
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

EXTEND SRML SCHEMA BASED ON DEVS: AN EXECUTABLE DEVS LANGUAGE

Chen Liu
Qun Li

Wei-ping Wang
Yi-fan Zhu

School of Information System and Management

National University of Defense Technology
Changsha 410073 , Hunan, CHINA

ABSTRACT

This paper analyzes the significance of the representation
and reusability of SRML when being used in simulation
models as well as its drawbacks. The paper also discusses
the ways to extend SRML schema based on DEVS. The
emphasis is placed on the elaboration of mapping DEVS
onto SRML schema to formulate SRML’s basic syntax and
semantics for the structure and behavior representation of
atomic model and coupled model. The model structure,
such as property, input interface, output interface and
sub-model composition, are described by a group of XML
marks. The model behavior, such as external transition,
internal transition, output and time-advance functions are
described by script language and a group of standard
interface offered by SRML simulator in Script marks. The
paper then reviews the SRML element architecture and
finally gives a simulation demo of using SRML to build
differential equation model.

1 SRML

SRML (Simulation Reference Markup Language)
(Reichenthal 2002 and Reichenthal 2003) was first raised
by Steven. W. Reichenthal from Boeing Co. and was
submitted to W3C and subsequently released as a standard
draft in 2002. W3C has now set up a formal SRML
research team to study SRML schema and design standard
simulator interface.

The emergence of SRML is the result of modeling and
simulation development. The process of modeling and
simulation in large-scale simulation project development
consists of many complicated activities catering
multi-fields. Its accomplishment and development require
the cooperation of different professional staff in different
fields and different geological locations. The simulation
technology is also moving from single field application to
collaborative simulation development. The basic problem

26

in collaborative simulation is the model integration and
model reusability. HLA resolved the simulation
interoperability in execution time but not in design time
(Tolk 2002). The hot research topic in Pentagon is CMSE
(Composable Mission Space Environment) (DMSO 2004,
Tolk 2004 and Davis 2004), which is focused on the
normalization of simulation models to achieve syntactic
and semantic composition of simulation models.

SRML is aiming to solve the normalization problem in
simulation models in order for the models to be easily
developed and reused. SRML is based on XML data
exchange standard and declare a group of less quantity but
relatively complete elements and elements properties to
describe abstract characteristics, structures, and behavior to
support building system model. It can support modeler to
maximum extent to build simulation entity with the XML
elements. At the same time, SRML attempts to create a
flexible reference standard to represent simulation in order
to make simulation model integration and reuse
convenient. Different simulation fields can also apply
standard XML to describe different simulation methods,
such as Petri-Net, Finite state automata and block models.

SRML draft is still improving and some elements and
properties have deficiencies, especially simulation
elements, ItemClass and Item element definition. SRML
needs to be amended and extended to incorporate existing
simulation theories and methods. In addition, SRML
requires complex application examples to test and improve.

2 DEVS

DEVS(Discrete Event System Specification) (Zeigler 2000)
was developed based on the research of system theory by
Professor B. P. Zeigler. DEVS considers each system as a
model with independent internal structure, behavior and
explicit I/O interface. Some of atomic models can form
coupled model by means of certain connection relationship
and coupled model can subsequently be used as element of

93

Chen Liu, Qun Li, Wei-ping Wang and Yi-fan Zhu

bigger coupled model. Therefore the modular and
hierarchical modeling pattern would be achieved.

An atomic model of DEVS is a structure：
M=<X, S, Y, δint, δext, λ, ta>

X: the set of input values
S: the set of states;
Y: the set of output values
δint: S→S, is the internal transition function
δext: Q × X→S, is the external transition function,

where Q={(s, e) | s∈S, 0 ≤ e ≤ ta(s)}: is the total states set
e: the time elapsed since last transition
λ: S→Y, is the output function
ta: S→R＋0,∞, is the time advance function.
The execution process of atomic model is illustrated in

Figure 1. When atomic model received input event from
input ports, the external transition function is triggered, and
the states are changed. Time-advance function control the
time of internal transition, when the elapsed time e= ta(s),
the model output the value λ(s) to output ports, and change
to state δint (s), then the next internal transition time is
advanced to time now + ta(s).

Figure 1: The execution mechanism of atomic model.

