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ABSTRACT

We argue that simulations possess interesting character-
istics that facilitate adaptation. Simplifying assumptions,
stochastic sampling, and event generation are common fea-
tures which lend themselves to adaptation for reuse. In
this paper, we explore simulation-specific characteristics
amenable to adaptation and the ways they can be exploited
in support of reuse. Our work is of particular relevance to
research in component based simulations and dynamic data
driven application systems, where adaptability and reuse
are essential.

1 INTRODUCTION

Simulations are an important tool partly because they can
be reconfigured and reused more cheaply than real-world
experiments. Once a simulation is in use, running it on
new data or with new parameters is usually just a matter
of a few keystrokes or dragging and dropping a different
file. However, there are still significant limitations on how
simulations can be reused when requirements change.

Consider the challenge of building dynamic data-driven
application systems (DDDAS). The DDDAS goal is to yield
predictions more accurately and efficiently by processing
experimental data in real-time and changing the software
simulation appropriately (Darema 2004). The experimental
data may indicate that the simulation should shift its region of
exploration, change one or more of its starting assumptions,
or adjust its level of resolution. The required changes are
often more drastic than what can be accomplished just by
tuning simulation parameters, because designers often do
not know what types of changes will be suggested by the
experimental data (Brogan et al. 2005).

The question is this: How can we rapidly make sig-
nificant changes to simulation software when requirements
change? Building flexible software has been a goal of the
software engineering community for decades, and yet rela-
tively few effective solutions have been found (Brooks 1995).
24
Therefore, to make rapid simulation adaptation possible, we
should look for approaches that exploit simulation-specific
characteristics. Expanding on Bartholet et al. (2004),
we note the following characteristics that are prevalent in
simulations and yet relatively rare in other software:

• dependence on simplifying assumptions,
• importance of insight versus precision,
• use of stochastic sampling,
• event generation, and
• time management.

These characteristics can be exploited to speed up the process
of simulation adaptation, which in turn reduces the cost of
simulation reuse. In this paper, we discuss techniques that
lead to new simulation adaptation technologies, and we
compare these simulation-specific approaches to the state
of the art in general-purpose software adaptation.

2 THE CHALLENGE OF SOFTWARE REUSE

In principle, the fastest way to build any kind of software
is to reuse one or more components that have already
been written (McIlroy 1968). However, it is often difficult
to locate a component that does exactly what is needed to
solve the problem at hand. Thus a solution generally entails
taking an imperfectly suited component and adapting it to
fit correctly. Hence, for simulations as well as for other
software, the goal of effective reuse reduces to the problem
of adapting components to fit a new scenario.

2.1 Design for Change

In the software engineering community, numerous advances
have been made in designing software to support future
changes. Major landmarks and recent developments in this
area include

• structured programming (Dijkstra 1972),
• information hiding (Parnas 1972),
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• program families (Parnas 1978),
• object oriented programming (Rentsch 1982),
• component architectures (Sullivan and Knight

1996),
• aspect oriented programming (Kiczales et al.

1997), and
• feature oriented programming (Batory et al. 2002).

These techniques demonstrate how to write software in such
a way that future modifications require fewer changes to
the code. They are not sufficient for automating the pro-
cess of software adaptation. However, they make manual
modifications easier and simplify software designs to the
point where semi-automatic adaptation becomes a possibil-
ity. Hence, while these techniques do not provide for the
degree of automation required for adaptable component-
based and data-driven simulation systems, research into
automated simulation adaptation could not proceed without
them.

Other researchers have studied the role of software
engineering in simulation. However, rather than seeking
simulation-specific software engineering techniques, most
have focused on making general-purpose software engi-
neering principles accessible to simulation designers who
lack formal training in computer programming (McKay
et al. 1986). More recently, Bartholet et al. (2004) ex-
amined the relationship between component-based software
engineering and simulation composability, concluding that
while simulations are often dauntingly large and semanti-
cally complex components, simulation users can still benefit
from component-based software technologies.

2.2 Automating Adaptation

Even using the best current software engineering practices,
manual code changes must be made in order to adapt a
program. Researchers have tried using optimization and
other fully automated techniques to adapt software, but they
have met with limited success outside of specific application
domains. Genetic algorithms (GAs) are one example of
automated adaptation. In GAs, variations of a program
compete with each other to imitate a desired behavior.
New versions of the program based on the best variations
of this round are allowed to compete in the next round of
development (Forrest 1996). However, techniques like GAs
often produce poor solutions or suffer from performance
problems, because they do not effectively exploit insight
that developers may have about the problem the software
is addressing.

