
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, B. F. Armstrong, J. E. Joines, eds.

HYBRID DISCRETE EVENT SIMULATION WITH MODEL PREDICTIVE CONTROL FOR
SEMICONDUCTOR SUPPLY-CHAIN MANUFACTURING

Hessam S. Sarjoughian Wenlin Wang
Dongping Huang Daniel E. Rivera
Gary W. Godding

Arizona Center for Integrative Modeling & Simulation Control Systems Engineering Laboratory

Computer Science & Engineering Dept. Chemical & Materials Engineering Dept.
Arizona State University Arizona State University

Tempe, AZ 85287-2803 U.S.A. Tempe, AZ 85287-2803 U.S.A.

Karl G. Kempf Hans D. Mittelmann

Decision Technologies Mathematics & Statistic Dept.
Intel Corporation Arizona State University

Chandler, AZ 85226 U.S.A. Tempe, AZ 85287-2803 U.S.A.

ABSTRACT

Simulation modeling combined with decision control can
offer important benefits for analysis, design, and operation
of semiconductor supply-chain network systems. Detailed
simulation of physical processes provides information for
its controller to account for (expected) stochasticity present
in the manufacturing processes. In turn, the controller can
provide (near) optimal decisions for the operation of the
processes and thus handle uncertainty in customer de-
mands. In this paper, we describe an environment that syn-
thesizes Discrete-EVent System specification (DEVS) with
Model Predictive Control (MPC) paradigms using a
Knowledge Interchange Broker (KIB). This environment
uses the KIB to compose discrete event simulation and
model predictive control models. This approach to com-
posability affords flexibility for studying semiconductor
supply-chain manufacturing at varying levels of detail. We
describe a hybrid DEVS/MPC environments via a knowl-
edge interchange broker. We conclude with a comparison
of this work with another that employs the Simu-
link/MATLAB environment.

1 INTRODUCTION

In the semiconductor supply-chain, models of decision
planning and manufacturing processes are essential to deal
with frequently changing customer demands while remain-
ing financially competitive (Kempf 2004). While there ex-
ist well-known approaches to model complex decision and

256
process models independently, modeling of their interac-
tions depends mostly on customized abstractions viewed
from decision models or simulation models. For example,
we can consider discrete event and model predictive con-
trol to represent process dynamics and decision controls
that can manage material flow of a semiconductor supply-
chain, respectively. Discrete Event Simulation (DES) is
generally considered suitable for modeling and simulating
the operations (processes) of semiconductor supply-chain
network systems. Likewise, a variety of optimization algo-
rithms are most suitable for planning. An attractive ap-
proach for planning is known as Model Predictive Control
(MPC) (Wang, Rivera and Kempf 2005). Unlike Linear or
Integer Programming which is considered for strategic
control of supply-chain processes, MPC is aimed at tactical
control. Tactical control is concerned with short term
(daily to several weeks) decision making whereas strategic
control focuses on long term decisions (few to several
months).

Use of different modeling methodologies requires in-
tegrating the process dynamics and decision planning.
Such integration could be specified at different levels of
abstraction. Integration of models could be via low-level
programming, high-level interoperability techniques, or
multi-model composability approaches. The basic concept
and approach for Knowledge Interchange Broker (KIB)
was proposed to support multi-formalism model composi-
tion [i.e., discrete-event and agent models (Sarjoughian and
Plummer 2002) and more recently has been used for com-
posing discrete-event and linear program models for semi-

Sarjoughian, Huang, Wang, Rivera, Kempf, Godding, and Mittelmann

conductor supply-chain networks (Godding, Sarjoughian
and Kempf 2004)]. The KIB prescribes data and control
mapping, synchronization, concurrency and timing across
composed formalisms. Given these basic capabilities,
composition of different modeling formalisms are specified
in terms of generalized and domain-specific syntax and
semantics.

In this paper we describe a prototype environment
where a discrete event semiconductor process model is
composed with a model predictive control decision model.
In Section 2, we highlight closely related work in modeling
and simulation of semiconductor supply-chain networks
considered in this paper. In Sections 3 and 4, we describe
the DES and MPC models that are to be composed. In
Section 5, we describe a general approach to composing
DES and MPC modeling approaches. A prototyped envi-
ronment integrating the DEVSJAVA and MATLAB envi-
ronments is described in Section 6. Conclusions and future
work are discussed in Section 7.

2 RELATED WORK

Numerous articles have been devoted to the study of com-
bining manufacturing processes and decision control mod-
els for the domain of semiconductor supply-chain net-
works. A common approach is to develop customized
code to integrate different simulation and planning envi-
ronments. These customizations may use a variety of soft-
ware engineering techniques ranging from low-level pro-
gramming to middleware technologies where
interoperability concerns between disparate implementa-
tion can be systematically accounted for. These approaches
primarily rely on interoperability to handle model compos-
ability.

Recently an agent framework has been proposed as a
common basis to model and integrate different parts of
supply-chains. In particular, a multi-agent framework has
been developed where physical and decision models are
integrated using a library of common elements of a supply-
chain such as factories and control policies, and other ele-
ments that support their interactions (Swaminathan, Smith
and Sadeh 1998). An alternative approach has been devel-
oped using the concept of Knowledge Interchange Broker
to compose Discrete-Event Simulation (DES) and Linear
Programming (LP) optimization models (Godding, Sar-
joughian and Kempf 2004). In this work, appropriate data
transformations and control have been developed for mod-
els that can be described in the DEVS and LP formalisms.

To our knowledge, no modeling and simulation envi-
ronment can support hybrid discrete-event modeling and
model predictive control in general and in particular for
semiconductor supply-chain networks. Instead, there exist
approaches where MPC is used with continuous and dis-
crete-time models. For example, the commonly used Simu-
link/MATLAB environment has been used to develop a
257
discrete-time simulation model of the discrete event manu-
facturing processes with an MPC consisting of a linear,
time-invariant process model and a quadratic programming
optimization model (Wang, Rivera and Kempf 2005).