A coupled model of DEVS is a structure as follow：

N=<X, Y, D, {Md}, {Id}, {Zid}, Select>
X：the set of input values

Y：the set of output values

D：the set of components included in coupled model
of DEVS

{Md}： ∀ d ∈ D，Md is an Atomic model of DEVS
{Id}： ∀ d ∈ D ∪{N}，Id is the influencer set of d，

Id ⊆ D∪{N}, d ∉ Id

{Zid}： ∀ i ∈Id，Zid is a function, the i to d output
translation with

Zid ：X→Xd，if i = N

Zid ：Yi→Y，if d = N

Zid ：Yi→Xd，if d ≠ N ∧ i ≠ N.
269
Coupled models result from composing atomic models
or “lower level” coupled models. They comprise the set of
components, hence building models, their own set of input
and output ports, and a set of coupling specifications
between the models, which includes transition functions
between the ports and the models as well as between the
models.

DEVS provides a modular and hierarchical simulation
modeling methodology and unified model description
framework on top of the system theory. It also applies set
language to conduct rigorous mathematical approval and
offers theoretical basis for system modeling and
simulation. However, DEVS uses formal set language, can
only specify system abstractly, and is not able to be used
directly in model representation and simulation. XML is
now becoming the standard of data exchange in software
application. Hence incorporating DEVS to design SRML
schema is the solution of standardizing simulation model.

3 MAPPING DEVS ONTO SRML

The mapping relationship between DEVS and SRML is
summarized in Table 1.

Table 1: Mapping relationship between DEVS and SRML
Atomic model ItemClass element
X={(x, px)} EventSink elements set
Y={(y, py)} EventDispatcher elements set
x, y EventClass element
S Property elements set
δint Script element with

function eventSinkName(Event event)
δext Script element with

function eventSinkName(Event event)
λ Script element with simulator API

SendEvent(String eventDispatcherName,
Event event)
PostEvent(String eventDispatcherName,
Event event)
BroadcastEvent(Event event, Boolean
direction)

ta Script element with simulator API
ScheduleEvent(String eventSinkName,
Event event)
PostEvent() and BroadcastEvent()

Coupled model ItemClass element
X={(x, px)} EventSink elements set
Y={(y, py)} EventDispatcher elements set
D,{Md},{Id},{Zid} Item elements set with Link element
Select Simultaneous events will be processed

according as the priority of model
instances
4

Chen Liu, Qun Li, Wei-ping Wang and Yi-fan Zhu

3.1 Mapping Atomic Model of DEVS onto SRML

M=<X, S, Y, δint, δext, λ, ta>
M: Represents atomic model of DEVS. In SRML,

atomic model is declared with the ItemClass element. The
attributes of ItemClass element include Name, Language,
SuperClass and so on. Name attribute specifies the atomic
model’s unique name. Language attribute specifies which
kind of action language is being used to develop model’s
behavior. The action language can be “JavaScript”, “Java”,
“C” in SRML. SuperClass attribute specifies the super
atomic model of this model, SRML support single root
inheritance.

X: The input set of atomic model. In SRML, the input
interface is described by EventSink element. One ItemClass
element can consist of multi EventSink elements. The
attributes of EventSink include Name, EventClass,
LinkFixed and so on. Name attribute specifies the unique
name of an input interface. EventClass attribute specifies
the event type which the model can receive from the input
interface. All event types used for model interaction are
defined by the element EventClass In SRML. LinkFixed
attribute specifies the event receiving mode from the input
interface. LinkFixed is a boolean type attribute, “true” is
the “link” mode, which implies that the input interface can
only receive the event sent by the model explicitly linking
with it, “false” is the “SubscribeAndPublish” mode, which
implies that the input interface can receive all events sent
by other models with the same event type specified by the
EventClass attribute.

Y: The output set of atomic model. In SRML, the
output interface is described by EventDispatcher element.
One ItemClass element can include multi EventDispatcher
elements. The attributes of EventDispatcher include Name,
EventClass, LinkFixed and so on. Name attribute specifies
the unique name of an output interface. EventClass
attribute specifies the event type which the model may
send to the output interface. LinkFixed is a boolean type
attribute, “true” is the “link” mode, which implies that the
output interface can only send the event to the model
explicitly linking with it, “false” is the
“SubscribeAndPublish” mode, which implies that the
output interface can send all events to other models with
the same event type specified by the EventClass attribute.

