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ABSTRACT

We present the basic concepts of experimental design, the
types of goals it can address, and why it is such an important
and useful tool for simulation. A well-designed experiment
allows the analyst to examine many more factors than would
otherwise be possible, while providing insights that could not
be gleaned from trial-and-error approaches or by sampling
factors one at a time. We focus on experiments that can cut
down the sampling requirements of some classic designs by
orders of magnitude, yet make it possible and practical to
develop an understanding of a complex simulation model and
gain insights into its behavior. Designs that we have found
particularly useful for simulation experiments are illustrated
using simple simulation models, and we provide links to
other resources for those wishing to learn more. Ideally, this
tutorial will leave you excited about experimental designs—
and prepared to use them—in your upcoming simulation
studies.

1 INTRODUCTION

The process of building, verifying, and validating a simula-
tion model can be arduous, but once it is complete, it’s time
to have the model work for you. One extremely effective
way of accomplishing this is to use experimental designs
to help explore your simulation model.

Before undertaking a simulation experiment, it is useful
to think about why this the experiment is needed. Simulation
analysts and their clients might seek to (i) develop a basic
understanding of a particular simulation model or system, (ii)
find robust decisions or policies, or (iii) compare the merits
of various decisions or policies (Kleijnen et al. 2005). The
goal will influence the way the study should be conducted.
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The field called Design of Experiments (DOE) has been
around for a long time. Many of the classic experimental
designs can be used in simulation studies. We discuss a
few in this paper to explain the concepts and motivate the
use of experimental design (see also Chapter 12 of Law
and Kelton 2000). However, the environments in which
real-world experiments are performed can be quite different
from the simulation environment. Table 1, adapted from
Sanchez and Lucas (2002), lists some of the assumptions
made in traditional DOE settings, as well as features that
characterize many simulation settings.

Three fundamental concepts in DOE are control, repli-
cation, and randomization. Control means that the experi-
ment is conducted in a systematic manner after explicitly
considering potential sources of error, rather than by using
a trial-and-error approach. This tutorial should give you a
good understanding of controlled experiments. Replication
can be viewed as a way to gain enough data to achieve
narrow confidence intervals and powerful hypothesis tests,
or for graphical methods to reveal the important character-
istics of your simulation model. In physical experiments,
randomization provides a probabilistic guard against the
possibility of unknown, hidden sources of bias surfacing to
create problems with your data.

In this introductory tutorial, we focus on setting up
single-stage experiments to address the first goal, and touch
briefly on the second. Although some very simple simulation
models are used as examples in this paper, the designs
we describe have been extremely useful for investigating
more complex simulation models in a variety of application
areas. For a detailed discussion of the philosophy and
tactics of simulation experiments, a more extensive catalog
of potential designs (including sequential approaches), and a
comprehensive list of references, see Kleijnen et al. (2005).
9
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Table 1: The Experimental Environment
Traditional DOE Assumptions Simulation Model Characteristics
Small or moderate number of factors Large number of factors
Linear or low-order effects Complex response surfaces
Sparse effects Many substantial effects
Negligible higher-order interactions Substantial higher-order interactions
Homogeneous errors Heterogeneous errors
Normally distributed errors Various error distributions
Univariate response Many performance measures of interest
Additional examples, software for generating experimental
designs, and tips for implementing the experiment once a
design has been chosen, will be provided during the tutorial.

We will not cover examples of ranking and selection
(R&S) or multiple comparison procedures (MCP), although
these are useful approaches for comparing the merits of
different policies or qualitatively different systems. We
refer the reader instead to Goldsman, Kim, and Nelson
(2005) for an overview. We will also not cover techniques
for simulation optimization (Fu 2002).

The benefits of experimental design are tremendous.
Once you have gotten a taste of how much insight and
information can be obtained in a relatively short amount of
time from a well-designed experiment, DOE should become
a regular part of the way you approach your simulation
projects.

2 NUTS AND BOLTS

Our overarching goal is to provide you with some useful
tools for gaining a great deal of information in a short
amount of time. This includes the time you need to spend
to set up the experiments and consolidate the results, as
well as the computer time spent for conducting the runs.

2.1 Terminology and Notation

In DOE terms, experimental designs indicate how to vary
the settings of factors (sometimes called variables) to see
whether and how they affect the response. A factor can be
qualitative or quantitative. Potential factors in simulation
experiments include the input parameters or distributional
parameters of a simulation model. For example, a simple
M/M/1 queueing system might have some quantitative
factors (such as the mean customer inter-arrival time and
mean service time), and some qualitative factors (such as
LIFO or FIFO processing, priority classes, and preemptive
or non-preemptive service rules).

Different types of simulation studies involve different
types of experimental units. For a Monte Carlo simulation,
the experimental unit is a single observation. For discrete-
event stochastic simulation studies, the experimental unit
more often represents output from a run or a batch that
is averaged or aggregated to yield a single output value.
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The run is the appropriate experimental unit for terminating
simulations. If the output of interest is the time until termi-
nation, or the number of events prior to termination, then
the run’s output is already in the form of a single number.
When runs form the experimental units for nonterminating
simulations, and steady-state performance measures are of
interest, care must be taken to delete data from the simula-
tion’s warm-up period before performing the averaging or
aggregation.

Mathematically, let k denote the number of factors in
our experiment, let X1, . . . , Xk denote the factors, and let
Y denote a response of interest. This is sometimes called a
measure of effectiveness (MOE) or measure of performance
(MOP). Sometimes graphical methods are the best way to
gain insight about Y ’s, but often we will be interested in
constructing response surface metamodels that approximate
the relationships between the factors and the responses with
statistical models (typically regression models).

