a peer v, u
will use this as the new value of u.Γi+1. However, if v is
not between u.Γi and u, the value of u.Γi+1 will not be up-
dated. This update process is a form of pointer jumping, as
proposed in [6]. The purpose of these neighbor connections
is to improve the speed of searching, by reducing the num-
ber of hops that must be traversed. They are similar, but not
identical, to the fingers employed by Chord[18].

An example is demonstrated in figure 2. Peer 30 would
like to update its 2nd neighbor in figure 2(a). For that, it
will query its 1st neighbor, peer 50, for the 1st neighbor of
peer 50. When peer 50 responds, peer 30 will set as its 2nd
neighbor peer 70, as shown in figure 2(b). This is because
peer 70 is between peer 50 and peer 30, i.e., 50 < 70 < 30.
Peer 30 is therefore able to discover a peer that is 4 hops
away from it, using two messages.

4.4. Detailed Pseudocode

We now present the pseudocode for the RN protocol. An
asynchronous, message-passing model is assumed. The
pseudocode is written in the AP notation introduced in [4].
In this notation, a peer p is specified by its const, input
and var variables, and its actions. An action is of the form
〈guard〉 → 〈statement〉. Actions are delimited by two
square brackets, []. The statement of an action can be exe-
cuted only if the guard for that action evaluates to true. An
execution step for the protocol is as follows. All guards of
all actions of all peers are evaluated, after which only one
statement of an action whose guard evaluated to true is ex-
ecuted. The choice of statement to execute, if there is more
than one whose guard evaluates to true, is random. This en-
sures that each enabled action will eventually be executed,
but the order of execution is arbitrary.

We choose this notation for describing the RN protocol
because it facilitates an analysis of correctness, for an ar-
bitrary interleaving of actions by the peers. This analysis
model has been widely adopted by the distributed process-
ing community [4]. Since the protocol is asynchronous, the
need for interrupts is eliminated when using this notation,
making the protocol presentation clearer. In section 5.2, we
assume a specific execution rate by the peers, and measure
experimentally the resulting convergence time of the algo-
rithm.

Using this notation, the pseudocode for the RN protocol
is shown in figure 3.

peer u
const

T : set of bootstrapping peers
input

w : a peer (successor candidate)
x : peer being searched for
c : index of received neighbor
z : new neighbor
s : a bootstrapping peer

var
S : Set of peers
B : Set of successor candidates
W : Set of successor candidates
Γi : ith neighbor

(a1) true →
S := {s} ∪ W ∪ B ∪ Γ
Γ0 := arg mink∈S d(u, k)
B := W := ∅

[]
(a2) true →

s:= Get random peer from {T ∪ Γ0}
send closer-peer search(u) to s

[]
(a3) receive closer-peer search(x) from q →

if x is closer to u than any neighbor ∈ Γ
then B := B ∪ {x}

send successorCandidate(Γ0) to x
else

send closer-peer search(x) to arg mink∈Γ d(k, x)
[]

(a4) receive successorCandidate(w) from q →
W := W ∪ {w}

[]
(a5) true →

for each h in Γ do
send getNeighbor(index(h)) to h

[]
(a6) receive getNeighbor(j) from q →

if Γj exists
then send neighbor(Γj , j) to q

[]
(a7) receive neighbor(z, c) from q →

if Γc ≤ z < u
then Γc+1 := z

else Γc+1 := NIL

Figure 3. Pseudocode of the RN protocol for
a peer u.

5. Evaluation

In this section, we will first analyze the RN protocols with
respect to self-stabilization. After that, we present the re-
sults of experiments measuring message and time complex-
ity, and show the behavior under dynamic conditions.

5.1. Analysis

Without loss of generality, assume there are n peers, whose
identities are restricted to the range {0 . . . (n − 1)}. Also,
assume that no peer arrivals or departures occur while the
network is converging into a ring network. Proof of conver-
gence of any distributed protocol is generally only possi-
ble if the set of inputs does not change during convergence,
since in most cases a different set of inputs will lead to a dif-

ferent solution. Given a proof of correctness when starting
from an arbitrary state, it is clear that correctness will be re-
covered following any change (peers joining or leaving), as
long as sufficient time for convergence to the new solution
is allowed.

The goal of this section is to show convergence in the
static case. Proofs are omitted due to space constraints,
but may be found in [17]. In the following section, we
provide experimental results showing how long the conver-
gence time is, and the effect of dynamic joins and leaves.

Lemma 5.1. If the result of a peer x initiating a Closer-
Peer Search is the return of a peer v �= x, then v’s prede-
cessor must update its successor to be a closer peer.