S: The state set of atomic model. In SRML, the state is
described by Property element. One ItemClass element can
consist of multi Property elements. The attributes of
Property include Name, DataType and so on. Name
attribute specifies the unique name of a state. DataType
attribute specifies the data type of a state.

δext, δint, λ, ta: The external transition function, internal
transition function, send function and time advance
function of atomic model. In SRML, the dynamic behavior
of DEVS model is specified in element Script. The
attributes of Script include Name, Type and so on. Name
26
attribute specifies the unique name of a Script. Type
attribute specifies the script language type, such as
“javascript”. Script language can define variable and
function. It is easy to build model’s behavior.

δext: External transition function is used to define the
atomic model’s behavior triggered by external event
received from input interface. The implementation
formalism in javascript language is as the following code.
Function is the javascript function declaration.
EventSinkName is the external function name which must
be identical with the name of one of EventSink elements
defined in ItemClass. Event is the parameter of the
external function, which is the received external event.
External function can update model’s states by the received
external events.

function EventSinkName(Event event){
 var x=event.x;
 …

}
δint: Internal transition function is used to define the

atomic model’s behavior triggered by internal time
advance event scheduled by the model. The
implementation formalism in javascript language is the
same with external transition function. The difference is
that external event is sent by other model and consists of
the information used to interact between models, otherwise
internal event is scheduled by the model itself and consists
only the current time information for time advance.

function EventSinkName(Event event){
 var x=event.time;
 …

}
λ: Output function is used to define the output

behavior of the atomic model. The output function is
implemented with the following standardized functions
supported by the SRML simulator.

SendEvent(String eventDispatcherName, Event event).
The function is used to send synchronous event to the
output interface. Once the synchronous event is sent, the
received model will invoke the external function at once.
The eventDispatcherName parameter is the name of output
interface; the event parameter is the object of the event to
be sent.

PostEvent(String eventDispatcherName, Event event).
The function is used to send asynchronous event to the
output interface. When the asynchronous event is sent, it
will be buffered in the event queue until the event happen
time is fulfilled. Then the event destination models will
receive the event and invoke the external function. The
meanings of the parameters are the same as above.

BroadcastEvent(Event event, Boolean direction). The
function is used to send synchronous or asynchronous
event among the models at different levels. The direction
parameter is the direction of event sending, “true” is the
upwards sending, “false” is the downwards sending.
95

ing Wang and Yi-fan Zhu
Chen Liu, Qun Li, Wei-p

ta: Time-advance function is used to define the time
advancing behavior of atomic model. The time advance
function is implemented with the following standardized
functions supported by the SRML simulator.

ScheduleEvent(String eventSinkName, Event event).
The function is used to schedule the next event by the
model itself. The next event’s time will advance the global
clock. When the global clock time is identical with the
time of the next event, the model will invoke the internal
transition function. The eventSinkName parameter is the
name of clock tick EventSink element defined by the
model.

The functions PostEvent() and BroadcastEvent() can
also perform the time-advance behavior when they send
asynchronous events.

3.2 Mapping Coupled Model of DEVS onto SRML

N=<X, Y, D, {Md}, {Id}, {Zid}, Select>
N: Represents coupled model of DEVS. In SRML,

coupled model is described by the ItemClass element too.
X: The input set of coupled model. In SRML, the input

interface is described by EventSink element. The meaning
is the same as that in atomic model.

Y: The output set of coupled model. In SRML, the
output interface is described by EventDispatcher element.
The meaning is the same as that in atomic model.

D, {Md}, {Id}, {Zid}: Represents the sub-components
set and the construction relation. In SRML, that is
specified by the set of Item element. Item element is used
to specify the instance of the DEVS model. One ItemClass
element can declare multi Item elements. The attributes of
Item include ItemClass, Priotity, ItemID and so on.
ItemClass attribute specifies the name of the model from
which the instance will be instantiated. Priority attribute
specifies the priority of the instance, the event produced by
the high priority will be processed firstly. ItemID attribute
specifies the unique identifier of the instance. Item element
also includes zero or more sub-elements such as Script,
PropertyValue, Link, and Event and so on. Script element
is used to define special behavior of the instance.
PropertyValue element is used to define the initial property
value of the instance. Link element is used to define the
coupling relationship between the instances in coupled
model. The model instances with the explicit linking will
interact events each other as the “link” mode. Event
element is used to define special event of the instance.

