
Proceedings of the 2005 Winter Simulation Conference 
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. 
  
 
 

SIMULATION OF RISK AND RETURN PROFILES FOR PORTFOLIOS OF CDO TRANCHES 
 
 

William J. Morokoff 
 

New Product Research 
Moody’s KMV 
99 Church St. 

New York, NY 10007, U.S.A. 
 
 

ABSTRACT 

Investments in Collateralized Debt Obligations (CDOs) of-
ten offer attractive yields relative to other similar debt in-
struments (corporate bonds, etc.).  However, the risk pro-
files of CDO investments, and in particular portfolios of 
these investments, can be substantially different from 
straight credit portfolios due to complex correlation de-
pendence across CDOs.  Simulation is generally required 
to capture the intricate interaction of default and correla-
tion risk that determines the risk and return profile of a 
portfolio of CDO investments.  This paper considers some 
of the issues that must be addressed in determining the risk 
profiles with simulation and presents results on a simple 
example.   

1 INTRODUCTION 

Collateralized Debt Obligation (CDO) tranches are com-
plex financial instruments that share many similarities to 
corporate bonds.  Like bonds, tranches pay a periodic cou-
pon that may be at risk if there is serious deterioration of 
the credit quality of the backing entity.   For CDOs, the 
backing entity is generally a collateral pool of debt instru-
ments such as bonds, loans, credit default swaps or asset 
backed securities (e.g. mortgage pools).  Serious credit de-
terioration in a CDO means that many of the individual 
names in the pool default or suffer downgrades and loss in 
value.  There are several variations on how the collateral 
pools can be arranged: cash CDOs require actual owner-
ship by the deal of the underlying bonds or loans; synthetic 
CDOs simply reference a list of names that issue bonds or 
loans; and CDO squared deals have collateral pools con-
sisting of investments in other CDOs (either as cash in-
vestments or synthetically referenced). 
 CDO tranches are partial claims on the performance of 
the underlying CDO collateral pool.  They are generally 
ranked by seniority, this the most senior tranche being paid 
first before the other obligations.  It is therefore the least 
risky and, as such, earns the smallest promised coupon.   
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The collective set of tranches is known as the capital struc-
ture of the deal.  As one moves down the capital structure 
from senior to mezzanine to equity tranches, the promised 
returns increase as does the risk of not being paid.  The 
rules by which the tranches are paid are laid out in a cash 
flow waterfall that describes the structure of the deal.  The 
waterfall is generally straightforward for synthetic deals, 
but can be extremely complex for cash deals due to com-
plicated credit enhancement rules intended to protect the 
more senior tranches from collateral deterioration. 
 Quantitative modeling of credit valuation, default risk 
and portfolio risk is a well established field.  Extended dis-
cussions of the modeling issues can be found in Arvantis 
and Gregory (2001), Bluhm et al (2002), Duffie and Sin-
gleton (2003) and Gordy (2003).  For a discussion specific 
to CDOs see Goodman and Fabozzi (2002).  Papers dis-
cussing quantitative methods for CDOs include Hull and 
White (2004) and Morokoff (2003). 