In order to exploit insight about specific problems, sci-
entists have investigated techniques targeted at particular
classes of software. This has led to the development of
program generators, which convert a description of a sys-
tem in a domain-specific language to a working program
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(Smaragdakis, Huang, and Zook 2004). The development of
domain-specific languages reduces the size and complexity
of the code that needs to be changed to modify a program.
Hence, program generators are a form of automation that
accelerates software adaptation.

2.3 Specializing for Simulations

The simulation community was among the first to develop
domain-specific languages. Early simulation languages in-
cluded GPSS (Gordon 1978), SIMSCRIPT (Kiviat 1968),
and Simula (Nygaard and Dahl 1978). These languages took
advantage of the fact that simulations (especially discrete-
event simulations) tend to contain certain common structures,
such as

• random number generators,
• an event list, and
• interacting entities or processes.

By providing built-in commands for creating these structures,
these languages accelerated simulation development. In
effect, these languages addressed the challenge of simulation
construction in the way that we are addressing simulation
adaptation today.

Many newer simulation languages have been developed,
improving on their predecessors by automating more of
the common tasks associated with simulations or adding
constructs to support parallel computation (Nance 1993,
Bagrodia 1998). The issue of adaptation was first explicitly
addressed in simulation languages with the appearance of
visual development tools, where users are encouraged to use
diagrams to define relationships among existing components.

2.4 Semi-Automated Simulation Adaptation

The ability to develop simulations rapidly is a good start, but
additional work is needed to facilitate simulation adaptation.
In this area, several techniques exist. Computational steering
is one example, where a simulation and an expert user
are connected through a real-time visualization and control
interface. This allows the user to tune simulation parameters
based on how the simulation is currently behaving (Gu,
Vetter, and Schwan 1994; Parker and Johnson 1995).

Another example is COERCE, which is based on iden-
tifying flexible points in a simulation and applying a mixture
of optimization and manual modifications to change a simu-
lation’s behavior (Reynolds 2002; Carnahan, Reynolds, and
Brogan 2004a). This paper builds on COERCE by ana-
lyzing the underlying properties of simulations that make
semi-automated adaptation possible.
93



Carnahan, Reynolds, and Brogan
Table 1: Summary of Simulation-Specific Characteristics

Characteristic Possible Applications

Model abstraction assumptions Flexible points, which document the assumptions’ significance,
possible alternatives, and constraints

Importance of insight versus
precision

Opportunity to learn from the adaptation process itself or to
accept intermediate results

Use of stochastic sampling Switching distributions, tuning distribution parameters, and
interchanging stochastics with detailed simulation

Event generation New simulation representations and adaptation operations
Time management New simulation representations and adaptation operations
3 SIMULATION-SPECIFIC CHARACTERISTICS

Simulations are used to address questions arising from is-
sues of interest. To address these questions, simulations
typically represent assumptions, create events (not neces-
sarily discrete), maintain a notion of time, and employ
stochastics to capture unknowns or processes that can only
be characterized probabilistically. Time, event generation
and stochastics present fruitful opportunities for exploring
alternative approaches and answering questions about the
issues of interest. As the questions change, opportunities
for adaption occur in that flexibility built into simulations.

A number of simulation characteristics that contribute
to flexibility are summarized in Table 1.

3.1 Model Abstraction Assumptions

One unavoidable step in building a simulation is deciding
what not to model. Because each simulation only represents
one part of the universe, all simulations contain simplifying
assumptions. Examples include representing only certain
classes of entities, a bounded region of space, or a finite
length of time. Also, setting a simulation parameter as a
constant precludes using other values for that parameter.
Likewise, choosing one algorithm over another can be seen
as a simplification of a more complex simulation that would
have dynamically decided which perspective (and hence
algorithm) to use for modeling a particular phenomenon.