Unless otherwise stated, we will assume that the Xi’s
are all quantitative. A main-effects model means we assume

Y = β0 + β1X1 + . . . + βkXk + ε (1)

= β0 +
k∑

i=1

βiXi + ε,

where the ε’s are independent random errors. Ordinary least
squares regression assumes that the ε’s are also identically
distributed, but the regression coefficients are still unbiased
estimators even if the underlying variance is not constant.

“Quadratic effects” means we will include terms like
X2

1 as potential explanatory variables for Y . Similarly,
“two-way interactions” are terms like X1X2. A second-
order model includes both quadratic effects and two-way
interactions, i.e.,

Y = β0 +
k∑

i=1

βiXi +
k∑

i=1

βi,iX
2
i (2)

+
k−1∑

i=1

k∑

j=i+1

βi,jXiXj + ε,
0
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although it is best to fit this equation after centering the
quadratic and interaction terms, as in (3):

Y = β0 +
k∑

i=1

βiXi +
k∑

i=1

βi,i(Xi − Xi)2 (3)

+
k−1∑

i=1

k∑

j=i+1

βi,j(Xi − Xi)(Xj − Xj) + ε.

In general, a design is a matrix where every columns
corresponds to a factor, and the entries within the column
correspond to settings for this factor. Each row represents
a particular combination of factor levels, and is called a
design point. If the entries in the rows correspond to the
actual settings that will be using for the experiment, these
are called natural levels. Coding the levels is a convenient
way to allow the same basic design to be reused for any
experiment involving the same number of factors and the
same numbers of levels. Different codes are possible, but
a convenient one for quantitative data is to specify the low
and high coded levels as −1 and +1, respectively. Table 2
shows a simple experiment, in both natural and coded levels,
that could be conducted on an M/M/1 queue.

Table 2: Simple Experimental Design for an M/M/1 Queue
Natural Levels Coded Levels

Interarrival Service Interarrival Service
Design Rate Rate Rate Rate
Point λ μ λ μ

1 16 20 −1 −1
2 18 20 +1 −1
3 16 22 −1 0
4 18 22 +1 0
5 16 24 −1 +1
6 18 24 +1 +1

If we repeat the whole design matrix, this is called a
replication of the design. Let N be the number of design
points, and b be the number of replications. Then the total
number of experimental units, whether runs or batches, is
Ntot = Nb.

2.2 Pitfalls to Avoid

Two types of studies are sometimes called “experiments,”
but they do not fit an example of a well-designed experiment.
The first often arises from several people sitting around the
table, each of whom has his or her own idea about what
constitutes “good” or “interesting” combinations of factor
settings. This may lead to the investigation of a handful of
design points where many factors change simultaneously.
For illustration purposes, consider an agent-based simulation
model of the children’s game of capture-the-flag, where an
7

agent attempts to sneak up on the other team’s flag, grab
it, and run away. Suppose that only two design points are
used, corresponding to different settings for speed (X1) and
stealth (X2), with the results in Figure 1. One subject-matter
expert might claim these results indicate that high stealth is
of primary importance, another might claim that speed is
the key factor for success, and a third that they are equally
important. There is no way to resolve these differences of
opinion without collecting more data. In statistical terms,
the effects of stealth and speed are said to be confounded
with each other. In practice, simulation models easily have
tens or hundreds of potential factors whose settings can be
altered. A handful of haphazardly chosen scenarios, or a
trial-and-error approach, can end up using a great deal of
time without yielding answers to the fundamental questions
of interest.
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Figure 1: Confounded Factor Effects for Capture-the-
Flag

The second type of study that can be problematic occurs
when people start with a “baseline” scenario and vary one
factor at a time. Revisiting the capture-the-flag example,
suppose the baseline corresponds to low stealth and low
speed. Varying each factor, in turn, to its high level yields
the results of Figure 2. It appears that neither factor is
important, so someone using the simulation results to decide
whether to play the game might just go home instead.
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Figure 2: One-at-a-Time Sampling for Capture-the-Flag

However, if all four combinations of speed and stealth
(low/low, low/high, high/low, and high/high) were sam-
pled, it would be apparent that success requires both speed
and stealth to be at high settings. This means the fac-
tors interact—and if there are interactions, one-at-a-time
sampling will never uncover them!

The pitfalls of using a poor design seem obvious on this
toy problem, but the same mistakes are all-too-often made
1
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in larger studies of more complex models. When only a
few variations or excursions from a baseline are conducted,
there may be many factors that change but a few that subject
matter experts think are “key.” If they are mistaken, changes
in performance from the baseline scenario may be attributed
to the wrong factors. Similarly, many analysts change one
factor at a time from their baseline scenario. In doing so,
they fail to understand that this approach implicitly assumes
that there are no interaction effects. This assumption may
be unreasonable unless the region of exploration is small.

2.3 Example: Why Projects are Always Late

One well-known problem in operations research is called
project management. A sequence of tasks are performed
where some of the tasks must be completed before others can
be started, while others can be worked on concurrently. A
precedence diagram (Figure 3) is a graphical way to represent
these relationships. The tasks relate to one another in terms
of the job completion time. Each node on the diagram
corresponds to a task that must be done, and an arrow from
node A to node B indicates that task A must be completed
before task B can begin. One convention is that we specify
“Start project” and “End project” tasks so that every task
is on at least one path from the beginning to the end of the
project.