Lemma 5.2. If the P2P system is not in a ring network
topology, then at least one peer will find a closer peer
than its current successor when it performs a Closer-Peer
Search.

Theorem 5.3. (Correctness) Once the P2P system is a ring
network, it will remain so (assuming there are no changes
in the set of peers).

Theorem 5.4. (Convergence) Starting from any state, the
P2P system will converge to a ring network.

5.2. Experiments

We used simulation to evaluate the overhead and scalability
of the RN protocol. In the first set of experiments, the set
of peers was static. The second set of experiments allowed
peers to join and leave dynamically. Assumptions were as
described in section 2. We simulated the P2P network us-
ing Netlogo, an agent-based simulator [19]. The simulation
model was identical in implementation to the pseudocode
in figure 3, with one exception. Action a5 was modified so
that only one send occurs. Neighbors are contacted in order,
as shown in a5, but only one per execution of the statement,
rather than all neighbors in one execution. This change re-
duces the number of messages that are sent, but does not
affect the correctness of the protocol.

The configuration of the bootstrapping system can po-
tentially affect performance. In our experiments, a random
peer from the bootstrapping set was returned for each re-
quest. The size of the set of bootstrapping peers was varied
to measure the impact of this parameter, from 12.5% up to
100% of the peers in the system. Bootstrapping peers were
initially connected in an unordered chain, which is a simple
form of a weakly connected graph.

The unit of time measured in the first two experiments
was the maximum time to deliver a message. We fixed this
time for purposes of illustration; our protocol is asynchro-
nous and does not depend on this assumption for correct-
ness. Communication was non-blocking and peers did not

wait for a response to any message they sent. The simula-
tion proceeded by randomly interleaving the actions of all
peers for which the guard evaluated to true.

0

100

200

300

400

500

600

4 5 6 7 8 9 10 11

log(n)

o

f
m

es
sa

g
es

1 0.5 0.25 0.125

(a) Message Complexity

0

20

40

60

80

100

120

140

5 6 7 8 9 10

log(n)

T
im

e

1 0.5 0.25 0.125

(b) Time Complexity

Figure 4. Time and number of messages ex-
changed per peer for a network of size n to
converge into a ring. The label for each line
represents the fraction of peers that serve as
bootstrapping peers.

The first experiment measured the average number of
messages sent per peer during construction of the ring
network, starting with peers having no neighbors. Fig-
ure 4(a) shows the result for P2P networks of size 2i, for
i ∈ {5, . . . , 10}. For each point, the 95% confidence inter-
val was less than 5% of the measured value. The second
experiment measured the time to converge on a ring net-
work topology, under the same conditions, and with similar

confidence intervals. Both number of messages and time to
convergence grow logarithmically with the number of peers
in these experiments, which indicates the protocol should
scale well to large networks.

The third experiment investigated the effect of concur-
rent peer arrivals and departures in the P2P system. The
simulation was started with a P2P system of 1024 peers al-
ready configured in a ring network. Peer arrival and depar-
ture rates were varied from 2 per unit time to 12 per unit
time, where the unit of time was taken as the time to exe-
cute one statement at each peer. This reflects then a very
high peer churn rate. Peer lookups were performed concur-
rently with peer arrivals and departures. For each lookup,
a randomly-selected peer searched for another randomly-
selected peer in the network. A search could fail if the two
peers were not connected, or if the set of peer successors
had not converged to the correct configuration.

The results of this experiment are presented in figure
5. For searches which succeeded, the hop-count for the
search was measured. Without dynamic updates, for a con-
verged system the failure rate should be zero, and the av-
erage search hop-count should be (1/2) log(n), where n is
the size of the network. From the results, the hop-count for
successful searches grows slowly as the number of peers
leaving or arriving per unit of time grows to a very high
level. The search failure rate is moderately high under these
conditions, but with no attempt to exploit redundancy. If
the RN protocol is modified to maintain multiple succes-
sors per peer, as in Chord [18], the failure rate would be
substantially lower and path lengths shorter, at the expense
of greater complexity and higher maintainence overhead.

0

2

4

6

8

10

12

14

2 4 6 8 10 12

Arrivals/Depart. per Unit Time

%
 F

ai
lu

re
s

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

H
o

p
 C

o
u

n
t

% of Failures Hop Count

Figure 5. Failure lookup rate and hop count
for searches for random peers in a dynamic
P2P network.