Select: The tie-breaking rule, which is used to process
simultaneous events. In SRML, simultaneous events will
be processed according to their priority.
26
4 THE ARCHITECTURE OF
EXTENDED SRML SCHEMA

Mapping DEVS onto SRML constructs the core of the
SRML schema. In addition, SRML also comprises SRML
root element, Simulation element, EventClass and
ItemPrototype elements, which construct the whole SRML
schema architecture. It is illustrated in the following Figure 2.

The extended SRML schema is composed of SRML,
EventClass, ItemClass, Simulation, Script, Property,
EventDispatcher, EventSink, Item, ItemPrototype,
PropertyValue, Link and Event, 13 elements in total.

Figure 2: The architecture of extended SRML schema

SRML is the root element of SRML, which can

comprise zero or more ItemClass, EventClass and
Simulation as its sub-elements. SRML simulator can load
SRML file and parse the definition of ItemClass,
EventClass and Simulation, then generate model instances
and events, drive the simulation. EventClass element is
used to define the event class which is the data format used
for interaction among model instances. All events used in
the SRML must be one type of defined event class. Script
element is used to define the behavior of the element such
as ItemClass, Item and Simulation. ItemClass is the core
element, which can define one type of model with the same
properties, structure, input and output interfaces and
behavior. ItemClass element is defined according to DEVS
syntax and semantics, and can be used to specify atomic
model or composite model. Property element can define
the properties of ItemClass or EventClass. EventSink and
EventDispatcher are used to define the input and output
interface respectively. Item element is used to define model
instance. Item can be the sub-element of ItemClass or
Simulation to define the instance construction of coupled
model or a simulation scenario. ItemPrototype element is
used to define the prototype of one ItemClass. A prototype
is one kind of ItemClass with the same property value.
Item can also instantiated from an ItemPrototype.
PropertyValue element is used to initialize the property
value. Link element is used to define the interaction
relationship between model instances. Event can define the
96

Chen Liu, Qun Li, Wei-ping Wang and Yi-fan Zhu

event instance in a simulation. Simulation element is used
to define a simulation scenario which includes the
information about the construction of model instances,
execution batches, simulation time of begin and end
conditions and so on.

5 SRML SIMULATION CASE

The extended SRML Schema is based on DEVS. It is
therefore apparent that SRML can be used to build all
DEVS models. To prove the completeness of the mapping
from DEVS to SRML, we give a typical DEVS model
demo built with SRML. Here is a very simple simulation
demo to solve the differential equation

28.0 ''' =+− xxx (Fishwick 1995) expressed as
DEVS (Bolduc 2002 and Kofman 2003) with SRML. To
solve the equation, we should build the add model, subtract
model, constant model, integrator model and chart model.
We also have to define the interaction data formats and
then couple these model instances to coupled model
according to the equation and define the simulation
scenario to begin simulation eventually. Before building
SRML models, we give the DEVS specification of
integrator model for convenient understanding of the
mapping from DEVS to SRML.

DEVS specification of integrator atomic model is:
Inports={“dValue”}, XdValue=Number
X={(p,v) | p∈Inports,v∈Xp }
Outports={“CurrentValue”}, Y CurrentValue=Number
Y={(p,v) | p∈Outports,v∈Yp }
S={“InitValue”, “DeltaValue”, “Step”, “Result”}
δext(phase, σ, e, (p,v))=(DeltaValue=v.Number, σ-e,0)
δint(phase, σ)=(Result = Result + DeltaValue * Step,

σ=step)
λ(phase, σ)=(“CurrentValue”, Result)
ta(phase, σ)= σ
DEVS specification of the differential equation

coupled model will be omitted. Some SRML code
fragments are offered as follow.

