
To appear in S. Wilson (Ed.), Proceedings of the Twenty Seventh Annual Meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education.

UNDERSTANDING CHANCE: FROM STUDENT VOICE TO LEARNING SUPPORTS
IN A DESIGN EXPERIMENT IN THE DOMAIN OF PROBABILITY

Dor Abrahamson
Northwestern University

abrador@northwestern.edu

Uri Wilensky
Northwestern University
uri@northwestern.edu

Six middle-school students participated in pre-intervention interviews that informed the design of
learning tools for a computer-enhanced experimental unit on probability and statistics. In
accord with the PME-NA XXVII conference theme, we elaborate our methodological frameworks
and design principles. Our design was in response to students’ failure to solve compound-event
problems. We characterize student difficulty as ‘ontological fuzziness’ regarding the stochastic
device, its combinatorial space, and individual outcomes. We conclude that students need
opportunities to concretize the combinatorial space. Also, we conjecture that, given suitable
learning tools, students could build on their comfort with single-outcome problems to solve
compound-event problems. To those ends, we designed the ‘9-block,’ a mixed-media stochastic
device that can be interpreted either as a compound sample of 9 independent outcomes, a single
independent event, or as a sample out of a population. We explain activities around the designed
tools and outline future work on the unit.

Introduction
This paper reports on an empirical study of student mathematical cognition in the domain of

probability (see the ‘Connected Probability’ project, Wilensky, 1995, 1997). In accord with the
PME-NA XXVII conference theme, “Frameworks That Support Research and Learning,” the
paper foregrounds the methodology employed for this study. Specifically, we discuss student
difficulty with problems involving compound events, e.g., three coin tosses. We explain how a
design-research framework enabled us to respond to student difficulty with tools designed to
support students in building from what they know towards fluency with this class of problems.

We begin with the methodological frameworks and design principles of our research, then
lay out the theoretical background and data resources of the study. Next, we describe a set of pre-
intervention interviews, in which students worked on probability problems. We explain how our
interpretation of student difficulty in these problems shaped a design rationale for innovative
tools and activities, which we developed and then implemented in an experimental classroom
unit. In this unit, students: (a) analyze stochastic devices that produce compound events; (b)
classify the combinatorial space of these devices into subclasses and produce and assemble this
space into a physical structure (a combinations tower); (b) interact with computer-based
simulations of probability experiments, which draw from the same sample space and stack
outcomes by the same subclasses; (c) compare products of these activities, i.e., students compare
the shapes of the ‘theoretical’ combinations tower and the ‘empirical’ outcome distribution; and
(d) participate in statistics activities in which samples are items from the same combinatorial
space of the original stochastic device. The paper ends with future directions for this research.
Methodological Frameworks

At the Center for Connected Learning and Computer-Based Modeling at Northwestern
University, we study student mathematical cognition and develop learning tools and activities.
Design research (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) is a useful paradigm for our
research work, in that it affords us immediate and rich feedback on the efficacy of our tools in
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supporting student learning. Our goals are both pragmatic and scholarly: (a) our theoretical
perspectives, methodologies, and design principles are all aimed at probing student domain-
specific challenges, to which we attempt to respond by engineering, creating, and field-testing
educational artifacts; yet (b) we take from our studies domain-general insights—“humble
theories” (Cobb et al., 2003)—which we share with the community of education researchers and
practitioners and which we incorporate as new theoretical lenses upon data harvested in future
studies. In sum, our studies investigate: “What is needed?,” “What works?”; and “How does it
work?,” “What does this mean?” Also, we investigate how new technology may shape content.

An integral methodological component of design-research studies is the elicitation of student
understanding and difficulty before, during, and after implementations of the designs. We
interview students (Ginsberg, 1978), listening closely to their ‘voice’ (Confrey, 1991) and, in
response, we create, modify, and introduce learning tools into implementations, often while the
implementations are underway. We aim these tools as “Vygotskiian” supports—they constitute
forms for students to articulate their understandings so as to hone, express, and struggle with
their difficulties. That is, we embrace ‘difficulty’ as a positive cognitive and motivational factor
stimulating individual problem solving and communication in the classroom forum.