We also measured the time for the RN protocol to restore

a system of 1024 peers to a ring topology, after a varying
number of peer arrivals and departures. Starting from a con-
verged ring network, the arrivals and departures were mod-
eled as occuring instantaneously and simultaneously, fol-
lowed by normal execution of the RN protocol. The results
(not shown due to space constraints) indicate that conver-
gence time is logarithmic in the number of peers arriving /
departing, varying from 25 time units to recover from one
arrival/departure, to 80 time units to recover from 1000 ar-
rivals/departures. This is in constrast to other P2P protocols
that either cannot recover from such a high number of peer
changes, or which must reconstruct the entire topology from
scratch, regardless of the number of changes that occur. To
emphasize, no modification of the RN protocol is required
in the case of dynamic arrivals and departures, which justi-
fies our assertion that the RN protocol is modeless.

6. Conclusion

This paper investigated the problem of organizing a set of
peers into a structured P2P network, in a self-stabilizing
way, starting from an arbitrary state. The RN protocol was
introduced for this purpose to construct a ring network. The
RN protocol is simple and self-contained. There is only a
single procedure which all peers run, regardless of the state
of the network, and regardless of changes to the set of peers.
In particular, the peers do not have to estimate the size of
the network, or exchange other information globally, unlike
most other P2P protocols. The protocol is asynchronous,
and represents a practical means for creating structured P2P
networks in a robust, highly adaptable way.

In future work, we would like to establish non-trivial
bounds for the convergence rate of the protocol.

References

[1] D. Angluin, J. Aspnes, J. Chen, Y. Wu, and Y. Yin. Fast
construction of overlay networks. In 17th ACM Symposium
on Parallelism in Algorithms and Architectures(SPAA 2005),
Las Vegas, NV, USA, 2005.

[2] J. Aspnes, Z. Diamadi, and G. Shah. Fault-tolerant routing
in peer-to-peer systems. In ACM PODC, 2002.

[3] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making gnutella-like p2p systems scalable. In
SIGCOMM, 2003.

[4] M. G. Gouda. Elements of Network Protocol Design. John
Wiley and Sons, 1998.

[5] M. Handley, P. Francis, R. Karp, S. Shenker, and S. Rat-
nasamy. A scalable content-addressable network, 18 2001.

[6] W. D. Hillis and J. Guy L. Steele. Data parallel algorithms.
Commun. ACM, 30(1):78–78, 1987.

[7] M. Jelasity and O. Babaoglu. T-Man: Fast gossip-based con-
struction of large-scale overlay topologies. Technical Re-

port UBLCS-2004-7, University of Bologna, Department of
Computer Science, Bologna, Italy, May 2004.

[8] F. Kaashoek and D. R. Karger. Koorde: A simple degree-
optimal hash table. In Proceedings of the 2nd Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS03), Berke-
ley, CA, 2003.

[9] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In ACM Symposium on Theory of Comput-
ing, pages 654–663, May 1997.

[10] F. Kuhn, S. Schmid, and R. Wattenhofer. A self-repairing
peer-to-peer system resilient to dynamic adversarial churn.
In Proceedings of the 4th International Workshop on Peer-
to-Peer Systems (IPTPS05), 2005.

[11] S. Kutten and D. Peleg. Asynchronous resource discovery
in peer to peer networks. In SRDS ’02: Proceedings of
the 21st IEEE Symposium on Reliable Distributed Systems
(SRDS’02), page 224, Washington, DC, USA, 2002. IEEE
Computer Society.

[12] S. Kutten, D. Peleg, and U. Vishkin. Deterministic resource
discovery in distributed networks. In SPAA ’01: Proceed-
ings of the thirteenth annual ACM symposium on Parallel
algorithms and architectures, pages 77–83, New York, NY,
USA, 2001. ACM Press.

[13] X. Li, J. Misra, and G. Plaxton. Active and concurrent topol-
ogy maintenance. In R. Guerraoui, editor, Distributed Algo-
rithms, volume 3274/2004 of Lecture Nodes in Computer
Science, pages 320–334, Oct 2004.

[14] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger.
Analysis of the evolution of peer-to-peer systems. In Pro-
ceedings of the twenty-first Annual Symposium on Principles
of Distributed Computing (PODC-02), pages 233–242, New
York, 21–24 2002. ACM Press.

[15] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Dis-
tributed Hashing in a Small World. In USITS, 2003.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), 329-350 2001.

[17] A. Shaker and D. S. Reeves. Self-stabilizing structured ring
topology p2p systems. Technical Report 2005-25, Depart-
ment of Computer Science, N.C. State University, 06 2005.

[18] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet applications.
IEEE Transactions on Networking, 11, 2003.

[19] U. Wilensky. NetLogo: Center for connected learning and
computer-based modeling, Northwestern University., 1999.

[20] B. Y. Zhao, J. Kubiatowicz, and J. Joseph. Tapestry: an
infrastructure for fault-resilient wide-area location and rout-
ing. Technical Report UCB//CSD-01-1141, University of
California at Berkeley, 2001.