2 MODELING PERFORMANCE OF CREDIT 
PORTFOLIOS 

Consider a loan portfolio to be evaluated for potential 
losses over the next year.  In order to evaluate the value at 
risk due to credit changes it is necessary to i) value each 
loan today; and ii) value each loan at the horizon as a func-
tion of the credit state at horizon, accounting for any cou-
pon payments prior to horizon and any recovery on loans 
that may default before the horizon.   
 Valuation of a loan today requires a risk neutral de-
fault probability term structure that describes the current 
credit state of the borrower.  The risk neutral default prob-
abilities are adjustments to the actual, physical default 
probabilities (measured based on historical performance of 
similar credits).  The adjustments, which lead to higher de-
fault probabilities, are required to account for the addi-
tional premium required by investors to take on non-
diversifiable default risk.  The default probability term 
structure is used to determine the probability of receiving 
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each coupon and principal payment until the maturity of 
the loan. 
 The valuation of a loan at the horizon  also requires a 
risk neutral default probability term structure that describes 
the  credit state at horizon of the borrower looking forward 
from horizon.  Future cash flows after horizon are 
weighted by probabilities of being received and discounted 
back to the horizon to establish the value at horizon. 
 It is important to note that the value either today or at 
horizon of a loan depends only on the credit state of a sin-
gle borrower.  The time evolution of this credit state can 
generally be described by a process for a single state vari-
able.  For example, in a structural model, the asset value of 
the borrowing firm would be the relevant variable. (Note 
that loan valuation may also depend on the stochastic evo-
lution of interest rate terms structures.  This aspect is not 
addressed here in order to focus on the credit risk). 
 To determine a probability distribution of the value of 
a loan at horizon, it is necessary to provide a probability 
distribution for the transition from the credit state today to 
the credit state at horizon.  This credit state transition proc-
ess establishes how the probability of default evolves over 
time.  Note that the transition probability density for the 
credit state should be in the physical (also known as real 
world) measure – that is, it should be consistent with actual 
default and credit migration probabilities, not the risk neu-
tral measure.  We are interested in computing the actual 
risk associated with real probabilities of credit migration 
and default over the horizon period, although the valuation 
of the loans themselves must be done in the risk neutral 
space.  It is in fact precisely the difference between the 
physical and risk neutral default probabilities that leads to 
a positive excess return on the loan as measured by the dif-
ference in the expected value at horizon and the value to-
day. 
 In order to calculate the risk of a portfolio of loans, it 
is necessary to model the correlated change in the credit 
state across various borrowers.  Unless the correlated credit 
state model has a particularly simple structure (e.g. it can 
be determined by a single scalar random variable), it is 
necessary to use Monte Carlo simulation to sample the cor-
related credit states.  Once the credit states at horizon have 
been sampled, the value of each loan at horizon can be 
computed, and thus also the value of the portfolio at hori-
zon.  Given the value of the portfolio today, the change in 
value of the portfolio can be computed from which quanti-
ties such as unexpected loss (i.e. volatility of the portfolio 
returns) and credit value at risk can be computed. 
 If all the loans in the portfolio have approximately the 
same individual expected return, then the portfolio will 
also have this same expected return.  The benefits of port-
folio diversification can then be readily seen as the portfo-
lio unexpected loss will decrease as more names are added 
(assuming they are not perfectly correlated).  The less cor-
related the changes in credit states of the borrowers are, the 
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lower the risk in the portfolio.  A standard measure that 
balances portfolio return with portfolio unexpected loss is 
the Sharpe ratio which is defined as 
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Here , ,rπμ and πσ are the portfolio expected return, the 
risk free return and the portfolio unexpected loss to hori-
zon.  Portfolio managers often look to maximize the 
Sharpe ratio of their portfolios either by increasing returns 
or by reducing unexpected loss through diversification. 

3 CDO TRANCHE RISK AND RETURN 

Similar to computing the credit risk associated with a loan, 
one can imagine computing the value of a CDO tranche to-
day, the distribution of value of the tranche at a future ho-
rizon (say 1 year) conditional on the credit state at horizon, 
and thereby determine the return distribution to horizon for 
the tranche.  Quantities such as unexpected loss and Sharpe 
ratio can be computed for the tranche, and by accounting 
for correlated tranche dependence, the portfolio return dis-
tribution for portfolios of tranches can be modeled. 

One significant drawback to this approach is that the 
valuation of a CDO tranche today can be a fairly substan-
tial calculation, depending on the type of CDO and the 
credit migration and correlation models being applied.  
Unlike a loan, the value of a tranche is not determined by 
the relatively simple discounting of future coupons 
weighted by a risk neutral probability of default (even 
more complicated loans with prepayment options and other 
features are still relatively straightforward to model).  The 
value of a tranche depends on the credit migration and de-
fault probabilities of the entire collateral pool, which may 
contain several hundred correlated credits.  Thus the value 
of the tranche depends on the credit state of hundreds of 
names.  Moreover, for cash CDOs, the complex rules gov-
erning the cash flows to the tranche, which are credit state 
dependent, must be taken into account.  There are signifi-
cant other complexities not described here that indicate that 
Monte Carlo simulation must be used to value tranches if 
more sophisticated credit models are applied. 

Valuation of a tranche at horizon is even more compli-
cated, as it requires accounting for events prior to horizon 
(e.g. default losses on the collateral pool and cash flows to 
the tranche) as well as evaluating the expected future cash 
flows to the tranche after horizon.  These future cash flows 
are conditional on the credit state at horizon, which de-
pends on the correlated  credit states of all the names in the 
collateral pool.  A practical implementation of this ap-
proach requires careful calibration of functions that ap-
proximate tranche value to avoid the need for an extremely 
slow simulation within a simulation approach. 
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For the purposes of this paper, we sidestep many of 
these complications by considering a simplified example of 
a CDO that nonetheless reveals a number of interesting 
properties when analyzed with simulation.  The CDO con-
sidered here is similar to a simple pass-through synthetic 
CDO with a five year maturity, but with “zero coupon” 
tranches.  This means that each tranche receives no interest 
or other cash flows for five years, at which time it receives 
the par amount minus any losses due to default that would 
be assigned to the tranche.  Since the maximum amount the 
tranche can receive is par at the five year horizon, the pur-
chase price must be at a discount to par, with the size of the 
discount corresponding to the degree of risk of incurring 
losses to the tranche principal. 