Toward designing new learning tools, we survey literature on: (a) ontogenetic; (b)
philogenetic; and (c) urban/rural ethnomethodological aspects of the target mathematical
concepts; as well as (d) previous studies that evaluated, analyzed, and responded to student
difficulty with these concepts; and (e) national and state standards and high-stake assessment
studies. These resources inform an emergent domain analysis that situates the concepts vis-à-vis
students’: (1) familiar situational contexts; (2) cultural practices in which the concepts are
(implicitly) embedded; (3) mathematical representations students are likely to recognize; (4) the
vocabulary of the domain; and (5) K-12 roots and trajectories leading to and from the concepts.
Design Principles

Our educational design work is informed by reform-mathematics pedagogy and agenda (e.g.,
von Glasersfeld, 1990; Cobb, Gravemeijer, Yackel, McClain, & Whitenack, 1997). We embed
these constructivist and social-constructivist perspectives into the learning tools and classroom
facilitation infrastructures we design so as to promote high-level mathematical discourse with an
eye on engagement and equity. Toward these goals, we create project-based collaborative-
construction activities, using both traditional and computer-based tools, so as to foster student
personal and interpersonal construction of knowledge. Our design is further guided by the
following perspectives and principles.

a. Constructionism. Students will best learn through voluntarily developing new skills to
problem-solve the design, engineering, and construction of their own artifacts (Papert, 1991).

b. Connected mathematics, connected probability. Wilensky (1997) argues that standard
mathematical curricula are ahistorical and ‘acognitive’—they do not enable learners to
experience the problems that stimulated the invention of current mathematical solution
procedures (see also Lakatos, 1976). This results in epistemological anxiety—students know that
their procedural knowledge is correct, yet they do not know why. Specifically for the domain of
probability, Wilensky demonstrated how even mathematically-informed adults greatly gained
from activities that enabled them to ‘connect,’ i.e., to ground the content in their intuition.

c. Learning axes and bridging tools. A learning axis (Abrahamson & Wilensky, 2005a), a
theory-of-learning construct, is a ‘space’ extending between two necessary and complementary
components of a mathematical concept. These conceptual components, each within the learner’s
comfort zone, are concurrently afforded by a single bridging tool (Abrahamson, 2004; Fuson &
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Abrahamson, 2005), an “ambiguous” artifact designed to support students in linking up previous
understandings, situational contexts, procedures, and vocabulary. Students learn by reconciling
the learning issues—tensions between the bridging tool’s competing conceptual components.

d. Stratified learning zone. A stratified learning zone (Abrahamson & Wilensky, 2005b) is
an emergent and undesirable pattern in classroom participation in collaborative construction
projects, in which a subset of high-achieving students have greater learning opportunities, and
the more “menial” roles are assigned to other students. We seek to promote more equitable
participation through implementing specialized facilitation infrastructures that sustain all
students’ engagement in the core problem-solving tasks without forsaking collaboration.

e. The resourceful classroom. Optimally, a teacher should be: (a) familiar with all media and
tools; (b) fluent in the domain and design; and (c) flexible in navigating between resources in
response to student initiative. Implications for professional development are that teachers should
have opportunities to practice operating the various media and to anticipate student response.

f. Mixed-media learning environments: Abrahamson, Blikstein, Lamberty, and Wilensky
(2005) describe projects in which a range of technologies and expressive tools are integrated into
learning environments so as to enable multiple entry points. Students, who come to these flexible
environments with different skills, inclinations, literacies, tastes, working habits, and passions,
have increased opportunities for expression and for development of expertise. The artifacts
students create in these environments reside after the implementation ends, acting as classroom
referents in future discussion toward the social construction of further knowledge.

(For domain-specific design principles emerging form our research, see Abrahamson, 2005.)
Theoretical Resources of the Study

In their influential prospect theory papers, Tversky and Kahneman (e.g., 1974) demonstrated
the fallibility of human probabilistic reasoning in decision making. For example, in one set of
studies, their participants were asked to consider a battery of hypothetical situations and then
evaluate the likelihood of statements pertaining to each situation. The experimental findings did
not augur felicitous prospects for students studying probability and statistics. Yet, a tangential
perspective on human reasoning posits that mental capacities pertinent to the study of probability
may have evolved under conditions far removed from the ecologies of managers reading texts
(Wilensky, 1991). From such a perspective, Gigerenzer (1998) advocates a reformulation of
curricula so as to accommodate humans’ ecological intelligence. For example, the formal
notation of probability, e.g., “.7,” pithily captures the anticipated ratio of favored events out of a
set of random events, but a natural frequency representation, such as “70 out of 100,” would
better accommodate the way organisms encounter information. In like vein, this paper describes
a study designed to identify breakdowns in students’ informal probabilistic reasoning; examine
the possibility that such breakdown is due to shortcomings in the formal expressive tools
available to the students; and create tools that support learning trajectories. Specifically, we aim
to support students in sustaining an understanding of—a connection (Wilensky, 1991) to—new
procedural skills, as they learn probability (see also Konold, 1994; Metz, 1998).