This Simulink/MATLAB block diagram discrete-time
modeling engine provides connectivity to the MPC tool
box. Synchronous interactions between discrete-time and
MPC models are supported for primitive data types, al-
though given the knowledge for the built-in Simu-
link/MATALB data and control schemes, customized ex-
change may be developed. These customized interactions,
however, seem difficult to support in a generic setting and
thus rely on ad-hoc customization in developing process
and MPC models and, more importantly, their combina-
tion. This observation can be made about other environ-
ments where a core modeling and simulation paradigm is
extended with others using a combination of interoperabil-
ity and software engineering techniques.

Finally, in recent years, model composability has at-
tracted researchers and increasingly turned their attention
to developing concepts and techniques to tackle inherent
complexities associated with component-based model
specification. The main goal of these efforts is to develop
basic theories and techniques to tackle dissimilarities of
models to be synthesized using model abstractions, meta-
modeling, and model transformation [for examples see
(Sarjoughian and Cellier 2001; Mosterman and Vanghe-
luwe 2002; Davis and Anderson 2004)].

3 PHYSICAL PROCESS MODELING

Common physical models of manufacturing a supply-chain
network consists of four types of nodes (models). These
are inventory, factory, shipping link, and customer. These
entities have common structures and behaviors. It is, there-
fore, important to develop a common interface specifica-
tion for these nodes. Each node type must be able to re-
ceive materials or products (data) and accept decision
commands (control). Specific functions need to be speci-
fied for each node type. Generally material flow is as-
sumed to be uni-directional (feed-forward) from the sup-
plier to final customers. Control flow, however, may
include feedback.

Release (or receipt) of materials from inventory (or
other nodes) can be characterized in terms of (i) quantity,
(ii) type, (iii) time, and (iv) destination. Quantity refers to
the number of (specific) items to be built and/or sent out.
Type distinguishes among different kinds of materials to be
sent out. Time refers to a specific time instance for release
of materials. Destination refers to nodes that are to receive
the released materials.

The inventory model has capacity and delay. The
states of the inventory model (e.g., Die and Package) in-
clude inventory levels (possibly stochastic) for each prod-

Sarjoughian, Huang, Wang, Rivera, Kempf, Godding, and Mittelmann

uct it can hold. Inventory stores materials at the time they
are received and releases them as it is instructed.

The factory model represents manufacturing, assem-
bly, test, and finish processes, or some combination such as
assembly and test (see Figure 1). It can have capacity,
throughput time (TPT), and yield. The actual values of TPT
and yield are generally stochastic; it may depend on the
current load. The factory node can change, assemble, and
split products. With the change operation, one input prod-
uct is made into another product. For example, as shown in
Figure 1, raw silicon wafers are fabricated into die and
then tested in Fab/Test1. The assembly operation repre-
sents two or more products that are assembled into one
product. In the Assembly/Test2, one package must com-
bine with one die. There must exist enough packages and
dies to begin their assembly into semi-finished goods. The
split operation involves the manufacturing of two products
with different properties. For example, the items coming
into Assembly/Test2 may be stochastically split into two
bins, one of which contains high-speed devices while the
other contains low-speed devices. This kind of separation
can also be modeled as two separate inventories. The as-
sembly operation is generally controlled externally (via de-
cision models), while the split operation is a characteriza-
tion of the factory itself.

The shipping node models transportation delay. It can
be thought of as a specialized factory model where it can-
not change products. The customer node models customer
behavior. It can send product demands to both the decision
system and process system (e.g., customer warehouse) for
decision making and order processing respectively. Two
types of customer demands may be modeled: forecasting
demands and actual demands.

Fab/Test1Raw
Resource Die Semi-

Finished
Assembly/

Test2 Finish Customer
Warehouse

Shipping

Customer

Manufacturing Process Network Package

Fab/Test1Raw
Resource Die Semi-

Finished
Assembly/

Test2 Finish Customer
Warehouse

Shipping

Customer

Manufacturing Process Network Package

Figure 1: Semiconductor Manufacturing Process Network

Ports can be used to represent input/output interfaces

for all network nodes. The ports are distinguishable as data
and control input and output ports (Singh, Sarjoughian and
Godding 2004). A node may have multiple data ports to
support sending different products to multiple destinations.
The decisions of how much (quantity), what (material
type), time (when to send), and destination are determined
based on external information that is local to the process
model. For example, where to send material is determined
by a decision model and product split is determined by the
manufacturing node.
258
External and local controls are defined for the supply-
chain network nodes. The external control represents the
control commands from the decision model to the supply-
chain network nodes. For example, the release commands
for each inventory can be determined using an optimization
scheme given the current inventory levels, factory work-in-
progress (WIP), customer demands and some constraints
among them. Some decisions, however, may be formulated
locally. For example, an inventory may release a quantity
of products given the external control release command.
However, an inventory’s external control release may be
constrained given the maximum capacity of the receiving
(downstream) node and its available inventory level. Such
a local control policy is shown in Figure 2.

∑
available
quantity

release command

maximum
downstream capacity

actual release

external control

local control

∑∑
available
quantity

release command

maximum
downstream capacity

actual release

external control

local control

Figure 2: Local Control Policy for Inventory

3.1 DEVS Models

The above manufacturing process network dynamics are
modeled and simulated using the Discrete Event System
Specification (Zeigler, Praehofer and Kim 2000). This ap-
proach supports developing models with well-defined
structures and behaviors. It offers a framework for model-
ing and simulating discrete or continuous systems as
atomic and hierarchical coupled models. The simulation of
models is based on a simulation protocol that ensures cor-
rect execution of the models—i.e., enforcing causality,
concurrency, and timing among atomic and coupled mod-
els.

Atomic models have input/output ports and values.
The behavior of the atomic model is specified in term of
state variables and functions. A model can have autono-
mous and reactive behavior specified in terms of internal
transition and external transition functions. Output func-
tion allows the model to send out messages. Time ad-
vanced function captures timing of models. Confluent
function can be used for modeling simultaneous internal
events and external events. Every coupled model has well-
defined interfaces, as in atomic models, and consists of one
or more atomic model or coupled models. Complex models
can be hierarchically constructed from these two types of
models.

