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ABSTRACT 

Simulation modeling combined with decision control can 
offer important benefits for analysis, design, and operation 
of semiconductor supply-chain network systems. Detailed 
simulation of physical processes provides information for 
its controller to account for (expected) stochasticity present 
in the manufacturing processes.  In turn, the controller can 
provide (near) optimal decisions for the operation of the 
processes and thus handle uncertainty in customer de-
mands. In this paper, we describe an environment that syn-
thesizes Discrete-EVent System specification (DEVS) with 
Model Predictive Control (MPC) paradigms using a 
Knowledge Interchange Broker (KIB).  This environment 
uses the KIB to compose discrete event simulation and 
model predictive control models. This approach to com-
posability affords flexibility for studying semiconductor 
supply-chain manufacturing at varying levels of detail. We 
describe a hybrid DEVS/MPC environments via a knowl-
edge interchange broker. We conclude with a comparison 
of this work with another that employs the Simu-
link/MATLAB environment. 

1 INTRODUCTION 

In the semiconductor supply-chain, models of decision 
planning and manufacturing processes are essential to deal 
with frequently changing customer demands while remain-
ing financially competitive (Kempf 2004). While there ex-
ist well-known approaches to model complex decision and 
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process models independently, modeling of their interac-
tions depends mostly on customized abstractions viewed 
from decision models or simulation models. For example, 
we can consider discrete event and model predictive con-
trol to represent process dynamics and decision controls 
that can manage material flow of a semiconductor supply-
chain, respectively. Discrete Event Simulation (DES) is 
generally considered suitable for modeling and simulating 
the operations (processes) of semiconductor supply-chain 
network systems. Likewise, a variety of optimization algo-
rithms are most suitable for planning.  An attractive ap-
proach for planning is known as Model Predictive Control 
(MPC) (Wang, Rivera and Kempf 2005). Unlike Linear or 
Integer Programming which is considered for strategic 
control of supply-chain processes, MPC is aimed at tactical 
control. Tactical control is concerned with short term 
(daily to several weeks) decision making whereas strategic 
control focuses on long term decisions (few to several 
months).  

Use of different modeling methodologies requires in-
tegrating the process dynamics and decision planning. 
Such integration could be specified at different levels of 
abstraction. Integration of models could be via low-level 
programming, high-level interoperability techniques, or 
multi-model composability approaches. The basic concept 
and approach for Knowledge Interchange Broker (KIB) 
was proposed to support multi-formalism model composi-
tion [i.e., discrete-event and agent models (Sarjoughian and 
Plummer 2002) and more recently has been used for com-
posing discrete-event and linear program models for semi-
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conductor supply-chain networks (Godding, Sarjoughian 
and Kempf 2004)]. The KIB prescribes data and control 
mapping, synchronization, concurrency and timing across 
composed formalisms.  Given these basic capabilities, 
composition of different modeling formalisms are specified 
in terms of generalized and domain-specific syntax and 
semantics.   

In this paper we describe a prototype environment 
where a discrete event semiconductor process model is 
composed with a model predictive control decision model. 
In Section 2, we highlight closely related work in modeling 
and simulation of semiconductor supply-chain networks 
considered in this paper. In Sections 3 and 4, we describe 
the DES and MPC models that are to be composed.  In 
Section 5, we describe a general approach to composing 
DES and MPC modeling approaches. A prototyped envi-
ronment integrating the DEVSJAVA and MATLAB envi-
ronments is described in Section 6. Conclusions and future 
work are discussed in Section 7. 

2 RELATED WORK 

Numerous articles have been devoted to the study of com-
bining manufacturing processes and decision control mod-
els for the domain of semiconductor supply-chain net-
works.  A common approach is to develop customized 
code to integrate different simulation and planning envi-
ronments. These customizations may use a variety of soft-
ware engineering techniques ranging from low-level pro-
gramming to middleware technologies where 
interoperability concerns between disparate implementa-
tion can be systematically accounted for. These approaches 
primarily rely on interoperability to handle model compos-
ability.  

Recently an agent framework has been proposed as a 
common basis to model and integrate different parts of 
supply-chains. In particular, a multi-agent framework has 
been developed where physical and decision models are 
integrated using a library of common elements of a supply-
chain such as factories and control policies, and other ele-
ments that support their interactions (Swaminathan, Smith 
and Sadeh 1998). An alternative approach has been devel-
oped using the concept of Knowledge Interchange Broker 
to compose Discrete-Event Simulation (DES) and Linear 
Programming (LP) optimization models (Godding, Sar-
joughian and Kempf 2004). In this work, appropriate data 
transformations and control have been developed for mod-
els that can be described in the DEVS and LP formalisms. 