At the top of the capital structure there is a super-
senior tranche corresponding to 30 – 100% of the collateral 
pool; this means that the tranche will be responsible for 
covering all losses in excess of 30%.  The senior tranche 
covers losses from 15 – 30% of the original pool.  The re-
maining tranches cover 10 – 15%, 7 – 10%, 3 – 7% and 0 – 
3% of the losses.  For example, the 0 – 3% tranche will re-
ceive full principal at five years only if no defaults occur, 
and it will receive nothing it the losses exceed 3%. 

The underlying collateral reference pool consists of 
100 identical names with asset correlation 0.3, a one year 
physical default probability of 1%, and a five year physical 
default probability of 6%.  The loss that occurs upon de-
fault is assumed to be 50%.  For simplicity, the risk free 
discount rate used to compute the present value of the prin-
cipal payment at maturity is assume to be zero.  

To further simplify matters, the default, correlation, 
credit migration and valuation models used for this exam-
ple are chosen to facilitate ease of implementation and 
transparency. The methodology used to value the tranche 
at the analysis data and at the one year horizon is similar to 
the approach described in Hull and White (2004) and re-
lated to the Copula method discussed in Li (2002).  The 
simulation methodology is two step implementation of the 
Gaussian dynamics multi-step method described in Moro-
koff (2003). 

The simulation proceeds as follows.  First compute the 
value of each tranche today (i.e. the analysis date) by com-
puting the probability over the five year maturity of vari-
ous loss levels and taking an expected value of the corre-
sponding tranche value relative to this probability 
distribution.  Note that the appropriate probability to use is 
the risk neutral measure.  The probabilities of losses are 
computed based on a single step Gaussian copula using the 
asset correlation parameter and the risk neutral five year 
default probability. 

The second step is to simulate one time step out to the 
one year horizon under the physical default probability 
measure.  Thus each name in the collateral portfolio will 
default with the true one year default probability (set here 
to 1%).  For names that do default, a loss of 0.5% is as-
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signed.   For names that do not default in the first year, a 
new four year default probability, corresponding to the pe-
riod from the one year horizon to maturity, is computed 
based on the credit state sampled for that name as part of 
this one step simulation.  For the model employed here, 
this is represented as a sample for a standard Normal dis-
tribution.  The larger the sample, the better the credit state 
and the lower the associated four year default probability.  
Once the correlated forward four year default probabilities 
have been sampled for all the non-defaulted names in the 
portfolio, they can be converted to the risk neutral default 
probabilities, and the valuation method for the tranche de-
scribed above can be used to determine the value for each 
tranche at the horizon conditional on the credit state of all 
the names in the collateral reference pool. 

Because the value of the tranche at the analysis date 
and the value distribution at horizon are computed from the 
model, a consistent model requires that the expected 
change in value of the tranche must be positive (i.e., there 
is a positive return).  This is the compensation for the risk.  
To achieve a valuation model consistent with the simula-
tion, it is necessary to compute the risk neutral five year 
default probability based on a two step model.  This effec-
tively converts from physical to risk neutral based the as-
sumption of a Brownian motion process that may default 
(i.e. be below a default barrier) at either the horizon or at 
the five year maturity.  The default barriers are determined 
by the physical default probabilities to horizon and matur-
ity, which are functions of the drift and volatility of the 
physical process.  The risk neutral default probabilities are 
then computed as the probability of being below these bar-
riers under a measure whereby the drift of the process has 
been shifted to the risk free rate.  Instead of specifying the 
drift and volatility of the physical process, we derive these 
from the market risk premium, treated here as a parameter 
with value 0.4, and the correlation of each name in the col-
lateral portfolio with the overall market, which is deter-
mined from the asset correlation value.  Under this model, 
the five year risk neutral default probability is computed as 
about 13.9%.  It is interesting to note that the expected loss 
on the collateral pool for the five year period under the 
physical measure is 3%, while under the risk neutral meas-
ure it is around 7%.  Thus the physical and risk neutral 
measures provide a very different view of the performance 
of the 3-7% and 7 – 10% tranches. 

Table 1 shows the summary of the tranche prices and 
performance measures.  As expected, the 0 – 3% ‘equity’ 
tranche is discounted the most heavily reflecting the sub-
stantial probability of partial or complete loss.  It prices to 
only 19.2 on a par of 100.  Because the maximum price a 
tranche can have in this model is par, the equity tranche 
also has the most potential upside, and therefore the largest 
potential return to horizon.  If a scenario were to arise in 
which all of the names in the collateral pool migrated over 
the horizon period to a perfect credit state (i.e., zero default 
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probability), then the price at horizon would be par, and the 
return to horizon would be the maximum of 421%. 