Sarjoughian, Huang, Wang, Rivera, Kempf, Godding, and Mittelmann

F
M

s
m
c
c
a
e

v
i
I
a
t
m
i

4

M
c
c
p
d
d
v
M
u
c
l
i
o
2

a
c
c
M
F

External control flow Input port
Output portMaterial flow

Local control flow

Inventory-Factory Coupled Model

C
ontrol-in

D
ata-in

C
ontrol-out

D
ata-out

Inventory

C
ontrol-in

D
ata-in

C
ontrol-out

D
ata-out

localControl-in

Factory

C
ontrol-in

D
ata-in

C
ontrol-out

D
ata-out

localControl-out

External control flow Input port
Output portMaterial flow

Local control flow

External control flow Input port
Output portMaterial flow

Local control flow

Inventory-Factory Coupled Model

C
ontrol-in

D
ata-in

C
ontrol-out

D
ata-out

Inventory

C
ontrol-in

D
ata-in

C
ontrol-out

D
ata-out

localControl-in

Factory

C
ontrol-in

D
ata-in

C
ontrol-out

D
ata-out

localControl-out

igure 3: Structural Composition of Inventory and Factory
odels

The supply-chain network nodes lend themselves to be

pecified in terms of atomic and coupled models. These
odels can be interconnected to form an arbitrary supply-

hain network using coupling topologies. Figure 3 shows a
oupled model which includes one atomic inventory model
nd one atomic factory model where product and local and
xternal controls are separately modeled.

DEVSJAVA is a software environment that was de-
eloped based on the DEVS framework and implemented
n the JAVA programming language (DEVSJAVA 2002).
t provides a component-based (object-oriented) engine for
tomic and coupled simulation modeling. The combina-
ion of component-based modeling and software imple-

entation of DEVSJAVA provides flexibility and scalabil-
ty to develop the supply-chain network processing models.

 MODEL PREDCITIVE CONTROL MODEL

odel Predictive Control (MPC) is commonly used for
ontrol of highly stochastic processes where selection of
ontrol actions, based on optimization, is desired. The im-
ortance of MPC compared with traditional approaches is
ue to its suitability for large multi-variable systems, han-
ling of constraints placed on system input and output
ariables, and its relative ease-of-use and applicability. In
PC, current and historical measurements of a process are

sed to predict its behavior for future time instances. A
ontrol-relevant objective function is optimized for calcu-
ating a sequence of future control commands that can sat-
sfy some predefined system constraints. For details of the
bjective function, refer to (Wang, Rivera and Kempf
005).

It has been shown that MPC can be used effectively as
 tactical controller for high volume supply-chain semi-
onductor networks having capacitated, nonlinear, and sto-
hastic demands (Wang, Rivera and Kempf 2005). An
PC design for semiconductor supply-chain is shown in

igure 4. It consists of a System Prediction Model and an
259
Optimizer. The real system has been modeled using
DEVSJAVA. In this paper, the real-system is replaced with
a DEVS simulation model. In this study, the operation of
MPC can be described informally as follows. The real sys-
tem (i.e., simulatable DEVS process model) sends its cur-
rent outputs (e.g., semi-finished goods inventory level) to
the system prediction model given measured disturbances
(i.e., actual customer demand). The system prediction
model then computes future outputs (i.e., controlled out-
puts) for some finite number of time steps. The error be-
tween future outputs and target trajectories (i.e., expected
customer demand) is sent to the optimizer where optimized
control outputs (referred to as manipulated variables) are
calculated based on some constraints and objective func-
tions over some time horizon—i.e., moving horizon (for
manipulated variables) and prediction horizon (for con-
trolled variables). This optimization will be repeated using
the receding horizon concept once the new information is
available. In addition, the MPC has a filter gain that can
respond quickly to inevitable signal to noise ratio changes
while avoiding undesirable oscillatory control regimes.
The predictive control for the first time step is sent to
simulated system as well as the system prediction model.
The above steps are repeated using the updated simulated
system states and disturbances for a desired simulation pe-
riod.

Real System or
Simulated System

System
Prediction

Model

Output variables Y(k)
(inventory levels)

Future outputs
Y(k+1)…Y(k+P)

Target trajectory
r(k)…r(k+P)

─

+

Objective functions Constraints

Manipulated variables U(k)
(starts of factories)

MPC

Measured disturbances D(k)
(actual customer demand)

Measured disturbance
with anticipation D’(k)
(customer forecasted

demands)

Future errors
Optimizer

Real System or
Simulated System

System
Prediction

Model

Output variables Y(k)
(inventory levels)

Future outputs
Y(k+1)…Y(k+P)

Target trajectory
r(k)…r(k+P)

─

+

Objective functions Constraints

Manipulated variables U(k)
(starts of factories)

MPC

Measured disturbances D(k)
(actual customer demand)

Measured disturbance
with anticipation D’(k)
(customer forecasted

demands)

Future errors
Optimizer

Figure 4: Canonical MPC Model

The MPC is supported by commercial tools such as

MATLAB (Mathworks 2002). In our work, the
MATLAB’s QP solver is replaced with the more efficient
and robust MATLAB-QP version of the interior point NLP
code LOQO (Vanderbei 1999). MATLAB supports a
graphical user interface for modeling and observing simu-
lation results.

Sarjoughian, Huang, Wang, Rivera, Kempf, Godding, and Mittelmann

(

5 COMPOSING DEVS AND MPC USING KIB

The key concept behind Knowledge Interchange Broker is
the ability to compose models even though each model has
its own distinct syntax and semantics. Clearly, not only
must each model be executed using its own well-defined
protocol, but their interoperation must also be guaranteed
correct. In the case of DEVS and MPC, the KIB’s execu-
tion engine is designed to ensure that the DEVSJAVA
simulation and the MATLAB solver interact correctly.
Next, we detail the generic KIB approach for composing
and interoperating the classes of DEVS and MPC modeling
and simulation paradigms.