To our knowledge, no modeling and simulation envi-
ronment can support hybrid discrete-event modeling and 
model predictive control in general and in particular for 
semiconductor supply-chain networks. Instead, there exist 
approaches where MPC is used with continuous and dis-
crete-time models. For example, the commonly used Simu-
link/MATLAB environment has been used to develop a 
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discrete-time simulation model of the discrete event manu-
facturing processes with an MPC consisting of a linear, 
time-invariant process model and a quadratic programming 
optimization model (Wang, Rivera and Kempf 2005).  

This Simulink/MATLAB block diagram discrete-time 
modeling engine provides connectivity to the MPC tool 
box. Synchronous interactions between discrete-time and 
MPC models are supported for primitive data types, al-
though given the knowledge for the built-in Simu-
link/MATALB data and control schemes, customized ex-
change may be developed. These customized interactions, 
however, seem difficult to support in a generic setting and 
thus rely on ad-hoc customization in developing process 
and MPC models and, more importantly, their combina-
tion.  This observation can be made about other environ-
ments where a core modeling and simulation paradigm is 
extended with others using a combination of interoperabil-
ity and software engineering techniques. 

Finally, in recent years, model composability has at-
tracted researchers and increasingly turned their attention 
to developing concepts and techniques to tackle inherent 
complexities associated with component-based model 
specification. The main goal of these efforts is to develop 
basic theories and techniques to tackle dissimilarities of 
models to be synthesized using model abstractions, meta-
modeling, and model transformation [for examples see 
(Sarjoughian and Cellier 2001; Mosterman and Vanghe-
luwe 2002; Davis and Anderson 2004)]. 

3 PHYSICAL PROCESS MODELING 

Common physical models of manufacturing a supply-chain 
network consists of four types of nodes (models). These 
are inventory, factory, shipping link, and customer. These 
entities have common structures and behaviors. It is, there-
fore, important to develop a common interface specifica-
tion for these nodes. Each node type must be able to re-
ceive materials or products (data) and accept decision 
commands (control). Specific functions need to be speci-
fied for each node type. Generally material flow is as-
sumed to be uni-directional (feed-forward) from the sup-
plier to final customers. Control flow, however, may 
include feedback.    

Release (or receipt) of materials from inventory (or 
other nodes) can be characterized in terms of (i) quantity, 
(ii) type, (iii) time, and (iv) destination. Quantity refers to 
the number of (specific) items to be built and/or sent out. 
Type distinguishes among different kinds of materials to be 
sent out. Time refers to a specific time instance for release 
of materials. Destination refers to nodes that are to receive 
the released materials.  

The inventory model has capacity and delay. The 
states of the inventory model (e.g., Die and Package) in-
clude inventory levels (possibly stochastic) for each prod-
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uct it can hold. Inventory stores materials at the time they 
are received and releases them as it is instructed.    

The factory model represents manufacturing, assem-
bly, test, and finish processes, or some combination such as 
assembly and test (see Figure 1). It can have capacity, 
throughput time (TPT), and yield. The actual values of TPT 
and yield are generally stochastic; it may depend on the 
current load. The factory node can change, assemble, and 
split products.  With the change operation, one input prod-
uct is made into another product. For example, as shown in 
Figure 1, raw silicon wafers are fabricated into die and 
then tested in Fab/Test1. The assembly operation repre-
sents two or more products that are assembled into one 
product. In the Assembly/Test2, one package must com-
bine with one die. There must exist enough packages and 
dies to begin their assembly into semi-finished goods. The 
split operation involves the manufacturing of two products 
with different properties. For example, the items coming 
into Assembly/Test2 may be stochastically split into two 
bins, one of which contains high-speed devices while the 
other contains low-speed devices. This kind of separation 
can also be modeled as two separate inventories. The as-
sembly operation is generally controlled externally (via de-
cision models), while the split operation is a characteriza-
tion of the factory itself.  

The shipping node models transportation delay. It can 
be thought of as a specialized factory model where it can-
not change products. The customer node models customer 
behavior. It can send product demands to both the decision 
system and process system (e.g., customer warehouse) for 
decision making and order processing respectively. Two 
types of customer demands may be modeled: forecasting 
demands and actual demands. 
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Figure 1: Semiconductor Manufacturing Process Network 
 