 
Table 1:  Tranche Price and Performance Measures 

Tranche Price Expected 
Return 

Standard 
Deviation 

Sharpe 
Ratio 

0 – 3% 19.2 29.5% 80.0% 0.369 

3 – 7% 50 15.9% 39.5% 0.401 

7 – 10% 69.4 9.6% 23.5% 0.406 

10 – 15% 82.3 5.6% 14.0% 0.403 

15 – 30% 95.3 1.6% 4.3% 0.378 

Portfolio 93.0 1.3% 3.1% 0.409 

 
The portfolio row of Table 1 refers to the collateral portfo-
lio, considered here as a portfolio of zero coupon bonds.  
The price of the portfolio reflects the 7% expected loss un-
der the risk neutral measure.   
 As we go up the capital structure from the equity 
tranche to the senior 15 – 30% tranche, we see the price 
increase, and the expected return and risk (standard devia-
tion) decrease.  Most interesting, however, is that the 
Sharpe ratio of the tranches and the portfolio all remain 
about the same value near 0.4.  This indicates that, at least 
with regard to the Sharpe ratio measure, all the tranches are 
being consistently compensated for their risk.  It should be 
noted again that the prices and returns here are all model 
based and consistent.  It is likely that for real CDOs there 
may be substantial differences in Sharpe ratio across the 
tranches if market prices are used. 
 Figure 1 shows the probability density function of re-
turns for the portfolio and the 15 – 30% tranche as com-
puted in the simulation.  It is interesting to note that the 
portfolio has slightly higher maximum potential upside and 
a significantly smaller extreme potential downside.  The 
expected return for the tranche is slightly higher.  The 
volatility of the tranche is also higher; however, this stems 
from the fat tail, as the center of the distribution is some-
what tighter for the tranche than for the portfolio. 
 Figure 2 shows the probability density function for the 
returns on the mezzanine and equity tranches.  Here we see 
that the equity returns range from -100% (complete loss of 
value) to upwards of 250%, with the distribution being al-
most flat over much of this interval.  For the equity tranche 
there is in fact a substantial probability of a total loss 
which puts a delta function mass at -100%, not illustrated 
in the graph here.  The 3 – 7 % and 7 – 10% tranche densi-
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ties become progressively tighter and more peaked around 
their means.   
 It is interesting to note that while all the tranches have 
similar Sharpe ratios, they have very different risk profiles, 
in particular with regard to tail risk.  The Sharpe ratio is 
not necessarily the best measure of performance for these 
tranches. 
 

 
Figure 1: Return on Senior Tranche and Total Portfolio  

 
 

 
Figure 2: Return on Mezzanine and Equity Tranches 

 

4 PORTFOLIO OF TRANCHES 

In addition to the stand-alone risk/return profiles of indi-
vidual tranches, it is of great interest to consider how port-
folios of correlated tranches perform.  It is becoming in-
creasing common to also hedge a portfolio of tranches with 
a position in another tranche, a position in the entire under-
lying collateral portfolio (particular in the case of tranche 
written on an established credit index portfolio), or with 
positions in single names.   
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For the current example, we consider hedging a long 

position in the equity tranche with a short position in the 
portfolio.  The hedge ratio is taken to be 11.  This means 
that for every dollar invested in the equity tranche, 11 dol-
lars of the portfolio should be sold.  This ratio was chosen 
so that the portfolio consisting of the long equity position 
and short portfolio position would have approximately the 
same expected return as the 3 – 7% tranche.  In this way, 
we can compare the risk profiles for two investment op-
tions that have the same expected return. 

Figure 3 compares the return distributions for 3 – 7% 
tranche and the hedged equity portfolio.  It is clear that the 
risk is distributed very differently although the expected 
return is the same.  For the 3 – 7% tranche there is a small 
but significant probability of losing everything correspond-
ing to the chance that 14% of the names default before ho-
rizon (under the physical measure).  In the hedged portfo-
lio, under this extreme scenario the equity tranche is also 
wiped out; however, the portfolio suffers substantial losses 
too, and with the 11 times leverage and short position, this 
scenario in fact leads to a large positive return.  Thus we 
observe that the hedged portfolio has zero probability of 
having a -100% return (defined based on change in value 
of the amount invested in the equity tranche).   The hedged 
portfolio also has a much large potential positive return 
than the straight tranche position.  Thus the hedged portfo-
lio has much less extreme downside and much better ex-
treme upside.  This is paid for, however, by a riskier center 
of the distribution which covers both a broader range of 
value and is also somewhat peaked over negative returns.  
Another interesting feature of the hedged portfolio is the 
density return fingers that peak around -50% and -40% re-
turns.  Closer inspections of the scenarios that lead to these 
returns show that they correspond to having four defaults 
prior to horizon and three defaults prior to horizon respec-
tively.   

 
Figure 3: Return on Mezzanine and Hedged Equity 
Tranches 
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