In addition to the precedence information, we also need
to keep track of the times required to complete the various
tasks. The mean completion times appear above the nodes
in Figure 3. This graph is so simple that—if all tasks take
their average time to complete—the project clearly cannot
finish in under 27 days, since the path of A-E-F-G-H requires
27 days to finish.
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Figure 3: Project Management Precedence Diagram

A simple technique called PERT (Program Evaluation
Review Technique) makes it easy to identify this so-called
critical path for even larger networks. A related approach
is CPM (Critical Path Management), which considers how
tasks might be cost-effectively expedited. Sometimes these
are lumped together and just referred to as PERT/CPM
(Hillier and Lieberman 2005). A probabilistic version of
72
PERT takes into account the variability of tasks on the
critical path. Consider the task time means and standard
deviations shown in Table 3. If the tasks times are assumed
to be independent, then the mean and variance on path
Cp ={A, E, F, G, H} (ignoring all other tasks) are

μtot =
∑

i∈C
μi = 5 + 15 + 7 = 27, and (4)

σ2
tot =

∑

i∈C
σ2

i = 22 + 32 + 12 = 14. (5)

If the individual task time distributions nearly normal, or
if many tasks lie on the critical path, then the central
limit theorem can be invoked. Quantiles from the normal
distribution can be used to estimate the probabilities of
completing (or failing to complete) the project in a specified
time.

Table 3: Task Time Distributional Parameters
Task i Description μi (days) σi (days)
A Start 0 0
B 3 0.5
C 1 0.1
D 1 0.2
E 5 2
F 15 3
G 7 1
H End 0 0

The title of this section is “why projects are always late,”
so what might go wrong if the calculations in equations (4)
and (5) are used? Sometimes you might not get the full
benefit if a task on path Cp finishes early. For this example,
if tasks F and G are expedited, or by chance their completion
times are less than the expected means, this will benefit the
project. However, suppose you happen to spend only one
day on Task E but all other tasks take their average times
to complete. The “new” critical path will be A-B-F-G-H
for a total of 25 days. You will shorten a “bottleneck” task
by four days but only save two days on the overall project.
PERT/CPM does not account for variations of the critical
path itself.

If we actually knew the true task time means and stan-
dard deviations, we could do a simple Monte Carlo simula-
tion. Each replication would involve generating completion
times for each task based on the task means, standard devia-
tions, and normality assumptions, and using the precedence
diagram to determine the time needed to complete the en-
tire project. A frequency distribution of the total project
completion time, as well the proportion of time each task
appears on the critical path, could be built by replicating the
experiment. These, in turn, might provide useful insights
to a project manager.
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It is rare in practice that we “know” such detail about
the inputs to the simulation model. A validated simula-
tion model should reflect the essential characteristics of
the real-world system, but the very act of modeling means
that simplifying assumptions will be made. For this project
management example, we have implicitly assumed indepen-
dence among the task times, specific distributions for the
task time variability (normal), as well as specific parameters
for these distributions (the μi’s and σi’s). Instead, suppose
the project manager and the simulation analyst have deter-
mined what they consider reasonable low and high values
for the task means and standard deviations.

Real-world projects often have many more tasks and
more complicated precedence structures than that of of
Figure 3. Consider a more complex project where there
are 26 tasks (A-Z). Suppose that 19 of these tasks are
considered to have deterministic task times, ranging from
100 minutes to 1,000 minutes. Information about the low
and high levels for the task time distributional parameters
for the other seven tasks are provided in Table 4. For now,
we retain the assumptions of normality and independence
for the task times.

Table 4: Low and High Factor Settings
for Project Management Factors

Task i Range for μi Range for σi

B 640 – 660 10 – 16
E 1,200 – 1,600 50 – 200
F 280 – 320 4 – 10
P 670 – 700 0 – 2
Q 9 – 39 1 – 3
S 900 – 1,100 0 – 30
T 280 – 320 4 – 10

In the next sections, we show how treating some or all
of these as factors in well-designed experiments allows us to
explore the system, gain insights about which of the factors
or interactions have the most influence on the response, or
seek robust solutions. Although the project management
example is a terminating simulation, the designs can also
be used for truncated runs or batches when exploring a
steady-state system simulation.

3 USEFUL DESIGNS

3.1 What Works When

Many designs are available in the literature. We focus on a
few basic types that we have found particularly useful for
simulation experiments. Factorial or gridded designs are
straightforward to construct and readily explainable—even
to those without statistical backgrounds. Coarse grids (2k

factorials) are most efficient if we can assume that the simu-
lation response is well-fit by a model with only linear main
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effects and interactions, while fine grids provide greater
detail about the response and greater flexibility for con-
structing metamodels of the responses. When the number
of factors is large, then more efficient designs are required.
We have found Latin hypercubes to be good general-purpose
designs for exploring complex simulation models when lit-
tle is known about the response surfaces. Designs called
resolution 5 (R5) 2k fractional factorials allow the linear
main effects and interactions of many factors to be investi-
gated simultaneously; they are potential choices either when
factors have only two qualitative settings, or when prac-
tical considerations dictate that only a few levels be used
even for quantitative input factors. Expanding these R5
fractional factorials to central composite designs provides
some information about nonlinear behavior in simulation
response surfaces.

Factorials (or gridded designs) are perhaps the easiest
to discuss: they examine all possible combinations of the
factor levels for each of the Xi’s. A shorthand notation for
the design is mk, which means k factors are investigated,
each at m levels, in a total of mk design points. We can
write designs where different sets of factors are investigated
at different numbers of levels as, e.g., mk1

1 × mk2
2 . These

are sometimes called crossed designs. For example, the
design in Table 2 is a 21 × 31 factorial experiment.