Our research questions, coming into this study were: (1) What are 8th-grade students’ entry
understandings that are relevant to the subject of probability?; and (2) What learning
supports—objects and classroom activities—could capitalize on students’ entry understandings
so as to help students develop understandings of more advanced situations? The paper discusses
a set of interviews we conducted prior to a teaching–learning intervention in a middle-school
classroom. We analyze student utterance and explain the learning supports that we designed in
attempt to respond to our interpretation of this input in light of reasonable learning objectives.
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Data Sources
The data are from an intervention that is part of a sequence of design-research studies

conducted in urban middle-school mathematics classrooms, where we are investigating student
learning of probability and statistics using learning supports of our design. Participants were
representative of school demographics (25% White, 24% Black, 25% Hispanic, 24% Asian, 2%
Native American; 26% ESL; and 63% eligible to free or reduced lunch).

Methods
We conducted pre-intervention interviews both to gauge G8 students’ entrance knowledge

into the experimental unit and as a datum line for measuring student gain. We selected 6 students
(3 male, 3 female) sampled from three teacher-reported performance groups. All pre-interviews
were conducted by the first author and lasted 14 minutes on average. In these semi-clinical
interviews (Ginsburg, 1978), the student was given a problem to solve, and then the researcher
and student discussed the student’s reasoning. The problem was, “A fair coin is to be tossed three
times; What is the probability that 2 heads and 1 tail in any order will come up?” (NCES, 2004;
the solution is 3/8 or a .375 probability). The coin item was chosen both for its content and
because only 3% of G12 USA students had solved it correctly (NCES, 2004). We wished to
investigate the sources of student difficulty and probe for student understanding that could
potentially be leveraged. The interviews were videotaped. Following, we conducted
microgenetic analyses (Schoenfeld, Smith, & Arcavi, 1993) to identify and typify when and why
each student moved from secure to tenuous grounds in attempting to solve the problem. Next, we
compared students’ problem-solving paths to reveal cross-student similarities and patterns. This
analysis generated conjectured learning trajectories through the subject matter and informed a
domain analysis towards a design rationale for developing tools, which this paper will overview.

Results and Discussion
Pre-interviewed students could not complete the solution of the compound-event item. Yet,

they solved correctly single-outcome problems that each of them initiated in various forms. We
will now demonstrate a data sample and then analyze and discuss all the data.
Data Sample—A Student Discusses Probability Problems

In working on the coins problem, a student, described by the teacher as below average, said:
I think you should add more information about the math problem itself. Like, not just say, ‘A
fair coin is to be tossed three times.’

When asked what additional information she needs, she answered:
Well, I don’t know how to say this… that’s my problem…[11 sec silence] Ok, I think that…
Ok, the first line’s perfect. But, I don’t know how to tell you what I want in the second…
That’s what… It’s getting me. Uhhm… [8 sec silence] I don’t know what to say. I don’t
know, I don’t know… I don’t have the right words to come out.

She suggests a simpler problem, in which there is a box of 10 candies—6 caramel and 4
chocolate—and one is to determine the chance of getting a chocolate. She solves this problem
(“4-out-of-10 chance”). When asked how this compares to the coin problem, she said:

In the box of sweets, you know how many there is. You know that there are 6 of those and 4
of the rest….But here you don’t know….I mean, you know there’s 3 chances that you can get
heads and 3 chances that you can get tails….But you’re not as… you’re not, like, as… as
descriptive as you are on the other one….It is the same problem, because you’re talking
about the same concept….And, uhhm, but, it’s not the same... well, you could say [that in the
coin problem, analogously to the candy problem] there’s a box, because it’s like you’re
inferring what would happen.
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From a Domain-Analysis Perspective on Student Voice Toward a Design Rationale
Ontology of probability. Student utterance revealed “ontological fuzziness” (see also Piaget

& Inhelder, 1975; Wilensky, 1991) regarding three key elements of the domain of probability:
the stochastic device (e.g., the coin[s]), the combinatorial space of all possible outcomes,
including favored and unfavored events (e.g., HHH HHT HTH THH HTT THT TTH TTT), and
specific outcomes of the sampling action (e.g., THT). Of these three elements of stochasm, only
the stochastic device is an a priori substantive tangible object of consistent appearance. The other
two elements—the space of all outcomes and the specific outcomes—either cannot be directly
seen (the combinatorial space) or they are constantly changing (specific outcomes). One source
of student confusion could be that they had only worked on single-outcome problems, in which
there is congruence between items in the sampling “population,” e.g., each and all of the green
and blue marbles in a box, and the space of all possible outcomes of the stochastic action, e.g.,
all single marbles that can be drawn from that box. Also, note that constructing a combinatorial
space wherein symbols replace icons demands advanced representational skills. Informed by this
analysis, we concluded that students need opportunities to ‘concretize’ (Wilensky, 1991) both the
combinatorial space and specific outcomes.