Ports can be used to represent input/output interfaces 

for all network nodes. The ports are distinguishable as data 
and control input and output ports  (Singh, Sarjoughian and 
Godding 2004). A node may have multiple data ports to 
support sending different products to multiple destinations. 
The decisions of how much (quantity), what (material 
type), time (when to send), and destination are determined 
based on external information that is local to the process 
model. For example, where to send material is determined 
by a decision model and product split is determined by the 
manufacturing node.  
258
External and local controls are defined for the supply-
chain network nodes. The external control represents the 
control commands from the decision model to the supply-
chain network nodes.  For example, the release commands 
for each inventory can be determined using an optimization 
scheme given the current inventory levels, factory work-in-
progress (WIP), customer demands and some constraints 
among them. Some decisions, however, may be formulated 
locally. For example, an inventory may release a quantity 
of products given the external control release command. 
However, an inventory’s external control release may be 
constrained given the maximum capacity of the receiving 
(downstream) node and its available inventory level. Such 
a local control policy is shown in Figure 2. 
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Figure 2: Local Control Policy for Inventory 

3.1 DEVS Models 

The above manufacturing process network dynamics are 
modeled and simulated using the Discrete Event System 
Specification (Zeigler, Praehofer and Kim 2000). This ap-
proach supports developing models with well-defined 
structures and behaviors. It offers a framework for model-
ing and simulating discrete or continuous systems as 
atomic and hierarchical coupled models.  The simulation of 
models is based on a simulation protocol that ensures cor-
rect execution of the models—i.e., enforcing causality, 
concurrency, and timing among atomic and coupled mod-
els. 

Atomic models have input/output ports and values. 
The behavior of the atomic model is specified in term of 
state variables and functions. A model can have autono-
mous and reactive behavior specified in terms of internal 
transition and external transition functions. Output func-
tion allows the model to send out messages. Time ad-
vanced function captures timing of models. Confluent 
function can be used for modeling simultaneous internal 
events and external events.  Every coupled model has well-
defined interfaces, as in atomic models, and consists of one 
or more atomic model or coupled models. Complex models 
can be hierarchically constructed from these two types of 
models. 
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igure 3: Structural Composition of Inventory and Factory 
odels 

 
The supply-chain network nodes lend themselves to be 

pecified in terms of atomic and coupled models. These 
odels can be interconnected to form an arbitrary supply-

hain network using coupling topologies. Figure 3 shows a 
oupled model which includes one atomic inventory model 
nd one atomic factory model where product and local and 
xternal controls are separately modeled. 

DEVSJAVA is a software environment that was de-
eloped based on the DEVS framework and implemented 
n the JAVA programming language (DEVSJAVA 2002).  
t provides a component-based (object-oriented) engine for 
tomic and coupled  simulation modeling. The combina-
ion of component-based modeling and software imple-

entation of DEVSJAVA provides flexibility and scalabil-
ty to develop the supply-chain network processing models.   

 MODEL PREDCITIVE CONTROL MODEL 

odel Predictive Control (MPC) is commonly used for 
ontrol of highly stochastic processes where selection of 
ontrol actions, based on optimization, is desired. The im-
ortance of MPC compared with traditional approaches is 
ue to its suitability for large multi-variable systems, han-
ling of constraints placed on system input and output 
ariables, and its relative ease-of-use and applicability. In 
PC, current and historical measurements of a process are 

sed to predict its behavior for future time instances. A 
ontrol-relevant objective function is optimized for calcu-
ating a sequence of future control commands that can sat-
sfy some predefined system constraints. For details of the 
bjective function, refer to (Wang, Rivera and Kempf 
005). 

It has been shown that MPC can be used effectively as 
 tactical controller for high volume supply-chain semi-
onductor networks having capacitated, nonlinear, and sto-
hastic demands (Wang, Rivera and Kempf 2005). An 
PC design for semiconductor supply-chain is shown in 

igure 4. It consists of a System Prediction Model and an 
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Optimizer. The real system has been modeled using 
DEVSJAVA. In this paper, the real-system is replaced with 
a DEVS simulation model. In this study, the operation of 
MPC can be described informally as follows. The real sys-
tem (i.e., simulatable DEVS process model) sends its cur-
rent outputs (e.g., semi-finished goods inventory level) to 
the system prediction model given measured disturbances 
(i.e., actual customer demand). The system prediction 
model then computes future outputs (i.e., controlled out-
puts) for some finite number of time steps. The error be-
tween future outputs and target trajectories (i.e., expected 
customer demand) is sent to the optimizer where optimized 
control outputs (referred to as manipulated variables) are 
calculated based on some constraints and objective func-
tions over some time horizon—i.e., moving horizon (for 
manipulated variables) and prediction horizon (for con-
trolled variables). This optimization will be repeated using 
the receding horizon concept once the new information is 
available. In addition, the MPC has a filter gain that can 
respond quickly to inevitable signal to noise ratio changes 
while avoiding undesirable oscillatory control regimes. 
The predictive control for the first time step is sent to 
simulated system as well as the system prediction model. 
The above steps are repeated using the updated simulated 
system states and disturbances for a desired simulation pe-
riod.  
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Figure 4: Canonical MPC Model 
 