Changing model abstraction assumptions may be nec-
essary when a simulation is expanded or composed with
another simulation. Model assumptions are a subset of sim-
ulation design decisions, which are in turn what existing
software engineering techniques are designed to address
(Parnas 1972). However, model abstraction assumptions
often reflect real-world possibilities that could have been
included in the model. Hence, our knowledge about the
simulated phenomenon gives added insight into how these
assumptions can be changed.
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3.2 Importance of Insight versus Precision

A related characteristic of simulations is the role of approx-
imation and insight in how simulations are used. The fact
that simulations are usually incomplete representations of
reality means that many are used more as a source of insight
or trend analysis than as a predictor of exact results. Simu-
lation users often go through an iterative process: They run
simulations in order to gain insights that guide experimen-
tation, later returning to the simulation and modifying it to
match the experimental data. Hence, the measures of effec-
tiveness for many simulations may emphasize factors other
than precision (Zeigler, Praehofer, and Kim 2000). In fact,
an incorrect simulation prediction can be beneficial when
it reveals a problem with the experimenter’s assumptions.

Obviously, many simulations provide precise and accu-
rate results, but the acceptance of approximations or insight
alone is not generally found in software other than simula-
tions. Hence, there are situations where it would be difficult
to adapt a piece of software to meet an exact numerical
requirement but relatively easy to refine a simulation so that
it can provide useful insight and analytical guidance. In ad-
dition, this means that using a partially-adapted simulation
may provide guidance on how to complete the adaptation
in ways that other partially-adapted software would not.

3.3 Stochastic Sampling

Simulations often employ stochastic sampling and random
number generation. In many cases, random numbers repre-
sent simplifying assumptions, because a stochastic distribu-
tion is often used as an abstract model of a more complex
process or as a stand-in for unknown information (Davis
2000). For instance, in a queuing model of bank tellers, the
rate at which customers arrive may be regarded as Poisson.
However, that stochastic process is replacing a simulation
of each customer, who would actually make the decision
about when to come to the bank based on a work schedule,
family responsibilities, and other factors. Hence, it would
be possible to replace the random arrival process with a
more detailed simulation that models the daily routines of
a pool of potential bank customers.
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Stochastic processes are a special class of simplifying
assumptions because they are relatively easy to analyze and
modify. Many distributions have well-known shapes and
properties, giving a good good idea of what to expect from
switching distributions. Also, commonly-used distributions
have relatively short lists of parameters that can be tuned by
optimization tools to direct a simulation’s behavior (Ólafsson
and Kim 2002). Lastly, when taking a sample from a
distribution often stands in for a more complex simulation,
uses of random numbers in a simulation may be places where
more detail could be provided. Hence, stochastic sampling
provides a useful access point for adapting simulations.

3.4 Event Definition and Scheduling

Numerous software systems process “events” in some form,
from graphical user interfaces responding to mouse clicks
to device drivers responding to output completion events.
However, simulations are interesting in that they not only
process simulated events but also generate them. In fact,
many simulations can be viewed as a sequence of event
generation operations. The specifics of the generated events
are candidates for adaptation to meet new requirements.

Simulations have been represented in terms of events,
e.g. event graphs (Schruben 1983, Buss 1996). These ap-
proaches have focused on events at the time they occur
rather than at the time they are generated and scheduled
for future treatment. By focusing on generation time we
believe there will be broader opportunities for exploiting
adaptability.

3.5 Time Management

Another characteristic of simulations is the management of
an internal concept of time. Not only is the nature of events
dictated by a simulation, but timing and temporal relation-
ships as well. Adapting a simulation may mean reordering
existing events or adding and removing new events. By
representing simulations as timelines with associated event
generation operations, we can create a visual language for
describing simulation behaviors that allows us to formally
describe changes to those behaviors. Such a language would
facilitate adaptation by making the temporal flexibility in
simulations more apparent and by enabling static analysis
of proposed adaptations.

4 APPLICATIONS

Given that typical simulations possess interesting character-
istics, how can we exploit them to make simulations more
usefully adaptable? There are several examples, includ-
ing identifying flexible points, defining event generating
languages, and representing simulations as timelines. In
each example, a simulation-specific characteristic provides
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additional information or a new perspective for adapting
simulations.

4.1 Flexible Points

Several software engineering methodologies center around
design decisions. However, as we noted in Section 3.1,
many of the decisions in simulation design reflect simpli-
fying assumptions about the simulated phenomenon or its
environment. As a result, a subject matter expert should un-
derstand these design decisions in terms of what they mean
for the scope of the simulation and its expected behavior.
This additional insight is useful for making future changes
because it indicates likely changes and provides constraints
on those changes.