3.2 2k Factorial Designs (Course Grids)

The most commonly used factorial design is a 2k because
it requires only two levels for each factor. These can be
low and high, often −1 and +1 (or − and +). 2k designs
are very easy to construct. Start by calculating the number
of rows N = 2k. The first column alternates −1 and +1,
the second column alternates −1 and +1 in groups of 2,
the third column alternates in groups of 4, and so forth by
powers of 2. If you are using a spreadsheet, you can easily
move from a design for k factors to a design for k + 1
factors by copying the 2k design, pasting it below to obtain
a 2k × k matrix, and then adding a column for factor k +1
with the first 2k values set to −1 and the second set of 2k

values set to +1. Conceptually, 2k factorial designs sample
at the corners of a hypercube defined by the factors’ low
and high settings. Figure 4 shows examples for 22 and 23

designs. Envisioning a 24 or larger design is left to the
reader.

Factorial designs have several nice properties. They
let us examine more than one factor at a time, so they can
be used to identify important interaction effects. They are
also orthogonal designs: the pairwise correlation between
any two columns (factors) is equal to zero. This simplifies
the analysis of the output (Y values) we get from running
our experiment, because estimates of the factors’ effects
β̂i’s) and their contribution to the explanatory power (R2)
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Figure 4: 22 and 23 Factorial Designs

of the regression metamodel will not depend on what other
explanatory terms are placed in the regression metamodel.

Any statistical software package (e.g., JMP, Minitab,
SAS, S-plus, SPSS, etc.) will allow you to to fit regression
models with interaction terms, as well as main effects. If you
must do your analysis in Excel, you will have to manually
construct the appropriate columns for the interaction terms.
When working in coded levels, the interaction columns are
found by simply multiplying the columns for the associated
main effects, as Table 5 shows for a 23 factorial. (To save
a little room on the headings, I’ve left out the X’s and just
given the factor numbers.) When working in natural levels,
it is best to subtract the means from each of the factors
before creating the interaction columns. For example, the
explanatory term corresponding to the X1X2 interaction
should be the column of values (X1 − X1)(X2 − X2).
Note that the X’s used in these equations are the average
values from the design; they do not necessarily correspond
to factor means in the real-world setting under investigation.

Table 5: Terms for a 23 Factorial Design

Design Term
Point 1 2 3 1,2 1,3 2,3 1,2,3

1 −1 −1 −1 +1 +1 +1 −1
2 +1 −1 −1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 −1 +1
4 +1 +1 −1 +1 −1 −1 −1
5 −1 −1 +1 +1 −1 −1 +1
6 +1 −1 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1

Table 5 shows that there are seven different terms (three
main effects, two two-way interactions, and one three-way
interaction) that we could consider estimating from a 23

factorial experiment. Of course, since we also want to
estimate the intercept (overall mean), that means there are
eight things we could try to estimate from eight data points.
That will not work—we will always need at least one degree
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of freedom (d.f.) for estimating error (and preferably, a few
more).

If we increase the number of factors k, we find a similar
relationship. In general, there will be k main effects, (k
choose 2) two-way interactions, (k choose 3) three-way
interactions, and so forth, up to a single k-way interaction.
If we add all these up, we get a total of 2k − 1 terms plus
the intercept. Once again, we won’t be able to estimate
everything because there won’t be any d.f. left over for
error.

So, what do people do with a factorial design? One pos-
sibility is to replicate the design to get more d.f. for error.
Estimating eight effects from eight observations (experi-
mental units) is not possible, but estimating eight effects
from 16 observations is easy. Replication also makes it
easier to detect smaller effects by reducing the underlying
standard errors associated with the β’s.

Another option is to make simplifying assumptions. The
most common approach is to assume that some higher-order
interactions don’t exist. In the 23 factorial of Table 5, one
d.f. would be available for estimating error if the three-way
interaction could safely be ignored. We could then fit a
second-order regression model to the results. Similarly, if
we generated data for a single replication of a 24 factorial
design but could assume there was no four-way interaction
we would have one d.f. for error; if we could assume there
were no three-way or four-way interactions, we would have
five d.f. for error.

Making simplifying assumptions sounds like a poten-
tially dangerous thing to do, but it is often a good approach.
Over the years, statisticians conducting field experiments
have found that often, if there are interactions present, the
main effects will also show up unless you “just happened”
to set the low and high levels so everything cancelled out.
There’s also a rule of thumb stating that the magnitudes of
two-way interactions are at most about 1/3 the size of main
effects, and the magnitudes of three-way interactions are at
most about 1/3 the size of the two-way interactions, etc.
Whether or not this holds for experiments on simulations
of complex systems is not yet certain. We may expect to
find stronger interactions in a combat model or a supply
chain simulation than when growing potatoes.

Now, let’s return to project management. Suppose we
decide to run an experiment where we vary the means for
tasks B, E, F, and M, and leave all other potential factors
(μi’s and σi’s) at their middle levels. The actual design, in
both coded and natural levels, appears in Table 6. With four
factors, there are 16 runs and 15 effects (four main effects,
six two-way interactions, four three-way interactions, and
one four-way interaction). We could estimate all but one
of these effects from single replication of the experiment,
or all these effects if two or more replications are made.