The MPC is supported by commercial tools such as 

MATLAB (Mathworks 2002). In our work, the 
MATLAB’s QP solver is replaced with the more efficient 
and robust MATLAB-QP version of the interior point NLP 
code LOQO (Vanderbei 1999). MATLAB supports a 
graphical user interface for modeling and observing simu-
lation results.   
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5 COMPOSING DEVS AND MPC USING KIB 

The key concept behind Knowledge Interchange Broker is 
the ability to compose models even though each model has 
its own distinct syntax and semantics. Clearly, not only 
must each model be executed using its own well-defined 
protocol, but their interoperation must also be guaranteed 
correct. In the case of DEVS and MPC, the KIB’s execu-
tion engine is designed to ensure that the DEVSJAVA 
simulation and the MATLAB solver interact correctly. 
Next, we detail the generic KIB approach for composing 
and interoperating the classes of DEVS and MPC modeling 
and simulation paradigms.  

For tactical control of a semiconductor supply-chain, we 
consider composing a discrete event simulation (i.e., DEVS) 
and a tactical controller (i.e., MPC) for the simple example 
shown in Figure 4. The system prediction model of the 
DEVS Process Model used within the MPC is modeled as 
discrete linear and time-invariant model (see Figure 4). The 
system predictive model is described as in equation (1). 

kk
kvkukk

CXY
DBUBAXX

=
++=

+
+
1
1   

where um
kU ℜ∈ is a vector of manipulated variables, 

xm
kX ℜ∈ is a vector of state variables, ym

kY ℜ∈ is a vec-

tor of output (or controlled) variables,  and vm
kD ℜ∈ is a 

vector of measured disturbance variables.   

As a tactical controller, the MPC manipulates the 
starts of the factories to satisfy the forecasted customer 
demands ( kD' ) given the actual customer demands ( kD ) 
while maintaining the inventories at their desired levels. 
The controlled variables are the inventory levels; the ma-
nipulated variables are starts of each factory; the customer 
demands are treated as measured disturbance variables 
with anticipations. We note that the MPC does not receive 
the actual releases (see Figure 2) from the manufacturing 
process model, although a different formulation of the 
MPC may.  

The MPC manipulates the start of the factories of the 
semiconductor process model as follows.  We have simpli-
fied the process model to have one product. 

 
1. At the initialization, the inventory set-point trajectories 

are specified. The model attributes such as average TPT 
and yield for each factory model are set. The distribu-
tion of some stochastic behaviors, such as distribution 
of the TPT and yield, are also set at initialization. 

2. At time interval k, the MPC receives the current inven-
tory levels ( kY ). It also receives forecasted customer 
demands ( kD' ). The system prediction model has the 
previous inventory levels ,..., 21 −− kk YY , the previous 
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1) 

starts of each factory 1, ,k k mU U− −L , and the previous 
customer demands ,..., 21 −− kk DD . To calculate the next 
start for each factory, the controller operates in two 
phases: 
(a) Estimation. The controller uses all the past measure-

ments, inputs, and the current controlled variables to 
calculate the inventory levels for a prediction horizon 

Pkkk YYYP +++≥ ,...,,),1integerfinitea( 21 . 
(b) Optimization. Values of the future inventory level tra-

jectories, anticipated customer demands, and con-
straints are specified over a finite horizon of future 
sampling instants Pkkk +++ ,,2,1 K . By solving a 
constraint optimization problem, it computes the starts 
of each factory in the future hori-
zon 11,...,,),1M( −++≥≥ Mkkk UUUPM . 

3. The starts at time k ( kU ) are sent to the process simu-
lation model. Each inventory model releases products 
to its downstream factory given its local control policy 
shown in Figure 2. 

4. At the next time interval k+1, continue with step 2. 

5.1 Structural Composition Specification 

Specification of model compositions needs to support 
structural composition of DEVS and MPC models. As de-
scribed earlier, (data and control) input and output ports are 
used as interface structures for DEVS models to interact 
with DEVS and non-DEVS model components. The inter-
face structure of an (atomic or coupled) model consists of 
sets of input and output ports with values to be exchanged 
with model components.  An example of structural specifi-
cation of an inventory model is given as equation (2).  

{( , ), ( , ),
( , )}

{( , ), ( , [ , ])}

X data in Lots control in Command
localControl in Capacity

Y data out Lots control out BOH Released

= − −
−

= − −

(2) 

The set of inputs and outputs are X and, Y with (port, 
message) representing port name and message type. The 
message can be complex such as Lot which contains a col-
lection of multiple product types with different cardinal-
ities. In DEVSJAVA, each lot is modeled to have a default 
or user-specified size (e.g., 100 products per lot). 