The code for interaction data formats definition:
<EventClass Name = “Number”>

<Property Name = “Number” DataType = “Double”/>
</EventClass>

The code for integrator model definition:

<ItemClass Name=“IntegratorBlock”>
<Property Name=“InitValue” DataType =“Double”/>
<Property Name=“DeltaValue” DataType =“Double”/>
<Property Name=“Step” DataType =“Double”/>
<Property Name=“Result” DataType =“Double”/>
<EventSink Name = “dValue” EventClass=“Number” LinkFixed =

“True”/>
<EventSink Name = “Tick” EventClass=“Tick” LinkFixed =

“True”/>
<EventDispatcher Name = “CurrentValue” EventClass=“Number”/>
<Script Type=“text/javascript”><![CDATA[

This.Step = 0.1;
var event = new Event(“Tick”);
26
event.Time = This.Step;
Simulation.ScheduleEvent(“Tick”,event);
function OndValue(e){

This.DeltaValue = e.Number;
}
function OnTick(e){

This.Result = This.Result + This.DeltaValue * This.Step;
var event = new Event(“Number”);
event.Number = This.Result;
event.Time = Simulation.CurrentTime;
Simulation.SendEvent(“CurrentValue”,event);

event = new Event(“Tick”);
event.Time = Simulation.CurrentTime + This.Step;
Simulation.ScheduleEvent(“Tick”,event);

}]]>
</Script>

</ItemClass>
The code for coupled model definition of the

differential equation:
<ItemClass Name=“FishwickModel”>

<Item ItemClass=“ConstBlock” ItemID=“0”>
<PropertyValue Name=“Value” Value=“0.8”/>

</Item>
<Item ItemClass=“ConstBlock” ItemID=“1”>

<PropertyValue Name=“Value” Value=“2”/>
</Item>
<Item ItemClass=“MultiplyBlock” ItemID=“2”>

<Link Name = “0” Target = “0” EventSinkName = “InputNumber1”
EventDispatcherName =“OutputValue”/>

<Link Name = “6” Target = “5” EventSinkName = “InputNumber2”
EventDispatcherName =“CurrentValue”/>

</Item>
<Item ItemClass=“SubBlock” ItemID=“3”>

<Link Name=“1” Target = “2” EventSinkName = “InputNumber2”
EventDispatcherName =“Result”/>

<Link Name=“2” Target = “1” EventSinkName = “InputNumber1”
EventDispatcherName =“OutputValue”/>

</Item>
<Item ItemClass=“SubBlock” ItemID=“4”>

<Link Name=“3” Target = “3” EventSinkName = “InputNumber1”
EventDispatcherName =“Result”/>

<Link Name=“7” Target = “6” EventSinkName = “InputNumber2”
EventDispatcherName =“CurrentValue”/>

</Item>
<Item ItemClass=“IntegratorBlock” ItemID=“5”>

<PropertyValue Name=“InitValue” Value=“1”/>
<Link Name=“4” Target =“4” EventSinkName = “dValue”

EventDispatcherName =“Result”/>
</Item>
<Item ItemClass=“IntegratorBlock” ItemID=“6”>

<PropertyValue Name=“InitValue” Value=“0.46”/>
<Link Name=“5” Target = “5” EventSinkName = “dValue”

EventDispatcherName =“CurrentValue”/>
</Item>
<Item ItemClass=“DynamicChart” ItemID=“7”>

<Link Name=“8” Target =“6” EventSinkName = “xInput”
EventDispatcherName =“CurrentValue”/>

</Item>
</ItemClass>

The code for simulation scenario definition:

<Simulation Name = “Fishwick” StartTime = “0” EndTime = “30”
nBatches = “3”>

<Item ItemClass = “FishwickModel” ItemID = “11”>
</Item>

</Simulation>

97

ing Wang and Yi-fan Zhu
Chen Liu, Qun Li, Wei-p

Figure 3: Solving differential equation with SRML

We have designed and implemented the SRML

simulator. There are other well-known DEVS simulators
such as DEVSJava at University of Arizona and
DEVSim++ at KAIST. SRML simulator is identical with
these simulators in simulation mechanism in that they all
obey the DEVS abstract simulator algorithm. The
differences are the DEVS model representation formats
which can be understood by the simulators. DEVS model
built by SRML is easier and more platform-independent.

The simulation process is illustrated in Figure 3.With
the time advancing, the variable x converging to the result
value 2. Although the case is very simple, it can
demonstrate the modeling and simulation ability of SRML.
It can be used to build very complex system simulation.