To best exploit this insight, we define certain elements
of the simulation to be flexible points:

Definition 1 A flexible point is an element of a
simulation that reflects an assumption about the simulated
phenomenon.

Flexible points are the basis for a technology called
COERCE. COERCE consists of two parts, coercibility and
coercion. In simulation coercion, a subject matter expert
identifies the flexible points that relate to a desired change in
a simulation’s behavior (Carnahan, Reynolds, and Brogan
2003). Then, either optimization, manual modification, or
both are used to find a new value for that flexible point
(Waziruddin, Brogan, and Reynolds 2003). In coercible
simulations, important flexible points are identified at de-
sign time and throughout the life cycle of a simulation.
Specialized language constructs are inserted to describe
each flexible point, its possible values, and any other rel-
evant metadata (Carnahan, Reynolds, and Brogan 2004b).
The relationship between coercibility and coercion is shown
in Figure 1. By capturing information about the simplify-
ing assumptions that went into the design of a simulation,
it becomes possible to automate parts of the simulation
adaptation process.

4.2 Simulations as Event-Generating Systems

As noted in Section 3.4, a distinguishing characteristic of
simulations is the role of event generation. Rather than
responding to a series of input events, often a simulation’s
job is to generate a series of events of its own. Hence, a
simulation can be manipulated by not only changing how
events are handled but how they are generated in the first
place.

When a user needs to adapt a simulation to meet new
requirements, the user may

• add or remove events from the simulation,
• change the behavior of an event (that is, change

how an event is handled), or
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Figure 1: Life Cycle of Coercible Simulations
• change how events are generated.

The first two of these approaches could be applied to general-
purpose software as well as simulations: Adding new events
to a piece of software is analogous to extending it to handle
new kinds of input, and changing the behavior of an event
is equivalent to changing how the software responds to
existing inputs. However, the idea of changing how events
are generated does not make sense unless the system has a
notion of generating and scheduling events.

Consider a model of a simple queuing system. Typ-
ically, such a system would be simulated by defining an
event for job arrivals and an event for when a job completes
service. This simulation could be adapted by adding or re-
moving events, such as adding an event to represent machine
breakdowns. Similarly, other kinds of software have event-
handling routines, such as graphical user interfaces that can
be adapted by making them sensitive to additional clicks
and key presses. Also, this simulation could be adapted by
changing how an event is handled, such as by modifying the
arrival event to discard arrivals that occur when the queue
size has exceeded some threshold. Other software can also
be changed in how it responds to events, such as improving
how an email program responds to new message arrivals
by adding filters to block unwanted messages.

However, there is no analog in non-simulation software
for changing event-generating activities. The simulation
could change the timing with which new events are scheduled
or even redefine the behavior of events as they are generated.
For example, when an arrival event generates a service event,
it signifies that the queue was empty at the time of arrival.
Thus, the job could immediately enter service. When one
service event is generated by another, it means the queue
2

was not empty when the previous job was completed. To
reflect this, the user could change the behavior of service
events so that when they are generated by arrivals they do
not behave the same as when they are generated by other
service events, such as by adding a “warm-up time” to
delay the completion of service events that follow an empty
queue.

These kinds of modifications apply to simulations writ-
ten in any language, but a simulation programming language
could be extended to make this kind of modification even
easier. For instance, a language might allow the user to
add parameters that change how events behave depending
on when and how they are generated. Still, even without
such language support, there are approaches for adapting
event-generating systems that do not apply to other classes
of software.

4.3 Simulations as Timelines

Another opportunity arises from simulation’s use of logical
time. Because simulations represent events occurring in
time, it is possible to depict simulation behavior as a (possibly
repeating) timeline of events. Then, simulation adaptation
can be thought of as a transformation from one timeline to
another.

Consider a set of operations defined on timelines, such as
adding, deleting, and reordering intervals, as well as merging
and appending entire timelines. Even with a relatively
small set of operations, it would be possible to describe
any simulation adaptation in terms of a set of timeline
operations: This can be proven by observing that looping
and appending timelines is equivalent to using loops and
sequential instructions in a programming language, which
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in turn is sufficient to imitate any program that can be
computed on a Turing machine (Böhm and Jacopini 1966).

Representing simulations as timelines offers several
potential benefits:

1. Specifying adaptations in terms of well-defined
timeline operations may be simpler and/or more
precise than specifying the changes in terms of
changes to the simulation code.