For tactical control of a semiconductor supply-chain, we
consider composing a discrete event simulation (i.e., DEVS)
and a tactical controller (i.e., MPC) for the simple example
shown in Figure 4. The system prediction model of the
DEVS Process Model used within the MPC is modeled as
discrete linear and time-invariant model (see Figure 4). The
system predictive model is described as in equation (1).

kk
kvkukk

CXY
DBUBAXX

=
++=

+
+
1
1

where um
kU ℜ∈ is a vector of manipulated variables,

xm
kX ℜ∈ is a vector of state variables, ym

kY ℜ∈ is a vec-

tor of output (or controlled) variables, and vm
kD ℜ∈ is a

vector of measured disturbance variables.

As a tactical controller, the MPC manipulates the
starts of the factories to satisfy the forecasted customer
demands (kD') given the actual customer demands (kD)
while maintaining the inventories at their desired levels.
The controlled variables are the inventory levels; the ma-
nipulated variables are starts of each factory; the customer
demands are treated as measured disturbance variables
with anticipations. We note that the MPC does not receive
the actual releases (see Figure 2) from the manufacturing
process model, although a different formulation of the
MPC may.

The MPC manipulates the start of the factories of the
semiconductor process model as follows. We have simpli-
fied the process model to have one product.

1. At the initialization, the inventory set-point trajectories

are specified. The model attributes such as average TPT
and yield for each factory model are set. The distribu-
tion of some stochastic behaviors, such as distribution
of the TPT and yield, are also set at initialization.

2. At time interval k, the MPC receives the current inven-
tory levels (kY). It also receives forecasted customer
demands (kD'). The system prediction model has the
previous inventory levels ,..., 21 −− kk YY , the previous
260
1)

starts of each factory 1, ,k k mU U− −L , and the previous
customer demands ,..., 21 −− kk DD . To calculate the next
start for each factory, the controller operates in two
phases:
(a) Estimation. The controller uses all the past measure-

ments, inputs, and the current controlled variables to
calculate the inventory levels for a prediction horizon

Pkkk YYYP +++≥ ,...,,),1integerfinitea(21 .
(b) Optimization. Values of the future inventory level tra-

jectories, anticipated customer demands, and con-
straints are specified over a finite horizon of future
sampling instants Pkkk +++ ,,2,1 K . By solving a
constraint optimization problem, it computes the starts
of each factory in the future hori-
zon 11,...,,),1M(−++≥≥ Mkkk UUUPM .

3. The starts at time k (kU) are sent to the process simu-
lation model. Each inventory model releases products
to its downstream factory given its local control policy
shown in Figure 2.

4. At the next time interval k+1, continue with step 2.

5.1 Structural Composition Specification

Specification of model compositions needs to support
structural composition of DEVS and MPC models. As de-
scribed earlier, (data and control) input and output ports are
used as interface structures for DEVS models to interact
with DEVS and non-DEVS model components. The inter-
face structure of an (atomic or coupled) model consists of
sets of input and output ports with values to be exchanged
with model components. An example of structural specifi-
cation of an inventory model is given as equation (2).

{(,), (,),
(,)}

{(,), (, [,])}

X data in Lots control in Command
localControl in Capacity

Y data out Lots control out BOH Released

= − −
−

= − −

(2)

The set of inputs and outputs are X and, Y with (port,
message) representing port name and message type. The
message can be complex such as Lot which contains a col-
lection of multiple product types with different cardinal-
ities. In DEVSJAVA, each lot is modeled to have a default
or user-specified size (e.g., 100 products per lot).

For the MPC model, its discrete-time system model
(denoted as I10, I20, I30, M10, M20 and M30 in Figure 5) and
optimizer do not use ports. Instead, the interface structural
specification of MPC is “vectors of variables.” The input to
the controller from the simulation system is a vector of
controlled variables and a vector of measured disturbance
variables, while the output from the controller to the simu-
lated system is a vector of manipulated variables (see Fig-
ure 5). Table 1 shows an example of input/output mapping
between the DEVS and MPC models.

Sarjoughian, Huang, Wang, Rivera, Kempf, Godding, and Mittelmann

Model Predictive Controller

Fab/Test1Raw
Resource

Semi-
Finished

Assembly/
Test2 Finish Customer

Warehouse

Shipping

Customer

Manufacturing Process Network

Die/
Package

I10

Knowledge Interchange Broker

M20M10 I20 M30 I30

Input vector (u)Output vector (ctrlOut)

BOH

CommandCommand Command

BOH BOH Demand

Model Predictive Controller

Fab/Test1Raw
Resource

Semi-
Finished

Assembly/
Test2 Finish Customer

Warehouse

Shipping

Customer

Manufacturing Process Network

Die/
Package

I10

Knowledge Interchange Broker

M20M10 I20 M30 I30

Input vector (u)Output vector (ctrlOut)

BOH

CommandCommand Command

BOH BOH Demand

Figure 5: Composition of Manufacturing Process Network
and MPC via KIB

The structural specification must provide well-defined

structural information translation from the DEVS model to
the MPC and vice versa. Clearly, the data types described
in the two modeling formalisms are different. Messages
used in the DEVS models are of type Entity, which is the
base data structure used for building messages with arbi-
trary complexity. The MPC variable types, in contrast,
generally have primitive types (e.g., reals), although com-
plex variable types may be defined by users.

