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ABSTRACT 

The market for derivatives such as first-to-default baskets 
and CDO tranches on portfolios of corporate credit expo-
sures (bonds, loans, default swaps, etc.) has grown rapidly 
in recent years.  Various models for capturing portfolio 
correlation effects have been introduced, with Default 
Time models becoming the most widely used.  While at-
tractive for their relative simplicity and ability, in some 
cases, to allow fast computation of hedge ratios, there is 
increasing concern around the limitations and implications 
of these models. This paper uses simulation to study the 
effects of credit migration and correlation assumptions un-
derlying the models for valuation of derivatives on credit 
portfolios. 
 

1 INTRODUCTION 

The credit derivatives markets have grown rapidly over the 
last decade.  These financial instruments derive their value 
from basic credit contracts such as bond and loans, and 
their valuation often depends on the probability of the un-
derlying credit issuer defaulting.  Credit indices, basket de-
fault swaps and collateralized debt obligations (CDOs) are 
credit derivatives that depend on portfolios of credit in-
struments; as such, their valuation depends on the corre-
lated nature of credit, and in particular the joint probabili-
ties of default. 
 Measuring probabilities of corporate default has be-
come a well developed art.  Rating agencies such as 
Moody’s Investors Service provide in depth qualitative 
analysis of a firm’s management and financial viability in 
the process of assigning a rating.  Quantitative credit re-
search providers like Moody’s KMV focus on structural 
and econometric models based on equity market data and 
historical default data to determine probabilities of default.   
Models based on credit market price can also be used to 
imply out default probabilities. 
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 In this paper we will use the notation ( )CEDF t  to re-
fer to the cumulative Expected Default Frequency™ credit 
measure, which is the Moody’s KMV terminology for the 
cumulative default probability of a firm over the period to 
time t.  A discussion of the methodology used to determine 
the EDF credit measure can be found in Kealhofer (2003). 
 Determination of credit correlation has also been ex-
tensively studied (see Zeng and Zhang (2001) for one dis-
cussion).  The term correlation itself is somewhat vague as 
it is frequently used to refer to dependence among a num-
ber of different quantities, including equity returns, bond 
price returns, and yield or spread changes.  In this paper we 
will focus on asset return correlation, a concept derived 
from the original work of Merton (1974) on structural 
models.  In this framework, a firm defaults when its total 
franchise value, or asset value, falls below some measure 
of its liabilities.  A firm’s asset value cannot be directly ob-
served in the market, but it can be implied out from market 
cap, volatility and liability information.  Asset return corre-
lation measures the degree to which two firms’ asset values 
move together. 
 For this paper, we will assume that a firm’s cumula-
tive default probability term structure is known, as are the 
pair-wise asset return correlations.  In addition, we will as-
sume a Gaussian copula model, defined below, to specify 
the default dependence across firms. 
 In addition to default probability and asset correlation, 
there is an additional factor that determines joint default 
behavior: credit migration.  This effect has been discussed 
in Finger (2000).  The question is how does a firm’s credit 
quality (and therefore default probability) evolve over 
time.  This may be modeled explicitly by specifying a tran-
sition process for a credit state variable, or implicitly by 
specifying a model that embeds assumptions about the 
credit migration process.  In a structural model framework, 
geometric Brownian motion is often assumed for the evo-
lution of the firm asset value, consistent with the Gaussian 
copula description of the asset return correlations.  Assum-
ing a constant liability structure for the firm (as specified 
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by its initial default probability term structure) leads to the 
implicit credit migration models underlying the Default 
Time (single time step approximation) and Gaussian 
(multi-step) models described below.  In contrast, to ac-
count for the evolving nature of firm liabilities, it is neces-
sary to impose an explicit credit state migration process.  
In the following, we use the Distance to Default credit 
measure (DD), which is the number of standard deviations 
a firm’s asset value is above the firm’s default point, as the 
evolution variable, and use transition densities calibrated to 
historical data to determine the evolution process. 
 This paper uses simulation of the Default Time, Gaus-
sian and DD Dynamics models in the context of valuation 
of a basket default swap to compare the effects of the 
credit migration process under the same assumptions on 
default probability and correlation.   A discussion of simi-
lar issues in the context of a CDO collateral portfolio can 
be found in Morokoff (2003). 