Once one or more replications of this basic design are
conducted, and the resulting response Y is analyzed, we
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Table 6: 24 Factorial Design for Project Management
Design Coded Levels Natural Levels
Point B E F Q B E F Q

1 − − − − 640 1200 280 9
2 + − − − 660 1200 280 9
3 − + − − 640 1600 280 9
4 + + − − 660 1600 280 9
5 − − + − 640 1200 320 9
6 + − + − 660 1200 320 9
7 − + + − 640 1600 320 9
8 + + + − 660 1600 320 9
9 − − − + 640 1200 280 39

10 + − − + 660 1200 280 39
11 − + − + 640 1600 280 39
12 + + − + 660 1600 280 39
13 − − + + 640 1200 320 39
14 + − + + 660 1200 320 39
15 − + + + 640 1600 320 39
16 + + + + 660 1600 320 39

can build regression models or use graphical methods to
estimate various factor and interaction effects.

3.3 mk Factorial Designs (Finer Grids)

Examining each of factors at only two levels (the low and
high values of interest) means you have no idea how the
simulation behaves for factor combinations in the interior of
the experimental region. Finer grids can reveal complexities
in the landscape. When each factor has three levels, the
convention is to use -1, 0 and 1 (or −, 0, and +) for
the coded levels. Consider the capture-the-flag example
once more. Figure 5 shows the (notional) results of two
experiments: a 22 factorial (on the left) and an 112 factorial
(on the right). For the 22 factorial, all that can be said about
the factors is that when speed and stealth are both high, the
agent is successful. Much more information is conveyed by
the 112 factorial: here we see that if the agent can achieve
a minimal level of stealth, then speed is more important.
In both subgraphs the green circles—including the upper
right-hand corner—represent good results, the light yellow
circles in the middle represent mixed results, and the red
circles on the left-hand side and bottom of the plot represent
poor results.

The larger the value of m for an mk factorial design, the
better the space-filling properties of the design. A scatterplot
matrix of the design points shows pairwise projections of the
full design onto each pair of factors, and can be a useful way
to show the design’s space-filling characteristics. Consider
the graph in Figure 6 that corresponds to a 54 factorial
design. Each subplot has four points in the corners, four
additional points along each edge, and nine points in the
interior. The corresponding subplots for a 24 factorial would
75
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Figure 5: 22 and 112 Factorial Experiments for
Capture-the-Flag

each reveal only four points, one at each quarter. The bad
news is that the finer grid requires 625 design points instead
of 16.

X1

2 3 4

X2

2 3 4

X3

2 3 4

X4

2 3 4
Figure 6: Scatterplot Matrix for a 54 Factorial Design

Table 7 shows just the design, not the results, but fitting
regression models to the output data is again straightfor-
ward. Take care that if your statistical software doesn’t
automatically center the interaction terms when it’s time to
fit the model, you do this manually. You can see if adding
(centered) quadratic terms will improve your metamodel,
or explore higher-order terms. Surface plots and contour
plots of the average behavior may be nice ways of looking
at the results as a function of two factors at a time. These
graphical methods mean you can focus on interesting fea-
tures of the response surface landscape (such as thresholds,
peaks, or flat regions) without assuming a specific form for
the regression model. Regression trees, interaction plots,
contour plots, and parallel plots are also useful for exploring
the data. Examples can be found in Sanchez and Lucas
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(2002); Cioppa, Lucas, and Sanchez (2004); or Kleijnen et
al. (2005).

Despite the greater detail provided, and the ease of
interpreting the results, fine grids are not good experimental
designs for more than a handful of factors because of their
massive data requirements. Even 2k designs have this
problem, as Table 7 shows.

Table 7: Data Requirements for Factorial Designs

No. of
factors 10k factorial 5k factorial 2k factorial

1 10 5 2
2 102 = 100 52 = 25 22 = 4
3 103 = 1, 000 53 = 125 23 = 8
5 100,000 3,125 32

10 10 billion 9,765,625 1,024
20 don’t even 95 trillion 1,048,576
40 think of it! 9100 trillion 1 trillion

trillion

Considering the number of high-order interactions we
could fit but may not believe are important (relative to main
effects and two-way or possibly three-way interactions),
this seems like a lot of wasted effort. It means we need
smarter, more efficient types of experimental designs if we
are interested in exploring many factors.

3.4 Latin Hypercube Designs

Latin hypercube (LH) sampling provides a flexible way
of constructing efficient designs for quantitative factors.
They have some of the space-filling properties of factorial
designs with fine grids, but require orders of magnitude less
sampling. Once again, let k denote the number of factors,
and let N ≥ k denote the number of design points. We
will use a different coding for factor levels in LH designs.
The low and high levels for factor Xi are coded as 1
and N , respectively, and the set of coded factor levels are
{1, 2, . . . , N}.

For a random LH design, each column is randomly
permuted. In one replication, each of the k factors will be
sampled exactly once at each of its N levels. Table 7 shows
an example of a random LH for k = 2 and N = 11. Using
this experimental design for our capture-the-flag simulation
yields the results of Figure 7. Compare this design to those
of Figure 5. Unlike the 22 factorial design, the LH design
provides some information about what happens in the center
of the experimental region. We do not get the same detailed
information that the 112 provides about the boundaries
between regions poor, fair, and good performance, but we
do find that success occurs when both speed and stealth
are high, that high stealth and moderate speed yield mixed
results, and that if either speed or stealth is low the agent is
7

unsuccessful. This happens with a fraction of the sampling
cost (N = 11 vs. N = 121 of the 112 factorial design.
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  6

Speed

St
ea

lth

Figure 7: Random Latin Hypercube Design for Capture-
the-Flag

The benefits of LH sampling become most apparent
as k increases. The smallest LH designs are square, with
N = k, so the number of design points grows linearly with
k rather than exponentially. This means that 40 factors
can be investigated in as few as 40 design points, rather
than the over 1,000,000,000,000 required for a 240 factorial
experiment. Suppose our simulation runs in one second—
with a LH design we could complete a replication of the
experiment in under a minute, while the 240 factorial design
would require over 348 centuries of CPU time for each
replication.