Table 1: Message Mapping for DEVS and MPC Models

DEVS Model MPC Model
(Inventory, control-
out, BOH)

yi, a member of vector my con-
trolled variables

(Inventory, control-
in, command)

ui, a member of vector mu ma-
nipulated variables

(Customer, control-
out, demand)

vi, a member of vector mv
measured disturbance variables

The principles of knowledge reduction and augmenta-

tion are important for handling differences between two
modeling formalisms. Knowledge reduction is generally
simpler as we throw away information in the process of
translating one message type to another. For example, the
message Beginning On Hand (BOH) in the DEVS inven-
tory model represents current inventory level. It may con-
tain not only the product amount but also the product
name. When the message is transformed to an MPC vari-
able, the name may not be necessary. In contrast, knowl-
edge augmentation is more difficult. For example, the ma-
nipulated variable sent from the MPC to the DEVS model
represents a release command for some specific product
from a specific inventory. How to augment (map) the MPC
release command such that it becomes a DEVS message
needs to be specified based on the MPC and DEVS formal-
isms (see Section 6 for details).

Knowledge reduction and augmentation can contain
data (message) aggregation and disaggregation. The former
refers to combining multiple data values (or a set of mes-
261
sages) into a single data value (a message) and the latter
refers to the inverse. For example, an MPC data variable
can be disaggregated so that it can be sent to multiple
DEVS input ports.

5.2 Behavioral Composition Specification

Execution of composed DEVS and MPC models needs to
be guaranteed correct. To satisfy correct execution of proc-
ess and decision models, we need to devise synchroniza-
tion and timing that conform to the DEVS simulation pro-
tocol and the MPC’s simulation algorithm and solver.

The DEVS specification includes a set of states and
transition functions. The state variables (e.g., average
throughput time and average yield in the factory model)
must be updated such that output to input causality and
timing are satisfied. This requires ensuring the ordering of
external, internal, and output function executions while in-
teracting with the KIB (and therefore the MPC).

Likewise, the execution of the MPC must be ensured
given its interaction with the KIB. The system prediction
model has a homomorphic relation to the DEVS process
mode. The optimizer is a set of constraints and objective
function specification based on mass conservation relation-
ships among the inventory, manufacturing, and transporta-
tion models. For example, the mass conservation relation-
ships for Die/Package inventory level (I10) and for
Fab/Test1 WIP (M10) can respectively be expressed as
equation (3) (Wang, Rivera and Kempf 2005):

)()()()1(
)()()()1(

11111010

21111010

θ
θ

−−+=+
−−+=+

kCYkCkWIPkWIP
kCkCYkIkI

 (3)

The variables θ1 and Y1 represent the nominal
throughput time and yield for the Fab/Test1 node, while C1
and C2 represent the daily starts that constitute inflow and
outflow streams for I10 and M10. Similar constraints can be
written for other elements of the manufacturing process.

Consistent model attributes of the composed model—
e.g., stochastic and non-stochastic TPT and Yield for the
simulated (e.g., Fab/Test1) and predictive factory (e.g.,
M10) models, respectively—are required. That is, the
common attributes of the process and decision models
must be kept consistent since they represent semantically
the same knowledge across the composed model. These
attributes, however, do not necessarily have to be identical,
but they carry the same information at different levels of
abstraction. The consistency of the model attributes and
their exchanges must be ensured by the KIB both at ini-
tialization of and during the simulation.

Both DEVS and MPC models have well-defined timing
properties. The former has a continuous-time base while the
latter has a discrete-time base. Since the MPC models exe-
cute using time-stepping, the KIB’s input and output events
are synchronized using a discrete time clock. This is appro-

Sarjoughian, Huang, Wang, Rivera, Kempf, Godding, and Mittelmann

priate since the physical process model timing is a multiple
of the decision model timing. For example, a process simu-
lation execution cycle can be hourly, daily, or weekly. The
decision planning can run at the same frequency as the proc-
ess model simulation, faster, or slower. For example, the
process model can be simulated using daily time-step while
the planning can have a weekly time horizon.

From the MPC point of view, when it receives the
process model states (i.e., controlled variables), the con-
troller assumes the process model states remain static while
it computes the values of the manipulated variables and
gives control back to the process model—until it receives
the process model states for the next time step. For the
DEVS models, the timing period from sending out state in-
formation to receiving control messages is dependent on
the frequency selected between the two models. If the
process and decision models have the same frequency, the
process model must receive control messages before it
changes its states and starts a new cycle. If they run in dif-
ferent frequencies, the process model must receive the con-
trol messages at the correct time step.

For the DEVS/MPC composition, the KIB is designed
to support synchronous control. In this mode, once the
DEVS simulator sends outputs to the KIB, the simulation
stops until it receives the MPC manipulated variables. This
form of synchronization needs to only maintain a single
logical clock for executing composed models. In the proto-
type described next, the KIB execution protocol synchroni-
zation is defined in terms of the DEVS simulation event
ordering and clock.

6 PROTOTYPE KIB DESIGN

A prototype of the KIB targeted for composing DEVS and
MPC models was designed and implemented using parts of
two existing KIBs (Sarjoughian and Plummer 2002; God-
ding, Sarjoughian and Kempf 2004). The DEVS/MPC
simplified architecture is shown in Figure 6. It consists of
DEVSJAVA, KIB, and MATLAB.

JAVA

KIB

MATLAB

MPC FunctionMPC-Bridgecoupling

DEVSJAVA

JNIProcess Models

JAVA

KIB

MATLAB

MPC FunctionMPC-Bridgecoupling

DEVSJAVA

JNIProcess ModelsProcess Models

Figure 6: DEVS/MPC with KIB Conceptual Architecture

A software design and implementation of the KIB is

shown in Figure 7. It includes DEVSDecisionInterface,
KIB Data Transformation Manager, and MPCInterface.
The DEVSDecisionInterface is the interface between
DEVSJAVA and the KIB. The KIB Data Transform Man-
ager handles data transformation (mappings). The
MPCInterface is an interface between MATLAB and the
KIB.
26
KIB Data
Transform Manager

JN
I

(JM
atLink)

KIB

KIB Data
Transform Spec

M
P

C
-

B
ridge

D
E

V
S

D
ecisionInterface

M
P

C
Interface

KIB Data
Transform Manager

JN
I

(JM
atLink)

KIB

KIB Data
Transform Spec

M
P

C
-

B
ridge

D
E

V
S

D
ecisionInterface

M
P

C
Interface

Figure 7: Software Components in KIB

6.1 DEVS Decision Interface and MPC-Bridge

The responsibility of this interface is to pass messages
from the DEVS models to the KIB and vice versa. The
messages include initMessage and statusMessage from
DEVS to KIB and controlMessage from KIB to DEVS.