2 MODELING DEFAULT TIMES 

This section describes the methodology most commonly 
employed today for simulating correlated defaults.  It is 
known as the Default Time or Copula approach and is de-
scribed by Li (2000) and Schmidt & Ward (2002).   
 For many credit derivatives the value depends not only 
on the probability of a default but also on the timing of the 
default over a given horizon.  Default timing is determined 
from a default probability term structure which may be 
represented as a vector of cumulative default probabilities  

 
 ( )1 2, , , NCEDF CEDF CEDFL  
 

specified at times 
 
 ( )1 2, , , .NT T TL  
 

The quantity iCEDF is interpreted to mean the probability 
of default in the interval ( )0, .iT   Thus the CEDF are in-
creasing.  This may be generalized to a time continuous de-
fault probability function ( )CEDF t ; however, default 
probabilities are usually report at discrete times , and a 
continuous function is obtained from interpolation. 

One method of randomly sampling default times is 
known as the Default Time or Copula method.  The idea is 
to randomly sample a uniform (0,1) variate .u   Assuming 
that NT  is the maturity, if Nu CEDF>  then the exposure 
does not default.  If 1i iCEDF u CEDF− < ≤  then the expo-
sure defaults in period .i   This procedure is closely related 
to sampling a stopping time for a random process crossing 
a default boundary. 

A key feature of this approach is the process for de-
termining correlated default times.  This requires sampling 
1

a set of correlated uniform variates ( )1, , Mu uL , where 
M is the number of exposures in the portfolio.  This is 
done by specifying a copula function ( )1 , MC u uL , which 
is a probability distribution function defined on the M -
dimensional unit cube.  The copula function is often related 
to the asset return distribution function at time NT , 

( )1, , MF R RL , by the formula 
 
 ( ) ( ) ( )( )1 1

1 1 1, , , ,M M MC u u F F u F u− −=L L  
 

where ( )1
jF −   is the inverse of the marginal probability 

distribution for the thj exposure.  However, any copula 
function may be used for this purpose.  The most com-
monly used are Gaussian and T-copulas, although a variety 
of other methods, including Archimedean copulas, have 
been considered. 
 For the Gaussian copula, the sampling procedure is 
particularly simple.  Based on the correlation matrix for the 
asset returns, a correlated sample of standard Normal vari-
ates ( )1, , Mε εL is sampled, either from a Cholesky de-
composition of the correlation matrix or from a factor 
model decomposition.  The uniform variates are then ob-
tained from the formula  
 

 ( )1 .j ju ε−= Φ  
 

Here Φ is the one dimensional standard cumulative Nor-
mal distribution function. 
      If the factor modeling underlying the correlation struc-
ture has more than a few dimensions, it is necessary to use 
Monte Carlo simulation to sample correlated defaults and 
default times that are then used to evaluate expectation in-
tegrals such as the probability of having more than k de-
faults or the expected value of the cash flows that are con-
ditional on default losses. Under more restrictive 
assumptions on the correlation structure, semi-analytical 
solutions can be derived.  For example, the latent variable 
approach, proposed by Vasicek (1987) for credit portfolio 
risk problems, has been extended to CDOs by Gregory and 
Laurent (2003).  The idea is that there exists a low dimen-
sional underlying latent variable x such that conditional on 
x the default probabilities and times for the exposures are 
independent.  The law of conditional expectations then al-
lows the portfolio properties of interest to be expressed as 
an expectation over x of the portfolio properties of an in-
dependent portfolio.  Often x is taken to be one dimen-
sional, so the problem reduces to a one dimensional quad-
rature. 
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3 MULTI-STEP SIMULATION 