For the MPC model, its discrete-time system model 
(denoted as I10, I20, I30, M10, M20 and M30 in Figure 5) and 
optimizer do not use ports. Instead, the interface structural 
specification of MPC is “vectors of variables.” The input to 
the controller from the simulation system is a vector of 
controlled variables and a vector of measured disturbance 
variables, while the output from the controller to the simu-
lated system is a vector of manipulated variables (see Fig-
ure 5). Table 1 shows an example of input/output mapping 
between the DEVS and MPC models. 



Sarjoughian, Huang, Wang, Rivera, Kempf, Godding, and Mittelmann 
 

Model Predictive Controller

Fab/Test1Raw 
Resource

Semi-
Finished

Assembly/
Test2 Finish Customer

Warehouse

Shipping

Customer

Manufacturing Process Network

Die/
Package

I10

Knowledge Interchange Broker

M20M10 I20 M30 I30

Input vector (u)Output vector (ctrlOut)

BOH

CommandCommand Command

BOH BOH Demand

Model Predictive Controller

Fab/Test1Raw 
Resource

Semi-
Finished

Assembly/
Test2 Finish Customer

Warehouse

Shipping

Customer

Manufacturing Process Network

Die/
Package

I10

Knowledge Interchange Broker

M20M10 I20 M30 I30

Input vector (u)Output vector (ctrlOut)

BOH

CommandCommand Command

BOH BOH Demand

 
 

Figure 5: Composition of Manufacturing Process Network 
and MPC via KIB  

 
The structural specification must provide well-defined 

structural information translation from the DEVS model to 
the MPC and vice versa.  Clearly, the data types described 
in the two modeling formalisms are different. Messages 
used in the DEVS models are of type Entity, which is the 
base data structure used for building messages with arbi-
trary complexity. The MPC variable types, in contrast, 
generally have primitive types (e.g., reals), although com-
plex variable types may be defined by users.   

 
Table 1: Message Mapping for DEVS and MPC Models 

DEVS Model MPC Model 
(Inventory, control-
out, BOH) 

yi, a member of vector my con-
trolled variables  

(Inventory, control-
in, command) 

ui, a member of vector mu ma-
nipulated variables 

(Customer, control-
out, demand) 

vi, a member of vector mv 
measured disturbance variables 

 
The principles of knowledge reduction and augmenta-

tion are important for handling differences between two 
modeling formalisms. Knowledge reduction is generally 
simpler as we throw away information in the process of 
translating one message type to another. For example, the 
message Beginning On Hand (BOH) in the DEVS inven-
tory model represents current inventory level. It may con-
tain not only the product amount but also the product 
name. When the message is transformed to an MPC vari-
able, the name may not be necessary. In contrast, knowl-
edge augmentation is more difficult. For example, the ma-
nipulated variable sent from the MPC to the DEVS model 
represents a release command for some specific product 
from a specific inventory. How to augment (map) the MPC 
release command such that it becomes a DEVS message 
needs to be specified based on the MPC and DEVS formal-
isms (see Section 6 for details).  

Knowledge reduction and augmentation can contain 
data (message) aggregation and disaggregation. The former 
refers to combining multiple data values (or a set of mes-
261
sages) into a single data value (a message) and the latter 
refers to the inverse. For example, an MPC data variable 
can be disaggregated so that it can be sent to multiple 
DEVS input ports. 

5.2 Behavioral Composition Specification  

Execution of composed DEVS and MPC models needs to 
be guaranteed correct. To satisfy correct execution of proc-
ess and decision models, we need to devise synchroniza-
tion and timing that conform to the DEVS simulation pro-
tocol and the MPC’s simulation algorithm and solver.   

The DEVS specification includes a set of states and 
transition functions. The state variables (e.g., average 
throughput time and average yield in the factory model) 
must be updated such that output to input causality and 
timing are satisfied. This requires ensuring the ordering of 
external, internal, and output function executions while in-
teracting with the KIB (and therefore the MPC).  

Likewise, the execution of the MPC must be ensured 
given its interaction with the KIB. The system prediction 
model has a homomorphic relation to the DEVS process 
mode. The optimizer is a set of constraints and objective 
function specification based on mass conservation relation-
ships among the inventory, manufacturing, and transporta-
tion models. For example, the mass conservation relation-
ships for Die/Package inventory level (I10) and for 
Fab/Test1 WIP (M10) can respectively be expressed as 
equation (3) (Wang, Rivera and Kempf 2005): 

)()()()1(
)()()()1(

11111010

21111010

θ
θ

−−+=+
−−+=+

kCYkCkWIPkWIP
kCkCYkIkI

 (3) 

The variables θ1 and Y1 represent the nominal 
throughput time and yield for the Fab/Test1 node, while C1 
and C2 represent the daily starts that constitute inflow and 
outflow streams for I10 and M10. Similar constraints can be 
written for other elements of the manufacturing process. 