The process model can interact with the KIB via the
DEVSDecisionInterface object method invocations or via
ports (see Figure 8). If we choose method invocation, it
turns out that the communication between the process
model and the KIB is synchronous. If we use ports, we can
take advantage of the DEVS simulation control protocol to
handle timing properties for the composed DEVS and
MPC model. Therefore, a special atomic model MPC-
Bridge was developed as a proxy between the KIB and
DEVS models. It collects state information from the proc-
ess models through the input ports and then transfers them
to the KIB.

MPC-Bridge

StatusMessage
(from Inventory models)

TimeMessage
(from Clock model)

ReleaseMessage
(to Inventory models)

MPC-Bridge

StatusMessage
(from Inventory models)

TimeMessage
(from Clock model)

ReleaseMessage
(to Inventory models)

Figure 8: MPC-Bridge Structural Specification

Similarly, the MPC-Bridge as shown in Figure 8 re-

ceives the control messages (i.e., MPC manipulated vari-
ables) from the KIB which are then sent to the process
models at appropriate time intervals. The interaction of the
MPC-Bridge and the process models are through DEVS
ports, while the interaction between the MPC-Bridge and
the KIB uses method invocations. We note that the MPC-
Bridge supports the KIB in two ways. First, it acts as a
bridge between KIB and DEVS and second it provides
message synchronization with MPC—data sent to the MPC
model and commands sent to the DEVS model.
2

Sarjoughian, Huang, Wang, Rivera, Kempf, Godding, and Mittelmann

6.2 MPCInterface

This interface defines interactions between the KIB and the
MPC which is specified as a MATLAB function. The MPC
is defined as shown in equation (4).

34 ,,where
),(

ℜ∈ℜ∈Ν∈
=

ctrlOututime
utimenmpcFunctioctrlOutfunction (4)

Here time is an input variable representing a discre-
tized time index. The controlled input variable u is a vec-
tor. The manipulated variable ctrlOut is the output vari-
able. Both u and ctrlOut variables are of the same type
(i.e., double).

The functionality of the MPCInterface includes (a)
loading the MPC function file to the appropriate internal
MATLAB workspace, (b) transforming the MPC model in
the KIB to the corresponding MATLAB function call, (c)
making the MATLAB call through the JMatLink (Müller
2002) which is based on the Java JNI, and (d) transforming
the output variables from MATLAB to the KIB.

As mentioned above, the MPC needs the real-system’s
(i.e., simulation model’s) previous input, output, and state
variables to calculate its next manipulated variables (see
Figure 5). This previous information can be stored in MPC
function space instead of the KIB. At initialization, the
MATLAB engine creates a workspace for MATLAB func-
tions, in which the previous information can be stored until
it is closed. Therefore, given the MATLAB environment,
it is not necessary to transfer its previous state information
back and forth to the KIB.

6.3 KIB Data Transformation Manager

This main responsibility of the transformation manager is
to coordinate interactions between the DEVSDecisionIn-
terface and the MPCInterface given the defined data and
control mappings and transformations. The main function-
alities of the manager can be summarized as

 Maintain DEVS models and MPC function informa-
tion and their composition specifications;

 Transform data information between the two modeling
formalisms;

 Control the interactive execution between the two
modeling formalisms.

The manager contains two types of data nodes:

DEVSModelNode and MPCFunction to keep the DEVS
and MPC function information, respectively. Each process
model in DEVS has a corresponding DEVSModelNode in
the KIB to store its information (e.g., status information).
The MPCFunction consists of MPCParameters, each of
which has well-defined mapping information to the
DEVSModelNode. The mapping information corresponds
to the KIB composition specified in XML, which is a stan-
dardized schema for data exchange.
263
A simplified structural composition specification is
shown in Figure 9. The XML specification shows the
DEVS output variables and the MATLAB input variables
(see Equation (4)). The sequence diagram shown in Figure
10 illustrates the processing taking place inside the KIB
including message mapping and transformation. It shows
message passing and method invocations from the MPC-
Bridge to the MPCInterface.

<?xml version="1.0" encoding="utf-8" ?>
<!-- MATLAB function configuration for interacting with DEVS -->
<FUNCTION Name="mpcFunction">

<!--type can be customized-->
<INPUT Name="Time" Type="double" size="1">

<VALUE>0</VALUE>
</INPUT>
<INPUT Name="u" Type="double" size="4">

<VALUE Model=“DiePackage" Product="x">0</VALUE>
<VALUE Model="SFGI" Product="x">0</VALUE>
<VALUE Model="CW" Product="x">0</VALUE>
<VALUE Model="Customer" Product="x">0</VALUE>

</INPUT>
<OUTPUT Name="yOut" Type="double" size="4">

<VALUE Model="RawI" Product="x" Destination="Fab"></VALUE>
<VALUE Model=“DiePackage " Product="x" Destination="AT"></VALUE>
<VALUE Model="SFGI" Product="x" Destination="Finish"></VALUE>
<VALUE Model="CW" Product="x" Destination="Shipping"></VALUE>
</OUTPUT>

</FUNCTION>

Figure 9: KIB Composition Specification

: MPCBridgeMPCB: MPC-Bridge : DEVSDecisionInterfaceDDI: DEVSDecisionInterface : KIBManagerKIBM: KIBManager : MPCInterfaceMPCI : MPCInterface

1: processStatusMessages()

2: updateStatusInformation()

3: transformFromStatusToControInput()

4: makeMPCCall()

5: transformFromControlOutpu
tToCommand()

: MPCBridgeMPCB: MPC-Bridge : DEVSDecisionInterfaceDDI: DEVSDecisionInterface : KIBManagerKIBM: KIBManager : MPCInterfaceMPCI : MPCInterface