Random LH designs have good orthogonality properties
if N is much larger than k, but for smaller designs some
factors might have high pairwise correlations. One approach
often taken is to randomly generate many LH designs and
then choose a good one. Alternatively, Cioppa and Lucas
(2005) have developed tables of so-called nearly orthogonal
Latin hypercube (NOLH) designs that have good space-
filling and orthogonality properties for small or moderate k.
A scatterplot matrix of a NOLH that analyzes four factors in
17 design points is shown in Figure 8. The two-dimensional
space-filling behavior compares favorably with that of the
54 design (requiring 625 design points) of Figure 6.

The number of design points required for investigating
k ≤ 29 factors are provided in Table 8. These are dramati-
cally less than the design points for gridded designs shown
in Table 7.

Table 8: Data Requirements for Nearly
Orthogonal Latin Hypercube Designs

No. of Factors No. of Design Points
2–7 17
8–11 33

12–16 65
17–22 129
23–29 257

Consider the project management simulation once
again. Instead of limiting the study to the four factors
representing the mean completion times for tasks B, E, F,
6
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X1
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X3
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Figure 8: Scatterplot Matrix for a Nearly Orthogonal Latin
Hypercube Design with Four Factors in 17 Runs

and Q, we could instead examine all seven means in a
NOLH design with 17 design points, as Table 9 shows.
Alternatively, we could vary four means and four standard
deviations in a NOLH design with 33 design points, or all
seven means and all seven standard deviations in a single
design with 65 design points.

Table 9: NOLH Design for Seven Factors in 17 Runs for
Project Management Simulation (Natural Levels)

Design
Point B E F P Q S T

1 646 1600 313 681 17 1088 303
2 641 1300 315 687 9 963 305
3 643 1375 283 678 28 1063 320
4 644 1450 293 700 26 925 310
5 655 1575 298 674 18 900 313
6 660 1325 295 694 11 1050 315
7 653 1275 320 679 35 988 318
8 651 1550 310 698 33 1025 308
9 650 1400 300 685 24 1000 300
10 654 1200 288 689 32 913 298
11 659 1500 285 683 39 1038 295
12 658 1425 318 693 20 938 280
13 656 1350 308 670 22 1075 290
14 645 1225 303 696 30 1100 288
15 640 1475 305 676 37 950 285
16 648 1525 280 691 13 1013 283
17 649 1250 290 672 15 975 293
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Replicating the design will allow us to determine
whether or not a constant error variance is a reasonable
characterization of the simulation’s performance, and is
highly recommended. If we have the time and budget for
even more sampling, then several Latin hypercubes can be
stacked to obtain a larger design with better space-filling
properties. Examples for agent-based simulation models ap-
pear in Allen, Buss and Sanchez (2004), Wolf et al. (2003),
and Kleijnen et al. (2005).

3.5 2k−p Resolution 5 Fractional Factorial Designs

While Latin hypercubes are very flexible, they are not the
only designs useful for simulation experiments involving
many factors. Sometimes many factors take on only a few
levels. Traffic at both rush-hour and off-peak times might
be of interest. We might have a few types of equipment
that could be used to manufacture a particular part, or a few
different rules for handling tasks of different priorities. A
project manager might be able to expedite a specific task.
LH designs work best when most factors have many levels.

Instead, we can consider varations of gridded designs.
As long as we are willing to assume that some high-order
interactions aren’t important, then we can cut down (perhaps
dramatically) on the number of runs that are required for
a factorial experiment. This will be illustrated using a
2k factorial, but the same ideas hold for other situations.
Consider the 23 design in Table 2, and suppose that we are
willing to assume that there are NO interactions. It turns
out that we could call this column X4, and investigate four
factors in 23 = 8 runs instead of four factors in 16 runs!
This is called a 24−1 fractional factorial. The design shows
up in Table 10: we would be able to estimate (or test) four
different factors in eight runs.

Table 10: 24−1 Fractional Factorial Design

Design Point X1 X2 X3 X4

1 −1 −1 −1 −1
2 +1 −1 −1 +1
3 −1 +1 −1 +1
4 +1 +1 −1 −1
5 −1 −1 +1 +1
6 +1 −1 +1 −1
7 −1 +1 +1 −1
8 +1 +1 +1 +1

Better yet, as long as we are assuming no interactions,
we could squeeze a few more factors into the study. Take
Table 5, which showed all the interaction patterns for a 23

factorial, and substitute in a new factor for any interaction
term.

For example, the design in Table 11 is called a 27−4

fractional factorial, since the base design varies seven factors
in only 27−4 = 8 runs instead of 27 = 128 runs! X4 uses
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the column that would correspond to an X1X2 interaction,
X5 uses the column that would correspond to an X1X3
interaction, and similarly for X6 and X7. The design is
said to be saturated since we cannot squeeze in any other
factors. If we ignore the last column completely (i.e., we
don’t have a factor X7) then we can examine six factors
in only eight runs. If we take b = 2 replications of this
experiment, we can examine seven factors in only 16 runs.