Consistent model attributes of the composed model—
e.g., stochastic and non-stochastic TPT and Yield for the 
simulated (e.g., Fab/Test1) and predictive factory (e.g., 
M10) models, respectively—are required. That is, the 
common attributes of the process and decision models 
must be kept consistent since they represent semantically 
the same knowledge across the composed model.  These 
attributes, however, do not necessarily have to be identical, 
but they carry the same information at different levels of 
abstraction. The consistency of the model attributes and 
their exchanges must be ensured by the KIB both at ini-
tialization of and during the simulation.  

Both DEVS and MPC models have well-defined timing 
properties. The former has a continuous-time base while the 
latter has a discrete-time base. Since the MPC models exe-
cute using time-stepping, the KIB’s input and output events 
are synchronized using a discrete time clock. This is appro-
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priate since the physical process model timing is a multiple 
of the decision model timing. For example, a process simu-
lation execution cycle can be hourly, daily, or weekly. The 
decision planning can run at the same frequency as the proc-
ess model simulation, faster, or slower. For example, the 
process model can be simulated using daily time-step while 
the planning can have a weekly time horizon.  

From the MPC point of view, when it receives the 
process model states (i.e., controlled variables), the con-
troller assumes the process model states remain static while 
it computes the values of the manipulated variables and 
gives control back to the process model—until it receives 
the process model states for the next time step. For the 
DEVS models, the timing period from sending out state in-
formation to receiving control messages is dependent on 
the frequency selected between the two models. If the 
process and decision models have the same frequency, the 
process model must receive control messages before it 
changes its states and starts a new cycle. If they run in dif-
ferent frequencies, the process model must receive the con-
trol messages at the correct time step.  

For the DEVS/MPC composition, the KIB is designed 
to support synchronous control. In this mode, once the 
DEVS simulator sends outputs to the KIB, the simulation 
stops until it receives the MPC manipulated variables. This 
form of synchronization needs to only maintain a single 
logical clock for executing composed models. In the proto-
type described next, the KIB execution protocol synchroni-
zation is defined in terms of the DEVS simulation event 
ordering and clock. 

6 PROTOTYPE KIB DESIGN 

A prototype of the KIB targeted for composing DEVS and 
MPC models was designed and implemented using parts of 
two existing KIBs (Sarjoughian and Plummer 2002; God-
ding, Sarjoughian and Kempf 2004). The DEVS/MPC 
simplified architecture is shown in Figure 6. It consists of 
DEVSJAVA, KIB, and MATLAB.    
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KIB

MATLAB

MPC FunctionMPC-Bridgecoupling

DEVSJAVA

JNIProcess Models

JAVA

KIB

MATLAB

MPC FunctionMPC-Bridgecoupling

DEVSJAVA

JNIProcess ModelsProcess Models

 
 

Figure 6: DEVS/MPC with KIB Conceptual Architecture 
 
A software design and implementation of the KIB is 

shown in Figure 7. It includes DEVSDecisionInterface, 
KIB Data Transformation Manager, and MPCInterface. 
The DEVSDecisionInterface is the interface between 
DEVSJAVA and the KIB. The KIB Data Transform Man-
ager handles data transformation (mappings). The 
MPCInterface is an interface between MATLAB and the 
KIB.  
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Figure 7: Software Components in KIB 

6.1 DEVS Decision Interface and MPC-Bridge 

The responsibility of this interface is to pass messages 
from the DEVS models to the KIB and vice versa. The 
messages include initMessage and statusMessage from 
DEVS to KIB and controlMessage from KIB to DEVS. 

The process model can interact with the KIB via the 
DEVSDecisionInterface object method invocations or via 
ports (see Figure 8).  If we choose method invocation, it 
turns out that the communication between the process 
model and the KIB is synchronous. If we use ports, we can 
take advantage of the DEVS simulation control protocol to 
handle timing properties for the composed DEVS and 
MPC model. Therefore, a special atomic model MPC-
Bridge was developed as a proxy between the KIB and 
DEVS models. It collects state information from the proc-
ess models through the input ports and then transfers them 
to the KIB.  