An alternative to the Default Time approach based on 
simulating the firm asset value as a stochastic random vari-
able has been described by Hull and White (2001), Arvani-
tis and Gregory (2001) and Finger (2000).  In this section 
we describe an implementation of this approach and de-
scribe a multi-step approach based on the empirically de-
rived Distance to Default distributions.   
       While the default time approach captures the marginal 
default probabilities of each individual exposure correctly 
over the life of the simulation, substantial error may be in-
troduced into the correlated default structure, depending on 
how the correlation structure and the underlying stochastic 
default process are viewed.  Time series of asset, equity or 
debt price returns are usually based on daily or weekly 
time intervals.  Given the relatively high default probabil-
ity of most assets over time horizons of five years or 
longer, using a correlation structure based on weekly re-
turns as a proxy for multi-year horizon correlations can 
lead to skewed results.  In particular, the single step ap-
proach may not adequately capture the absorbing nature of 
the default state (i.e., the stochastic process has an absorb-
ing boundary).   Thus it is better to consider a simulation 
based on a sequence of shorter time steps that one single 
step to maturity. 

It is possible to model the credit migration of a single 
asset as a continuous time stochastic process, such as geo-
metric Brownian motion or an Ohrnstein-Uhlenbeck proc-
ess, with an absorbing boundary implied by the cumulative 
default probability function ( )CEDF t .  In this formulation 
a free boundary problem PDE can be derived as described 
by Avellaneda and Zhu (2001).  However, since data are 
not available to realistically determine ( )CEDF t  as a time 
continuous function,  the continuous approach does not add 
accuracy relative to a discrete approach as long as the cor-
related behavior of asset over the time step is consistent 
with the correlation modeling.   In any case, unless a low-
dimensional latent variable approach is applied, computa-
tion of the properties of a portfolio of many exposures will 
require a Monte Carlo simulation based on discrete time 
steps. 

For analyzing a credit derivative, it is most convenient 
to use simulation time steps based on the payment dates 
associated with the contract.  For one simulation step, the 
names defaulting during that period are identified, recover-
ies on defaulted names are determined, and interest and 
principal cash flows are assessed.  If desired, the exact de-
fault time of an exposure can be sampled using the default 
time methodology described above within one simulation 
period. The key question for the simulation is thus whether 
the default occurs in a given period.  

There are numerous approaches that can lead to multi-
step simulations for correlated defaults depending on how 
the default process is modeled.  We focus here on two 
18
methods related to structural models for which correlated 
default behavior is derived from the underlying firm asset 
value correlations.  Both methods take as input the cumula-
tive default function ( )jCEDT t specified at discrete 

times ( )1, , NT TL  for each obligor in the collateral portfo-
lio, indexed by j .  In addition, the firm asset value correla-
tion matrix for all obligors must be specified. 

The first approach assumes that the asset value process 
for each obligor follows correlated geometric Brownian 
motion.   The associated asset value (log) return process 
therefore follows a standard Brownian motion process.  An 
obligor j defaults during a period ( ]1,i iT T−  if the asset re-

turn  i
jR  at time iT  is less than some threshold level i

jα , 

while k k
j jR α>  for all k i<  (i.e., there was no previous de-

fault).   In a continuous time formulation, the function 
( )j tα  is the default boundary such that the default time is 

the stopping time of the Brownian motion process associ-
ated with crossing the boundary.   Obviously the default 
thresholds must be related to the default probability.  Spe-
cifically the relationship is 

 
 ( )1 11 ( , , ) .i i

j j j j j iP R R CEDF Tα α− > > =L  
 
As this equation suggests, the determination of the de-

fault thresholds requires a non trivial calculation as it re-
lates to inverting an i − variate cumulative Normal distri-
bution (in the continuous case, the default boundary is the 
solution to a free boundary PDE).  One approach that gets 
around the need to invert a multi-dimensional distribution 
is to determine the distribution of 1i

jR − , conditional on no 
defaults up to time 1iT − .  Assuming we know this distribu-
tion and using the fact that 

 
 1i i i

j j jR R ϕ−= +  
 

where i
jϕ  is an increment independent of 1i

jR −  (since the 
return process is Brownian motion) with a Normal distribu-
tion, we can obtain by convolution the distribution of i

jR , 
conditional on no defaults up to 1iT − ,  from the conditional 
distribution for 1i

jR −  and i
jϕ .  We can then solve for the 

default threshold i
jα  from the equation 

 