Modeling compound-event situations on single-outcome situations. Students’ relative
comfort with single-outcome probability problems suggested they may be able to use the single-
outcome model recursively in problem-solving compound-outcome problems. For instance, to
concretize the combinatorial space in the 3-coins problem, one could first determine all eight
possible outcomes and write each outcome on a slip of paper. Then, one could put these eight
slips in a box and select one at random. Thus, the “candy-box model” can apply to compound-
event situations. Following, we describe an analogous stochastic object that uses marbles.
Design Solutions

In this section we present some of the stochastic objects and activities we designed in
response to student difficulty, as evidenced in the pre-interviews and analyzed above.

    
Figure 1. Design, development, and use of the marble scooper. From left: an image of a

computer model for the 3-D “print”; the final product; scooping from a box of marbles; a teacher
shows the classroom a scooped sample of 9 marbles; a “9-block” for combinatorial analysis.
The marble scooper and the 9-block. The marble scooper (see Figure 1, above) is a device

for sampling a fixed number of marbles out of a vessel containing many marbles, e.g., an equal
number of marbles of two colors. We have built a scooper that samples exactly nine marbles. A
sample (Figure 1, second from the right) may have, e.g., 5 green marbles and 4 blue marbles.

The scooper is a unique stochastic object—unlike in coins or dice, a particular sample is not
an inherent physical aspect of the device but is constituted only through an interaction between
the device and the “population” of marbles. Decoupling the stochastic object from its outcomes,
the scooper may help in conceptualizing the combinatorial space of the 9-marble compound
event as a spatial “variable” with color “values.” Also, the intrinsic 2-D spatial form of the
scooper, an array, suggests a topology for managing the construction of the space—an outcome
is not just, e.g., “5green/4blue,” but a specific arrangement of these. To help students concretize
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and build the space of all different possible 9-marble combinations, we designed the 9-block
(Fig. 1, on the right), a 3-by-3 square grid in which each small square can be either green or blue.

    
Figure 2. 9-block activities. From left: a sample 9-block; assembling 9-blocks, classified by the
number of green squares in each; the “combinations tower”—the combinatorial space of the 9-

block; a computer experiments that produced the distribution of the 9-block; a statistics activity.
Related activities. We ask students to determine the chance of getting exactly 5 green

marbles. (There are 29 = 512 unique items in this space, and a 5green/4blue combination is
expected to occur 126/512 = ~.25 of the time). Students literally build the combinatorial space
(the combinations tower), working in crayon-and-pencil and computer environments (Figure 2,
above). Operating with these 512 9-blocks is functionally analogous to operating in a single-
outcome space (“candy”), yet conceptually this recursively models a compound-event situation
on a single-outcome situation. Next, students work with computer-based simulations that
generate distributions of compound events (Figure 2, second from right). The visual resemblance
of this distribution to the combinatorial structure (compare to Figure 2, center) stimulates inquiry
into the law of large numbers. The 9-block also features in statistics activities (Figure 2, on the
right), where it constitutes a sample taken from a large blue-and-green “population” of squares.
Situating the Study in the Larger Project (ProbLab) and Future Work

Both combinatorial analysis and computer-based experimentation contribute to student
understanding of probability (Abrahamson & Wilensky, 2005b), and student conceptual learning
may be understood as a synergy or reconciliation of these complementary activities
(Abrahamson & Wilensky, 2005a). That is, the cognition of ‘probability’ can be seen as a
theory–process dialectic: students learn to “proceduralize” combinatorial analysis and, in turn, to
ground in the products of this analysis an anticipation of empirical distribution. Further work is
needed to develop and evaluate a unit that promotes such learning-as-reconciliation in a
resourceful classroom by using the bridging tools we have described. Such a unit (see ProbLab,
Abrahamson & Wilensky, 2002) will be guided by activity-design principles including
juxtapositions of: (a) different stochastic devices; (b) different embodiments of the same devices;
and (c) different data-analysis perspectives on experiment outcomes (Abrahamson, 2005).
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