Table 11: Terms for a 27−4 Fractional Factorial Design

Des. X1 X2 X3 X4 X5 X6 X7
Pt. (1,2) (1,3) (2,3) (1,2,3)
1 −1 −1 −1 +1 +1 +1 −1
2 +1 −1 −1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 −1 +1
4 +1 +1 −1 +1 −1 −1 −1
5 −1 −1 +1 +1 −1 −1 +1
6 +1 −1 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1

Graphically, fractional factorial designs sample at a
carefully-chosen fraction of the corner points on the hy-
percube. Figure 9 shows the sampling for a 23−1 factorial
design, i.e., investigating three factors, each at two levels,
in only 23−1 = 4 runs. There are two points on each of
the left and right faces of the cube, and each of these faces
has one instance of X2 at each level and one instance of
X3 at each level, so we can isolate the effect for factor
X1. Similarly, averaging the results for the front and back
faces allows us to estimate the effect for factor X2, and
averaging the results for the top and bottom faces allows
us to estimate the effect for factor X3.

X2

X1

X3

Figure 9: 23−1 Fractional Factorial

Saturated or nearly-saturated fractional factorials are
very efficient (relative to full factorial designs) when there
are many factors. For example, 64 runs could be used for
a single replication of a design involving 63 factors, or two
replications of a design involving 32 factors. Saturated or
nearly saturated fractional factorials are also very easy to
construct. However, these designs will not do a good job of
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revealing the underlying structure of the response surface
if there truly are strong interactions but we have ignored
them in setting up the experiment. A compromise is to use
R5 fractional factorials. These allow two-way interactions
to be explored but can require many fewer design points.

It is easy to create a 2k−1 factorial (called a half frac-
tion) by setting up the first 2k−1 columns as if we just had
k − 1 factors, and then constructing a column for the last
factor by taking the interaction (product) of the first k − 1
columns. Except for the special cases when k ≤ 4, we will
also be able to estimate two-way interactions with the 2k−1

designs. Unfortunately, a half-fraction is still inefficient if
k is large. Until recently it was difficult to construct a very
efficient R5 fractional factorial for more than about a dozen
factors. For example, the largest R5 fractional factorial in
Montgomery (2000) is a 210−3, while Box, Hunter, and
Hunter (1978) and NIST/Sematech (2005) provide a 211−4.
Sanchez and Sanchez (2005) recently developed a method,
based on discrete-valued Walsh functions, for rapidly con-
structing very large R5 fractional factorial designs—a simple
Java program generates designs up to a 2120−105 in under
a minute. These allow all main effects and two-way inter-
actions to be fit, and may be more useful for simulation
analysts than saturated or nearly-saturated designs. The
sizes of the resulting designs are given in Table 12.

Table 12: Data Requirements for Efficient 2k−p

R5 Fractional Factorial Designs

No. of No. of
k Design Points k Design Points
1 21 = 2 18-21 29 = 512
2 22 = 4 22-29 210 = 1, 024
3 23 = 8 30-38 211 = 2, 048

4-5 24 = 16 39-52 212 = 4, 096
6 25 = 32 53-69 213 = 8, 192

7-8 26 = 64 70-92 214 = 16, 384
9-11 27 = 128 93-120 215 = 32, 768

12-17 28 = 256

3.6 Central Composite Designs

Because 2k factorials or fractional factorials sample each
factor at only two levels, they are very efficient at identifying
slopes for main effects or two-way interactions. Unfortu-
nately, sampling at only two levels means the analyst has
no idea about what happens to the simulation’s response
in the middle of the factor ranges. Going to a 3k factorial
would let us estimate quadratic effects, but it takes quite a
bit more data—especially if k is large!

Another classic design that lets the analyst estimate
all full second-order models (i.e., main effects, two-way
interactions, and quadratic effects) is called a central com-
posite design (CCD). Start with a 2k factorial or R5 2k−p
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fractional factorial design. Then add a center point and two
“star points” for each of the factors. In the coded designs,
if −1 and +1 are the low and high levels, respectively,
then the center point occurs at (0, 0, ..., 0), the first pair of
star points are (−c, 0, ..., 0) and (c, 0, ..., 0); the second pair
of star points are (0,−c, 0, ..., 0) and (0,+c, 0, ..., 0), and
so on. A graphical depiction of a CCD for three factors
appears in Figure 10. If c = 1 the start points will be on
the face of the cube, but other values of c are possible.

Although the CCD adds more star points when there
are more factors, using a fractional factorial as the basic
design means the CCD has dramatically fewer design points
than a 3k factorial design for the same number of factors.
The additional requirements are O(k). Some examples are
given in Table 13, using the efficient R5 fractional factorials
of Sanchez and Sanchez (2005) as the base designs for the
CCDs. Once again, it is clear that a brute force approach
is impossible when k is large, but efficient experimental
designs allow the analyst to conduct an experiment.