 
( ) ( )( )

( ) ( )
1 1

1

|  no defaults up to 1

.

i i
j j i i

i i

P R T CEDF T

CEDF T CEDF T

α − −

−

≤ −

= −


 

29



Morokoff 

 
Once i

jα  has been determined, the distribution of i
jR  con-

ditional on no defaults up to iT  can be determined by trun-
cating the distribution of i

jR  conditional on no defaults up 
to time 1iT − .  By repeated application of this procedure, the 
entire set of default thresholds can be determined.  The 
main computational cost is associated with the convolu-
tion.  This can be handled easily with the fast Fourier trans-
form algorithm, which is effective since the conditional 
distribution is always convolved with a Normal distribu-
tion.  Monte Carlo simulation can also be used to deter-
mine the default thresholds by determining the levels that 
will give the lead to the correct percentage of simulation 
paths to default in each period. 
       Once the default thresholds are determined, the simu-
lation proceeds by sampling correlated Brownian motion 
paths for the asset returns at the specified times.  Default 
occurs for a given obligor during the first period for which 
its return falls below the associated threshold.   For names 
that don’t default, conditional default probabilities at each 
time step can be used as input in valuation algorithms to 
provide consistent, correlated mark-to-model pricing for 
the collateral.  We will refer to approach as the Gaussian 
multi-step method (Gaussian method for short). 

As mentioned above, the assumption of geometric 
Brownian motion for the asset value process often does not 
adequately capture how a firm’s credit quality changes 
over  time because it does not take into account the associ-
ated changes in  liability structure.  It is known that as 
firms do well (e.g. as the asset value of the firm increases), 
they tend to take on more debt, thereby keeping their credit 
quality more stable over time.  For example, a Baa rated 
firm will tend to maintain that rating by borrowing more 
when opportunities arise.  It would be unusual for such a 
firm to grow without adding leverage to become a Aaa 
rated.  However, this tends to be the consequence of the 
geometric Brownian motion model:  over longer time hori-
zons, firms that do not default undergo systematic im-
provement in their credit quality. 

To capture the effects of changes to both asset value 
and liability structure on credit quality in long horizon 
multi-step simulations, at MKMV we have developed a 
multi-step simulation based on the Distance to Default 
transition densities.  We now consider the implementation 
of this second, empirically-based method. 

A key point to consider when working with histori-
cally observed data is the need to bucket the data in order 
to build a suitable sample size.  For example,  the first step 
in determining the probability of transitioning from a 
DD value of 3 over a one year horizon to a DD value of 4 
is to identify all names in the historical sample that have at 
some time point a DD value of 3.  However, since DD is 
determined as a continuous variable, it is unlikely that any 
of the sample will have a DD value of exactly 3.  Thus it is 
necessary to repose the question as to the probability of 
18
transition from a bucket, or interval, containing the 
DD value 3 to a DD value less than 4.  The distribution of 
arrival DD ’s after one year does not necessarily have to be 
bucketed – a parametric distribution for the cumulative 
transition probability distribution can be selected and the 
actual data used to estimate the distribution’s parameters.  
However, for use in a multi-step simulation, it is conven-
ient to work with the transition probabilities from one 
bucket to another bucket in the form of a transition matrix.  
The multi-step simulation is then carried out as a discrete 
Markov chain by repeated application of the transition ma-
trix  to an initial state vector.  The size of the transition ma-
trix, which is determined by the size of the DD buckets, is 
chosen to balance the desire for high resolution in 
DD space with the need to minimize the statistical errors 
arising from small sample sizes.  Ultimately this is a ques-
tion of the size of the original data set.  The MKMV simu-
lation is based on 10 years of monthly data on over 9000 
firms. 