 

MPC-Bridge

StatusMessage
(from Inventory models)

TimeMessage
(from Clock model)

ReleaseMessage
(to Inventory models)

MPC-Bridge

StatusMessage
(from Inventory models)

TimeMessage
(from Clock model)

ReleaseMessage
(to Inventory models)

 
 

Figure 8: MPC-Bridge Structural Specification 
 
Similarly, the MPC-Bridge as shown in Figure 8 re-

ceives the control messages (i.e., MPC manipulated vari-
ables) from the KIB which are then sent to the process 
models at appropriate time intervals. The interaction of the 
MPC-Bridge and the process models are through DEVS 
ports, while the interaction between the MPC-Bridge and 
the KIB uses method invocations. We note that the MPC-
Bridge supports the KIB in two ways. First, it acts as a 
bridge between KIB and DEVS and second it provides 
message synchronization with MPC—data sent to the MPC 
model and commands sent to the DEVS model. 
2
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6.2 MPCInterface 

This interface defines interactions between the KIB and the 
MPC which is specified as a MATLAB function. The MPC 
is defined as shown in equation (4).  

34 ,,where
),(

ℜ∈ℜ∈Ν∈
=

ctrlOututime
utimenmpcFunctioctrlOutfunction    (4) 

Here time is an input variable representing a discre-
tized time index. The controlled input variable u is a vec-
tor. The manipulated variable ctrlOut is the output vari-
able. Both u and ctrlOut variables are of the same type 
(i.e., double). 

The functionality of the MPCInterface includes (a) 
loading the MPC function file to the appropriate internal 
MATLAB workspace, (b) transforming the MPC model in 
the KIB to the corresponding MATLAB function call, (c) 
making the MATLAB call through the JMatLink (Müller 
2002) which is based on the Java JNI, and (d) transforming 
the output variables from MATLAB to the KIB. 

As mentioned above, the MPC needs the real-system’s 
(i.e., simulation model’s) previous input, output, and state 
variables to calculate its next manipulated variables (see 
Figure 5). This previous information can be stored in MPC 
function space instead of the KIB. At initialization, the 
MATLAB engine creates a workspace for MATLAB func-
tions, in which the previous information can be stored until 
it is closed.  Therefore, given the MATLAB environment, 
it is not necessary to transfer its previous state information 
back and forth to the KIB. 

6.3 KIB Data Transformation Manager 

This main responsibility of the transformation manager is 
to coordinate interactions between the DEVSDecisionIn-
terface and the MPCInterface given the defined data and 
control mappings and transformations.  The main function-
alities of the manager can be summarized as  

 
 Maintain DEVS models and MPC function informa-
tion and their composition specifications; 

 Transform data information between the two modeling 
formalisms; 

 Control the interactive execution between the two 
modeling formalisms.  
 
The manager contains two types of data nodes: 

DEVSModelNode and MPCFunction to keep the DEVS 
and MPC function information, respectively.  Each process 
model in DEVS has a corresponding DEVSModelNode in 
the KIB to store its information (e.g., status information). 
The MPCFunction consists of MPCParameters, each of 
which has well-defined mapping information to the 
DEVSModelNode.  The mapping information corresponds 
to the KIB composition specified in XML, which is a stan-
dardized schema for data exchange. 
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A simplified structural composition specification is 
shown in Figure 9. The XML specification shows the 
DEVS output variables and the MATLAB input variables 
(see Equation (4)). The sequence diagram shown in Figure 
10 illustrates the processing taking place inside the KIB 
including message mapping and transformation. It shows 
message passing and method invocations from the MPC-
Bridge to the MPCInterface. 
 
<?xml version="1.0" encoding="utf-8" ?>
<!-- MATLAB function configuration for interacting with DEVS -->
<FUNCTION Name="mpcFunction">

<!--type can be customized-->
<INPUT Name="Time" Type="double" size="1">

<VALUE>0</VALUE> 
</INPUT>
<INPUT Name="u" Type="double" size="4">

<VALUE Model=“DiePackage" Product="x">0</VALUE>
<VALUE Model="SFGI" Product="x">0</VALUE>
<VALUE Model="CW" Product="x">0</VALUE>
<VALUE Model="Customer" Product="x">0</VALUE>

</INPUT>
<OUTPUT Name="yOut" Type="double" size="4">

<VALUE Model="RawI" Product="x" Destination="Fab"></VALUE>
<VALUE Model=“DiePackage " Product="x" Destination="AT"></VALUE>
<VALUE Model="SFGI" Product="x" Destination="Finish"></VALUE>
<VALUE Model="CW" Product="x" Destination="Shipping"></VALUE>
</OUTPUT>

</FUNCTION>

Figure 9: KIB Composition Specification 
 

: MPCBridgeMPCB: MPC-Bridge : DEVSDecisionInterfaceDDI: DEVSDecisionInterface : KIBManagerKIBM: KIBManager : MPCInterfaceMPCI : MPCInterface

1: processStatusMessages( )

2: updateStatusInformation( )

3: transformFromStatusToControInput( )

4: makeMPCCall( )