1: processStatusMessages()

2: updateStatusInformation()

3: transformFromStatusToControInput()

4: makeMPCCall()

5: transformFromControlOutpu
tToCommand()

Figure 10: Data and Control Mapping Snippet

6.4 Simulation Test Case

The example described in earlier sections has been devel-
oped using the DEVS/MPC approach. The manufacturing
network model components are described as atomic and
coupled components which interact with the MPC model
described above. The average throughput times and ca-
pacities [days, # of products] for Fab/Test1, Assem-
bly/Test2, Finish, and Shipping are [35, 45000], [6, 7500],
[2, 3000], and [1, 2500], respectively. The delays and tar-
gets [days, # of products] for Die/Package, Semi-finished
goods, and Customer Warehouse inventories are [1, 5712],
[1, 2856], and [1, 1787], respectively. The customer input
demand is set to vary between 939 and 968 starting from
day 61 for 577 days (see Figure 11).

The MPC model controls the inventory levels while
minimizing changes in the manipulated factory starts. The
optimization model uses the inventories to absorb stochas-

Sarjoughian, Huang, Wang, Rivera, Kempf, Godding, and Mittelmann

ticity present in the factory models while meeting customer
demand. The MPC model is tuned via a suitable filter gain
and forecast window for the MPC given the setting of the
factory capacities. The combined tuning of the MPC and
configuration of the process model handles mismatches be-
tween the discrete event model and its deterministic predic-
tive counterpart. The MPC feedback control (enabled with
a filter gain greater than zero) handles the difference be-
tween actual average and forecast demands using the sys-
tem prediction model forecasting window.

We have selected the filter gains 0.01 and 0.05 for
slow and fast control of the factory starts. The two sets of
simulation results shown in Figure 11 use lot size equal to
20—i.e., every lot is assigned a value generated using a tri-
angular distribution function. Fine-grain control of the fac-
tory starts is achieved with the filter gain set to 0.01. In
general, while a filter gain greater than zero is necessary
for having feedback, its value need to be determined judi-
ciously in order to have an acceptable tradeoff between fast
response to changes in the process model while preventing
potential instability in starts of factories.

The above simulation results are consistent with those
that were obtained using the Simulink/MATLAB environ-
ment. Clearly, identical behavior cannot be guaranteed be-
tween the DEVSJAVA/MATLAB and Simu-
link/MATLAB due to (i) the stochasticity in the factories
and (ii) the discrete-event and discrete-time model specifi-
cations for the process model components. The correctness
of the prototype environment, however, was verified using
standard step, impulse, and sinusoidal demands where sto-
chasticity is absent in the manufacturing process network.
264
7 CONCLUSIONS

Tactical (weekly, daily, or hourly) control of a semiconduc-
tor supply-chain network via model predictive control offers
important and unique capabilities to decision-makers. We
have presented a novel hybrid modeling approach using dis-
crete-event and model predictive control enabled by a
Knowledge Interchange Broker. The realization of this ap-
proach supports transparent and systematic specification of
interactions between process dynamics and control decisions
without relying on any single monolithic modeling para-
digm. From a multi-formalism modeling perspective, we can
employ high-level model composition as opposed to embed-
ding model interactions inside the process and control mod-
els as is required when using interoperability in combination
with model exchange standards based on XML and its cur-
rent and proposed extensions (XML 2004).

A feature of the DEVS/MPC environment is its inher-
ent support for scalable model composability and therefore
simulation interoperability—i.e., not only can manufactur-
ing process networks and model predictive control grow in
their complexity, but also in their interactions (data and
control message mappings and transformations). Further-
more, this approach can lend itself toward domain specific
modeling which is becoming appealing for complex, large-
scale domains such as the one considered in this paper.

Investigation is underway to enable the presented
knowledge interchange broker to support asynchronous
data and control. With this capability, we could build an
environment where tactical and strategic decision control
could be composed with manufacturing process networks.

Die/Package Inventory

5000
5200
5400
5600
5800
6000
6200

110 160 210 260 310 360 410 460 510 560 610

filtergain=.05 filtergain=.01

Semi-Finished Inventory

2400

2600

2800

3000

3200

110 160 210 260 310 360 410 460 510 560 610

filtergain=.05 filtergain=.01

Shipping & Demands

0
200
400
600
800

1000
1200

1 51 101 151 201 251 301 351 401 451 501 551 601

Demands filtergain=.05 filtergain=.01

Starts on Fab/Test1

900

950

1000

1050

1100

110 160 210 260 310 360 410 460 510 560 610

filtergain=.05 filtergain=.01

Starts on Assembly/Test2

900

950

1000

1050

110 160 210 260 310 360 410 460 510 560 610

filtergain=.05 filtergain=.01

Starts on Finish

900

920

940

960

980

1000

110 160 210 260 310 360 410 460 510 560 610

filtergain=.05 filtergain=.01

Die/Package Inventory

5000
5200
5400
5600
5800
6000
6200

110 160 210 260 310 360 410 460 510 560 610

filtergain=.05 filtergain=.01

Semi-Finished Inventory

2400

2600

2800

3000

3200

110 160 210 260 310 360 410 460 510 560 610

filtergain=.05 filtergain=.01

Shipping & Demands

0
200
400
600
800

1000
1200

1 51 101 151 201 251 301 351 401 451 501 551 601

Demands filtergain=.05 filtergain=.01

Starts on Fab/Test1

900

950

1000

1050

1100

110 160 210 260 310 360 410 460 510 560 610

filtergain=.05 filtergain=.01

Starts on Assembly/Test2

900

950

1000

1050

110 160 210 260 310 360 410 460 510 560 610

filtergain=.05 filtergain=.01

Starts on Finish

900

920

940

960

980

1000

110 160 210 260 310 360 410 460 510 560 610

filtergain=.05 filtergain=.01
Figure 11: Simulation Plots of Inventory Levels and Factory Starts

Sarjoughian, Huang, Godding, Wang, Rivera, Kempf, and Mittelmann

Moreover, asynchronicity may offer a flexible basis for
distributed and efficient large-scale semiconductor supply-
chain system simulations. Finally, customized aggregation
and disaggregation models are important for handling user-
level domain-specific transformation for the semiconductor
supply chain. This capability in combination with visually
driven user interfaces would make this approach accessible
to a larger community of stakeholders including decision-
makers.