There are a number of important observations to be 
made about the DD transition matrix.  First, the default 
state, conveniently labeled as 0DD = , is an absorbing 
state.  The total probability of transitioning to this default 
state over a given time period is the forward EDF.  This 
EDF is different for each firm; however, the transition ma-
trix was determined by pooling data on many firms.  Thus 
the transition matrix must be viewed as firm aggregate be-
havior.  In order to capture the firm-specific behavior dic-
tated by the input EDF term structure for each firm, it is 
necessary to make a firm-specific calibration of the transi-
tion matrix.  The calibration consists of satisfying the con-
straint that over a given time period, the probability of 
transitioning from a non-default state to the default state 
must be the unconditional (or more precisely, conditional 
only on data specified at 0T ) forward default probability: 

 

 
( )

( )
1

1
1

( )
( , ) .

1
i i

i i
i

CEDF T CEDF T
FWD EDF T T

CEDF T
−

−
−

−
=

−
 

 
There are numerous ways this constraint could be en-
forced.  One simple approach is to rescale all the original, 
firm aggregate transition probabilities to default by a single 
factor such that their sum, weighted by the unconditional 
probabilities of being in each non-default state at time 1iT − , 
matches the forward EDF.  Once the transition probabili-
ties are adjusted by this scaling, the unconditional prob-
abilities for each state at time iT  can be determined, 
thereby allowing the calibration for the next time step.  
This is equivalent to the convolution and truncation steps 
employed  for the geometric Brownian motion model. 
        A second consideration for the transition matrix is 
whether the underlying data supports the model of a 
Markov process.  Not surprisingly, the firm-aggregate tran-
sition matrices for time horizons of 6 months, 1 year, 2 
30



Morokoff 

 
years, 5 years, etc., derived from the data do not fit per-
fectly in a Markov framework.  In other words, the one 
year matrix is not exactly the convolution of the 6 month 
matrix with itself; nor is the five year transition matrix ex-
actly the five-fold convolution of the one year transition 
matrix.  The agreement of these transition matrices is how-
ever sufficient, particularly given the complexity of the 
underlying factors which drive credit migration of firms as 
well as the firm-aggregate nature of the transitions them-
selves, to warrant the approximation by  a single, Markov 
transition matrix, which is determined by optimally fitting, 
in a least-squares sense, one matrix (and its convolutions) 
to the empirical transition matrices.  This avoids the excep-
tionally difficult task of specifying and calibrating a non-
Markov process for the credit migration. 
     Once the transition matrix is specified for each obligor 
at each time step, the simulation proceeds by sampling 
from ( )1|i iF DD DD − , the probability distribution of 
DD states at time iT  determined from the appropriate 
probability distribution (as given by the transition matrix) 
conditional on the DD state at time 1iT − .   By interpolation 
from the cumulative probabilities for the discrete transition 
matrix DD states, ( )1|i iF DD DD −  can be assumed to be a 

continuous, non-decreasing function with inverse ( )1
iF u−  

defined on the unit interval [0,1] .  For values of u in the 
interval 1[0, ( 0)]iP DD − →  (i.e., between 0 and the condi-
tional probability of defaulting), it follows that 

( )1 0iF u− = . We introduce correlations among obligors by 
assuming multi-variate Brownian motion for the asset re-
turn process and sampling the correlated asset return in-
crements according to the specified asset return correlation 
matrix.  The cumulative Normal distribution function is 
then used to map the sampled asset return increments to the 
unit interval; this value is then used as the argument for  

( )1
iF u− .  More precisely, the DD sample for obligor j  at 

time i  is given by  
 

 
( )( )1

i jDD F ε−= Φ
 

 
where the jε  are the normalized, correlated Normal sam-
ples of asset returns. 
      For a low enough asset return sample , the default state 
of 0DD =  is sampled.  In this case, a random recovery 
may be drawn  from an appropriate distribution of recovery 
rates.  If the obligor does not default, the sampled DD state 
at iT  can be used to determine a conditional EDF term 
structure looking forward that can be used to discount fu-
ture cash flows according to their credit risk in order to ob-
tain a  price for the exposure at time iT .  
18
4 DEFAULT TIME VS. GAUSSIAN MIGRATION 