5: transformFromControlOutpu
tToCommand( )

: MPCBridgeMPCB: MPC-Bridge : DEVSDecisionInterfaceDDI: DEVSDecisionInterface : KIBManagerKIBM: KIBManager : MPCInterfaceMPCI : MPCInterface

1: processStatusMessages( )

2: updateStatusInformation( )

3: transformFromStatusToControInput( )

4: makeMPCCall( )

5: transformFromControlOutpu
tToCommand( )

 
 

Figure 10: Data and Control Mapping Snippet 

6.4 Simulation Test Case 

The example described in earlier sections has been devel-
oped using the DEVS/MPC approach. The manufacturing 
network model components are described as atomic and 
coupled components which interact with the MPC model 
described above.  The average throughput times and ca-
pacities [days, # of products] for Fab/Test1, Assem-
bly/Test2, Finish, and Shipping are [35, 45000], [6, 7500], 
[2, 3000], and [1, 2500], respectively. The delays and tar-
gets [days, # of products] for Die/Package, Semi-finished 
goods, and Customer Warehouse inventories are [1, 5712], 
[1, 2856], and [1, 1787], respectively. The customer input 
demand is set to vary between 939 and 968 starting from 
day 61 for 577 days (see Figure 11).  

The MPC model controls the inventory levels while 
minimizing changes in the manipulated factory starts. The 
optimization model uses the inventories to absorb stochas-
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ticity present in the factory models while meeting customer 
demand. The MPC model is tuned via a suitable filter gain 
and forecast window for the MPC given the setting of the 
factory capacities. The combined tuning of the MPC and 
configuration of the process model handles mismatches be-
tween the discrete event model and its deterministic predic-
tive counterpart. The MPC feedback control (enabled with 
a filter gain greater than zero) handles the difference be-
tween actual average and forecast demands using the sys-
tem prediction model forecasting window.  

We have selected the filter gains 0.01 and 0.05  for 
slow and fast control of the factory starts. The two sets of 
simulation results shown in Figure 11 use lot size equal to 
20—i.e., every lot is assigned a value generated using a tri-
angular distribution function. Fine-grain control of the fac-
tory starts is achieved with the filter gain set to 0.01. In 
general, while a filter gain greater than zero is necessary 
for having feedback, its value need to be determined judi-
ciously in order to have an acceptable tradeoff between fast 
response to changes in the process model while preventing 
potential instability in starts of factories.    

The above simulation results are consistent with those 
that were obtained using the Simulink/MATLAB environ-
ment. Clearly, identical behavior cannot be guaranteed be-
tween the DEVSJAVA/MATLAB and Simu-
link/MATLAB due to (i) the stochasticity in the factories 
and (ii) the discrete-event and discrete-time model specifi-
cations for the process model components. The correctness 
of the prototype environment, however, was verified using 
standard step, impulse, and sinusoidal demands where sto-
chasticity is  absent in the manufacturing process network. 
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7 CONCLUSIONS 

Tactical (weekly, daily, or hourly) control of a semiconduc-
tor supply-chain network via model predictive control offers 
important and unique capabilities to decision-makers. We 
have presented a novel hybrid modeling approach using dis-
crete-event and model predictive control enabled by a 
Knowledge Interchange Broker. The realization of this ap-
proach supports transparent and systematic specification of 
interactions between process dynamics and control decisions 
without relying on any single monolithic modeling para-
digm. From a multi-formalism modeling perspective, we can 
employ high-level model composition as opposed to embed-
ding model interactions inside the process and control mod-
els as is required when using interoperability in combination 
with model exchange standards based on XML and its cur-
rent and proposed extensions (XML 2004).  

A feature of the DEVS/MPC environment is its inher-
ent support for scalable model composability and therefore 
simulation interoperability—i.e., not only can manufactur-
ing process networks and model predictive control grow in 
their complexity, but also in their interactions (data and 
control message mappings and transformations). Further-
more, this approach can lend itself toward domain specific 
modeling which is becoming appealing for complex, large-
scale domains such as the one considered in this paper.  

Investigation is underway to enable the presented 
knowledge interchange broker to support asynchronous 
data and control. With this capability, we could build an 
environment where tactical and strategic decision control 
could be composed with manufacturing process networks. 
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Figure 11: Simulation Plots of Inventory Levels and Factory Starts 
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Moreover, asynchronicity may offer a flexible basis for 
distributed and efficient large-scale  semiconductor supply-
chain system simulations. Finally, customized aggregation 
and disaggregation models are important for handling user-
level domain-specific transformation for the semiconductor 
supply chain. This capability in combination with visually 
driven user interfaces would make this approach accessible 
to a larger community of stakeholders including decision-
makers.  
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