ACKNOWLEDGMENTS

This research has been supported by the NSF Grant No.
DMI-0432439 and grants from Intel Research Council
since 2003. Their support is gratefully acknowledged. We
would like to thank the members of the Semiconductor
Supply-Chain research group at ASU/Intel including Dieter
Armbruster and Christian Ringhofer of the Mathematics
Department at ASU and Kirk Smith at Intel Corporation.

REFERENCES

Davis, P. K. and R. H. Anderson. 2004. Improving the
Composability of Department of Defense Models and
Simulations. Santa Monica, CA: Rand.

DEVSJAVA. 2002. DEVSJAVA Modeling & Simulation
Tool. http://www.acims.arizona.edu/SOFTWARE
[Accessed February, 2005].

Godding, G. W., H. S. Sarjoughian and K. G. Kempf.
2004. Multi-formalism modeling approach for semi-
conductor supply/demand networks. Proceedings of
the 2004 Winter Simulation Conference, ed. R. G. In-
galls, M. D. Rossetti, J. S. Smith, and B. A. Peters,
Piscataway, NJ: Institute of Electrical and Electronics
Engineers.

Kempf, K. G. 2004. Control-oriented approaches to supply
chain management in semiconductor manufacturing.
Proceedings of IEEE American Control Conference,
Boston, MA.

Mathworks. 2002. MATLAB.
http://www.mathworks.com/.

Mosterman, P. J. and H. Vangheluwe. 2002. Guest edito-
rial: Special issue on computer automated multi-
paradigm modeling. ACM Transactions on Modeling
and Computer Simulation. 12(4): 249-255.

Müller, S. 2002. JMatLink. http://www.held-
mueller.de/JMatLink/. [Retrieved November 2004].

Sarjoughian, H. S. and F. E. Cellier, eds. 2001. Discrete
Event Modeling and Simulation Technologies: A Tap-
estry of Systems and AI-Based Theories and Method-
ologies, Springer Verlag.

Sarjoughian, H. S. and J. Plummer. 2002. Design and im-
plementation of a bridge between RAP and DEVS.
Tempe, Arizona, Computer Science and Engineering,
Arizona State University: 1-26.

265
Singh, R., H. S. Sarjoughian and G. W. Godding. 2004.
Design of Scalable Simulation Models for Semicon-
ductor Manufacturing Processes. Summer Computer
Simulation Conference, San Jose, CA.

Swaminathan, J. M., S. F. Smith and N. M. Sadeh. 1998.
Modeling Supply Chain Dynamics: A Multiagent Ap-
proach. Decision Sciences, 29(3): 607-632.

Vanderbei, R. J. 1999. An interior point code for quadratic
programming. Optimization Methods and Software
11: 451-484.

Wang, W., D. E. Rivera and K. G. Kempf. 2005. A novel
model predictive control algorithm for supply chain
management in semiconductor manufacturing. Ameri-
can Control Conference, Portland, OR.

XML. 2004. eXtensbile Markup Language.
http://www.w3.org/XML/.

Zeigler, B. P., H. Praehofer and T. G. Kim. 2000. Theory
of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems,
Academic Press.

AUTHOR BIOGRAPHIES

HESSAM S. SARJOUGHIAN is Assistant Professor of
Computer Science & Engineering at ASU. His research in-
terests are in modeling frameworks including multi-
formalism and collaborative approaches, agent-based simu-
lation, and software architecture. For more information
visit http://www.acims.arizona.edu.

DONPING HUANG is a PhD student in the Computer
Science and Engineering department at ASU. Her research
includes modeling and simulation of distributed supply-
chain networks and software design. She can be contacted
at dongping.huang@asu.edu.

GARY W. GODDING is a Technologist at Intel Corpora-
tion and a PhD candidate in the Computer Science and En-
gineering department at ASU. His research includes mod-
eling & simulation of semiconductor supply-chain systems,
software architecture, and artificial intelligence. He can be
contacted at gary.godding@intel.com.

WENLIN WANG is a PhD candidate in the Chemical and
Materials Engineering Department, ASU. His research fo-
cus spans model predictive control for semiconductor sup-
ply-chain systems and control theory of complex proc-
esses. He can be contacted at wenlin.wang@asu.edu.

http://www.acims.arizona.edu/SOFTWARE
http://www.mathworks.com/
http://www.held-mueller.de/JMatLink/
http://www.held-mueller.de/JMatLink/
http://www.w3.org/XML/
http://www.acims.arizona.edu/
mailto:dongping.huang@asu.edu
mailto:gary.godding@intel.com
mailto:wenlin.wang@asu.edu

Sarjoughian, Huang, Wang, Rivera, Kempf, Godding, and Mittelmann

DANIEL E. RIVERA is Associate Professor Chemical
and Materials Engineering, ASU. His areas of research in-
clude control-oriented approaches to supply chain man-
agement and scalable enterprise systems, system identifica-
tion, and advanced control concepts. He can be contacted
at daniel.rivera@asu.edu.

KARL G. KEMPF is Director of Decision Technologies at
Intel Corporation and an Adjunct Professor at ASU. His re-
search interests span the optimization of manufacturing and
logistics planning and execution in semiconductor supply
chains including various forms of supply chain simulation.
He can be contacted at karl.g.kempf@intel.com.

HANS D. MITTLEMANN is Professor of Mathematics at
ASU. His research focuses on nonlinear optimization, par-
tial differential equations, and their combination. He can be
contacted at mittelmann@asu.edu.

266

mailto:daniel.rivera@asu.edu
mailto:karl.g.kempf@intel.com
mailto:mittelmann@asu.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