In this section we compare the continuous time Gaussian 
migration model to the closely related single step Default 
Time model in terms of the implied Joint Default Fre-
quency (JDF) for a pair of identical credits over a given 5 
year horizon T .  The purpose is to compute using Monte 
Carlo simulation the relative difference of the JDF under 
the two models over a range of default probabilities and 
asset correlations. 
      The problem may be posed as a question of stopping 
times for two identical, correlated Brownian motion proc-
esses 1 2( ), ( )x t x t , which represent the cumulative asset 
return on the two firms. The default boundary for the assets 

( )f t  is assumed known. We define the following quanti-
ties for these assets: 
 
  ( ) ( )( )1 2E x t x t tρ=  

  ( ) ( )( )min |i it x t f tτ = ≤  

  ( ) ( )i iCEDF T P Tτ= ≤  

 ( ) ( ) ( )( ) ( ):   i i i iT P x T T P Tα α τ≤ = ≤  
 
The specified default boundary determines the cumulative 
default probability to T .  This in turn determines the de-
fault threshold ( )Tα used in the Default Time model to de-
cide if a default has occurred.  The parameter ρ is the asset 
return correlation for the Gaussian process as well as the 
Default Time correlation. 

The Joint Default Frequency for each model can be 
defined as 

 
  Gaussian 1 2   ( and )JDF P T Tτ τ= ≤ ≤  

  
( ) ( )

( ) ( )
1 1

Default Time
2 2

 
.

and 

x T T
JDF P

x T T

α

α

⎛ ⎞≤
⎜ ⎟=
⎜ ⎟≤⎝ ⎠

 

 
For the Default Time model, the JDF is given by the 
bivariate cumulative Normal function.  There is also an 
analytic representation of the Gaussian JDF in terms of an 
infinite series of functions.  The proposition we would like 
to establish is that 
 
  Gaussian Default Time( ) ( ).JDF T JDF T≤  
 
It is easy to show that for two identical process, this rela-
tionship holds as an identity for correlation 0 and correla-
tion 100%.  As far as we are aware, there is not a direct 
proof of this relationship in the general case.  For the pur-
poses of this paper, therefore, the JDF for the Gaussian 
model will be computed by simulation using weekly time 
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steps out to a 5 year horizon.  More precisely, we would 
like to study the function 
 

   ( )Default Time

Gaussian
, , .JDF CEDF T

JDF
ρ  

 
To simplify the parameterization, we will assume that there 
is a constant annualized default rate r.  In this case, the 
cumulative default probability is given by 
 
    ( ) 1 (1 ) .tCEDF t r= − −  
 
Figure 1 shows a plot of the ratio of the JDFs for the two 
models at different CEDF(T) levels over a correlation 
range from 0 to 100%.   Allowing for simulation error, we 
observe a general symmetric, parabolic shape of the func-
tion, matching as expected at a ratio of 1 at the extreme 
correlations of 0 and 100%, with the peak difference be-
tween the models occurring around a correlation of 50%.    
The plot shows that the relative difference of the models 
increases substantially as the default probability decreases. 
It should be noted, however, that at low default probabili-
ties, the joint default frequencies are very low, so that the 
absolute difference in level between the models gets  
smaller as the default probability decreases. 
 

 
Figure 1: Ratio of Joint Default Frequencies for Default 
Time and Gaussian Credit Migration Models 
 
 For pricing purposes, risk-neutral default probabilities 
are used.  Mid 2005 levels for a typical investment grade 
credit indicate a 5 year cumulative risk-neutral default 
probability of around 0.05.  The plot indicates that for a 
typical range of correlations observed, there is around 10% 
relative difference in the pair-wise joint default frequencies 
implied by the Default Time and Gaussian models. 
18
5 BASKET DEFAULT SWAP EXAMPLE 