2. By changing the order of intervals and allowing
operations to be applied repeatedly, even a very
restricted set of timeline operations could produce
the interesting variations that a user seeks.

3. The ability to formally describe an adaptation
makes it possible to analyze the effects of dif-
ferent adaptations in relation to each other, such
as verifying that certain simulation properties are
always preserved.

5 DISCUSSION

Adapting programs to meet new requirements continues to
be an important challenge both in simulation and in general
software. However, by focusing on the characteristics that
set simulations apart, we expect to find new ways to adapt
simulations more quickly and effectively. Particularly with
the growing demand for automation in simulation adaptation,
such as for dynamic data-driven application systems, it is
important to take advantage of these simulation-specific
characteristics.

5.1 Future Work

Our approaches to exploiting simulation-specific charac-
teristics for adaptation are evolving. We have created a
prototype language for identifying flexible points and de-
scribing how they could be exploited, called the Flexpoint
Markup Language (Flex ML). However, considerable work
must be done to classify different types of flexible points,
identify their utility, study how changing one flexible point
affects others, and provide guidance on how to build co-
ercible simulations.

Likewise, the simulation timeline representation is an
idea with considerable room for expansion. Even with a
basic set of operations defined on timelines, more complex
operations may need to be defined in order to succinctly
describe common adaptations or to facilitate formal anal-
ysis. As with designing any new language, a language of
operations on timelines must consider issues of readabil-
ity, orthogonality, and efficiency, with a particular concern
about how different operations interact.

Lastly, there are likely to be other ways to exploit
simulation-specific characteristics to represent simulations
in more flexible ways. As noted in Section 4.2, a simulation
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language could be extended to make event generation more
explicit and to simplify the task of changing how events
are generated. Additional work would then be required to
evaluate such a language extension and determine exactly
how it affects simulation adaptability.

5.2 A Note on Simulations as White Boxes

One distinguishing characteristic that is often attributed
to simulations is that they are “white boxes”: Whereas
users of other software only make use of their programs’
outputs, users of simulation study the internal state of their
simulations in order to gain insight (Davis et al. 2000, Davis
and Anderson 2003, Zeigler, Praehofer, and Kim 2000, etc.).
It is argued that this property makes simulation composition
more difficult than using other kinds of component-based
software, as simulations must not only agree at the interfaces
but also in their internal assumptions.

However, we argue that this distinction is primarily a
disagreement as to what constitutes the “interface” of a soft-
ware component. Simulation components that agree in their
data types but not in the assumptions underlying how those
data are generated can not be validly composed. However,
the same is true for many non-simulation software systems:
The phenomenon of architectural mismatch (Garlan, Allen,
and Ockerbloom 1995) refers to when any two software
components can not be composed because of contradictory
assumptions about the meaning of their data. To over-
come architectural mismatch, software engineers have had
to restrict composition to well-defined frameworks (Sullivan
and Knight 1996) and to document the implicit as well as
explicit assumptions as part of the software interface (Jan-
icki, Parnas, and Zucker 1977, Bartussek and Parnas 1977,
Parnas 1997). Following such practices makes designing
simulation interfaces dauntingly complicated, as many pre-
viously hidden assumptions must now be included (Spiegel,
Reynolds, and Brogan 2005). Still, because the challenge
of identifying and formally documenting assumptions has
haunted other domains of software as well as simulation,
we do not include the importance of internal assumptions
in our list of distinguishing characteristics.

That being said, adding hidden assumptions to the list
of simulation-specific characteristics does not diminish the
importance of the other five characteristics in building more
adaptable simulations.

5.3 Impact

The goal of our work here is to discover ways to overcome
the limitations of traditional software adaptation techniques
on simulations. By taking advantage of both explicit iden-
tification of simulation assumptions and expert knowledge,
automatic or semi-automatic discovery of alternatives for
adapting an existing simulation becomes feasible. By de-
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scribing simulation adaptations as operations on events and
timelines, it becomes possible to analyze them in advance
and verify that the system will remain stable through future
data-driven adaptations. By exploring additional ways to
represent simulations distinctly from other software, even
more useful techniques for simulation adaptation can be
discovered. Exploiting simulation-specific characteristics
can accelerate adaptation and reduce the cost of simulation
reuse.
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