6 CONCLUSION

Extended SRML based on DEVS inherits all
characteristics of DEVS and is able to build discrete event
system model, continuous time system and mixed system
model. Moreover, SRML is a platform-independent
simulation language based on XML and script language,
which is capable of describing system model structure and
behavior. It can also be used as model representation
standard and loaded by simulator to conduct simulation.
SRML makes the model development simple and fast and
it improves model reusability. Extended SRML, which
already established relatively complete elements
architecture, can build complex system models and
meta-models in different domains. It could be used more
widely in many fields and would accelerate the
development of simulation model specification
standardization.

ACKNOWLEDGMENTS

I would like to appreciate Ms Luo Ying and the WSC
reviewers for reviewing the paper and giving lots of
valuable advices.
2

REFERENCES

Bolduc, J. S., Vangheluwe, Hans. 2002. Expressing ODE
Models as DEVS: Quantization Approaches. In
Proceedings of the AIS’2002 Conference (AI,
Simulation and Planning in High Autonomy Systems),
pages 163-169.

Davis, Paul K., Robert H. Anderson. 2004. Improving the
Composability of Department of Defense Models and
Simulations. Santa Monica, CA: RAND. Available via
<http://www.rand.org/publications/MG
/MG101/> [accessed July 6, 2005].

Defense Modeling and Simulation Office(DMSO).2004.
Composable Mission Spaces Environments [online].
Available via <http://www.dmso.mil/public
/warfighter/cmse/> [accessed July 6, 2005].

Fishwick, P. A. 1995. Simulation Model Design and
Execution, Prentice-Hall Inc.

Kofman, E. 2003. Discrete Event Based Simulation and
Control of Continuous Systems. PhD thesis.

Reichenthal,Steven.W. 2003. SRML-Simulation Reference
Markup Language [online]. W3C Note. Available via
<http://www.w3.org/TR/SRML/> [accessed
July 6, 2005].

Reichenthal, Steven. W. 2002. SRML: A Foundation for
Representing BOMs and Supporting Reuse. In
Proceedings of the 2002 Fall Simulation
Interoperability Workshop, Orlando, Florida.

Tolk, Andreas. 2002. Avoiding another Green Elephant –
A Proposal for the Next Generation HLA based on the
Model Driven Architecture. In Proceedings of the
2002 Fall Simulation Interoperability Workshop,
Orlando, Florida.

Tolk, Andreas. 2004. Composable Mission Spaces and
M&S Repositories - Applicability of Open Standards.
In Proceedings of the 2004 Spring Simulation
Interoperability Workshop, Washington, D.C.

Zeigler, B. P. 2000. Theory of System Modeling and
Simulation . New York: Academic Press.

AUTHOR BIOGRAPHIES

CHEN LIU is a PH.D student in the Institute of System
Engineering, Information System and Management School
of National University of Defense Technology in China.
His research interests focus on simulation model
specification and integration, multi-modeling, model
driven simulation architecture, design of experiment and
simulation evaluation. His e-mail address is
<liuchenchangsha@hotmail.com>.

QUN LI is an associate professor in the Institute of System
Engineering, Information System and Management School
of National University of Defense Technology in China.
His research interests focus on theory of modeling and
698

http://www.rand.org/publications/MG/MG101/
http://www.rand.org/publications/MG/MG101/
http://www.dmso.mil/public/warfighter/cmse
http://www.dmso.mil/public/warfighter/cmse
http://www.w3.org/TR/SRML/
mailto:liuchenchangsha@hotmail.com

Chen Liu, Qun Li, Wei-ping Wang and Yi-fan Zhu

simulation, design and implementation of simulation
environment, weapon system Effectiveness simulation
evaluation. His e-mail address is
<liqun_nudt@sina.com>.

WEIPING WANG is a professor in the Institute of
System Engineering, Information System and Management
School of National University of Defense Technology in
China. His research interests focus on theory of modeling
and simulation, weapon system simulation and SBA. His
e-mail address is < wwpi@public.cs.hn.cn>.

YIFAN ZHU is a professor in the Institute of System
Engineering, Information System and Management School
of National University of Defense Technology in China.
His research interests focus on theory of modeling and
simulation, weapon system simulation and SBA. His
e-mail address is <yifanzhu_nudt@sina.com>.
2699

mailto:liqun_nudt@sina.com
mailto:wwpi@public.cs.hn.cn
mailto:wwpi@public.cs.hn.cn
mailto:wwpi@public.cs.hn.cn
mailto:yifanzhu_nudt@sina.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