We now consider the effects of credit migration models on 
pricing a five name kth-to-default basket swap.  In this 
contract the buyer agrees to pay a percentage x of a no-
tional amount (taken here to be 1) in the event that at least 
k names in the basket default; in exchange the seller agrees 
to pay the buyer periodic coupons (called spread) up until 
the point of the kth default or until the maturity of the con-
tract. In most contracts the amount x is uncertain and de-
pends on the recovery associated with the default events.  
For pricing purposes, it is generally considered a constant 
(the expected value of a random loss taken to be independ-
ent of the random default events); for this study, we will 
set x to be 1 (full notional must be paid) as all prices scale 
linearly with x.  The price of the basket default swap is 
quoted as the fair spread that must be paid to the buyer to 
balance the present value of the coupon side with the pre-
sent value of the loss side. 
 We consider here the spread required on a first-to-
default basket and a second-to-default basket as a function 
of correlation, under the Default Time, Gaussian and DD 
Dynamics credit migration models.  The required spread is 
a function of the probability of the first (second) default 
occurring during a specific period.  This probability is 
computed by simulating the joint default behavior of the 
basket of names under the different migration models. 
 The example here considers quarterly periods over a 
five year horizon for which the buyer of the basket receives 
s/4 at the end of each period (s being the annualized 
spread) in which there have been fewer than k defaults (k = 
1 or 2).  If the kth default occurs during a period, it is as-
sumed to occur at the mid-point of the period; thus the 
buyer receives s/8 but must pay 1.  The discounted cash 
flows are computed by assuming a flat interest rate term 
structure of 3% annualized with continuous compounding. 
 For simplicity the basket consists of five identical 
credits.  For pricing purposes we consider a risk-neutral 
cumulative default probability term structure of [.003 .009 
.019  .034 .049] corresponding to years 1 through 5.  This 
corresponds to an annualized risk-neutral default probabil-
ity term structure of [.003 .0045 .0065 .0085 .0010], which 
is typical of an average investment grade credit in mid 
2005.   The quarterly cumulative default probabilities are 
obtained by linearly interpolating on log(1 – CEDF(t)). 
 Figure 2 shows the required spread for the first to de-
fault basket for the three models as a function of asset cor-
relation ranging from 0 to 50%.  As expected, under the 
assumption of zero correlation, all models produce the 
same spread.  It is also intuitive that as correlation in-
creases the required spread decreases for all models.  This 
is because the probability of having zero defaults (i.e., the 
probability that the buyer does not have to pay anything) 
increases with correlation – thus the buyer requires less 
spread to balance the potential loss.  The probability of 
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zero defaults is minimized when the names are independ-
ent.  The Default Time model shows the greatest sensitivity 
to increasing correlation consistent with the over-emphasis 
of correlation shown in Figure 1.  The Gaussian model ex-
hibits similar behavior, but indicates less sensitivity at the 
higher correlations.  The corresponds to the presence of the 
absorbing default boundary in the Gaussian model (not 
present in the Default Time model) that leads to lower ef-
fective default correlation. The most dramatic difference, 
however, is shown by the DD Dynamics model.   Here the 
credit migration model implies significantly less sensitivity 
to increasing correlation and correspondingly less effective 
default correlation.  The empirically determined transition 
densities effectively put the breaks on names as the ap-
proach default in a way such that while the default prob-
abilities remain the same, the default correlations derived 
from the multi-step simulation are reduced compared with 
the other models.  Consider another way, if the market 
price for this basket is 100 basis points, the Default Time 
model would indicate a correlation of 32%, the Gaussian 
model would indicate 34% correlation, while the DD Dy-
namics model implies around 42% correlation. 
 The second to default basket swap is considered in 
Figure 3.  Again at zero correlation, all the models give the 
same spread.  However, the required spread for the second 
to default basket now increases as correlation increases, 
indicating that the probability of having at least two de-
faults increases as correlation increases.  As with the first 
to default basket, the Default Time model shows  
 

Figure 2: First to Default Basket Required Spread 
 
the greatest sensitivity to increasing correlation, while the 
DD Dynamics model shows significantly less sensitivity.  
If the market spread is 20 basis points for this basket, the 
implied correlation is 26% for the Default Time model, 
29% for the Gaussian model and 39% for the DD Dynam-
ics model. 
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Figure 3: Second to Default Basket Required Spread 
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