Table 13: Data Requirements for 3-Level Designs

Central 3k

Composite Factorial
No. of No. of No. of

k Terms Design Pts Design Pts
2 5 10 9
3 9 16 27
4 14 26 81
5 20 28 243
6 27 46 729
7 35 80 2,187
8 44 82 6,561
9 54 150 19,683

10 65 152 59,049
30 495 2,110 2.1E+14
70 2,555 16,526 2.5E+33

120 7,380 33,010 1.8E+57

3.7 Crossed and Combined Designs

So far, we have discussed designs for the first of the stated
goals: developing a basic understanding of a particular
model or system. The second goal was that of finding robust
decisions or policies. A robust design approach (Taguchi
1987, Sanchez 2000) means that the factors are classified into
two groups: decision factors, which represent factors that are
controllable in the real world setting the simulation models;
and noise factors, which are uncontrollable or controllable
only at great cost in the real world, but potentially affect the
system’s performance. Sometimes a third group is added,
consisting of simulation-specific factors such as the choices
of random number streams, batch sizes, run lengths, and
more.
7

The robust design philosophy means that the decision
should not be based solely on mean performance and how
close it is to a user-specified target value, but also on the
performance variability. One way of accomplishing this is
to redefine the performance measure to reflect the trade-off
between a good mean and a small variance. Alternatives
that often provide more guidance to the decision-maker are
to examine the response mean and response variability at
each design point separately, or to the fit separate models
of the response mean and response variability. Regard-
less, working with the expected performance means that
expectation is taken across the noise space.

One way this can be accomplished is by constructing
a big design with columns for all of the decision and
noise factors, referred to as a combined design (Sanchez
et al. 1996). For example, suppose the decision factors
are the means and standard deviations for tasks B, E, F,
and Q in the project management scenario, perhaps because
different workers, equipment, or procedures could be used.
Further, suppose the noise factors are the means and standard
deviations of tasks P, S, and T. This total of 14 factors could
be examined using a NOLH with 65 design points or a CCD
with 119 design points (replicated as needed). Examining
the results in terms that involve only the decisions factors
will yield insight into whether or not specific decision-
factor combinations are robust to uncontrollable sources of
variation.

Another design choice requires more sampling but may
be easier to justify to decision-makers. Two basic designs
are chosen—one for the decision factors, and another for
the noise factors. They need not be the same type of design.
A crossed design is then constructed by running each of the
noise factor design points for each of the decision factor
design points. Table 14 shows a portion of the design
obtained by crossing a NOLH with 33 design points (for
the decision factors) with a NOLH with 17 design points (for
the noise factors) for the project management simulation.
The base design has a total of 33 × 17 = 561 runs.

Whether the goal is to develop a basic understanding of
the model, or to identify robust settings for decision factors,
crossed designs can also be useful when a few factors take
on a handful of discrete qualitative or quantitative levels.
The capture-the-flag simulation could be run in dusk or night
settings, e.g., by crossing a 21 design for time of day with an
112 design for speed and stealth. The project management
simulation could be run by crossing a combined design
for the 14 task time means and standard deviations with
a 33 design that varies the task time distributions (normal,
uniform, and symmetric triangular) for three of the tasks.

4 DISCUSSION

Designs like the ones described in this paper have assisted
the U.S. military and over five allied countries in a series
9
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Figure 10: Construction of Central Composite Designs

Table 14: Crossed Design for Project Management Simulation

Crossed Decision Factors Noise Factors
Design Point Design Point μB μE · · · σQ Design Point μP μS · · · σT

1 1 680 1238 · · · 2.4 1 679 1100 · · · 9.6
2 1 680 1238 · · · 2.4 2 672 950 · · · 5.9
...

...
...

...
...

...
...

...
...

...
17 1 680 1238 · · · 2.4 17 683 925 · · · 6.3
18 2 676 1600 · · · 1.9 1 679 1100 · · · 9.6
19 2 676 1600 · · · 1.9 2 672 950 · · · 5.9
...

...
...

...
...

...
...

...
...

...
34 2 676 1600 · · · 1.9 17 683 925 · · · 6.3
...

...
...

...
...

...
...

...
...

...
544 33 648 1350 · · · 1.5 1 679 1100 · · · 9.6
545 33 648 1350 · · · 1.5 2 672 950 · · · 5.9

...
...

...
...

...
...

...
...

...
...

561 33 648 1350 · · · 1.5 17 683 925 · · · 6.3
of international workshops as part of the U.S. Marine
Corps’ Project Albert effort (Horne and Meyer 2004).
Interdisciplinary teams of officers and analysts develop
and explore agent-based simulation models to address
questions of current interest to the U.S. military and
allies, such as network-centric warfare, effective use of
unmanned vehicles, future combat systems, peace support
operations, convoy protection, and more. Sanchez and
Lucas (2002) provide an overview of issues in modeling
and analysis aspects of agent-based simulation. Cioppa,
Lucas, and Sanchez (2004) discuss highlights from studies
of squad size determination, degraded communications
on the battlefield, and unmanned surface vehicles for
both information, reconnaissance and surveillance mis-
sions and force protection scenarios. A humanitarian
assistance scenario is described by Wolf et al. (2003)
and Kleijnen et al. (2005). More information about
the Project Albert efforts can also be found online at
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<http://www.projectalbert.org>. The web
page for the Simulation Experiments & Efficient Design
Laboratory (SEED lab) at the Naval Postgraduate School, at
<http://diana.cs.nps.navy.mil/SeedLab>,
is another resource. It contains links to numerous masters
theses where simulation experiments have been used
to explore a variety of questions of interest to military
decision makers, as well as some spreadsheet tools and
Java software for creating the designs described in this
paper. For more on the philosophy and tactics of designing
simulation experiments, examples of graphical methods
that facilitate gaining insight into the simulation model’s
performance, and an extensive literature survey, we refer
the reader to Kleijnen et al. (2005). This tutorial has
touched on a few designs that we have found particularly
useful, but other design and analysis techniques exist. Our
intent was to open your eyes to the benefits of DOE,
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and convince you to make your next simulation study a
simulation experiment.
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