Topology Adaptation in P2P Networks Using Schelling’s
Model

Atul Singh and Dr. Mads Haahr

Distributed Systems Group, Department of Computer Science. Trinity College, Dublin
Atul.Singh@cs.tcd.ie, Mads.HaahrQcs.tcd.ie,
WWW home page: http://www.dsg.cs.tcd.ie

Abstract. The paper presents a study on utilising Thomas Schelling’s model, to
perform topology adaptation in unstructured decentralised P2P networks. Schelling’s
model suggests an explanation for the existence of segregated neighbourhoods in Amer-
ica. The paper uses an abstract version of Schelling’s algorithm. A simulator to study
different variations of Schelling’s model has been implemented. The paper presents a
case study demonstrating how the abstract algorithm can be used to improve band-
width usage in P2P networks.

1 Introduction

P2P applications allow symmetric communication between peer computers running the soft-
ware. P2P applications allow us to utilise the resources (such as processing power, disk space)
of powerful desktop computers which in a client-server model are restricted to be mere con-
sumers of services, running light-weight applications like web browsers and email clients. P2P
applications allow all the computers running the P2P software to become both consumers
and suppliers of information and services.

P2P applications organise the peer computers in a virtual communication network, also
called the overlay network. The overlay network generally has self-organising characteristics.
It is established and maintained by the P2P software without any human intervention. P2P
software manages events like peers joining and leaving the network. The overlay network uses
the communication infrastructure, such as TCP/IP or HT'TP, provided by the transport layer.
The overlay network allows peers to discover other peers and communicate with them.

On the basis of the overlay network architecture P2P applications can be divided into
three major categories: centralised, decentralised structured and decentralised unstructured.
Centralised architectures uses a well known central server for performing organisational tasks
to facilitate P2P communication. Napster [1] is a prominent example of a centralised architec-
ture. In decentralised architectures, peers collaborate without a central server. In structured
decentralised networks, the location of resources and peers in the network is controlled, typi-
cally using a distributed hash table (DHT) of resources available on the network. Chord [13]
and Pastry [2] are prominent examples of this architecture. Unstructured P2P networks do
not control the location of resources and peers. Gnutella [4] and Kazaa [14] are popular P2P
applications which use an unstructured P2P network. The topology adaptation technique
suggested in the paper is useful for decentralised unstructured networks only. The location of
a peer in a decentralised structured network is determined by the key space it it responsible
for which makes topology adaptation difficult.

In existing P2P overlay networks, there is typically no control over the type of peers
which are connected together. This leads to suboptimal grouping of peers. For example, in a

II

file-sharing application, peers with high bandwidth capacity may be grouped together with
peers with low bandwidth capacity, which may lead to a degradation in performance. Also
peers which are geographically distant (in terms of the underlying network infrastructure)
may be grouped together, increasing the cost of communication between them. In file sharing
applications, it is beneficial if peers with similar properties like bandwidth or geographic
location are adjacent to each other. Other categories of P2P applications could group peers
using different characteristics. The purpose of the present paper is to investigate an algorithm
which may be used to modify or adapt network topologies so that peers with similar properties
are close to each other.

In 1960 American economist Thomas Schelling proposed a model to explain the segregated
neighbourhoods in America [3]. He observed that the segregated American neighbourhood are
not caused by a central authority, or desire of people to stay away from dissimilar people; but
is a cumulative effect of simple actions of individuals. Schelling’s model is self-maintaining
and decentralised in nature. This makes it suitable for topology adaptation in unstructured
decentralised P2P networks, which lack central authority and are self-organising.

The paper uses Schelling’s algorithm ' in a P2P network to change the overlay network’s
topology. The topology of the overlay network is the graph whose vertices are the peers in
the network and edges are all the connections between the peers. The paper uses an abstract
form of algorithm used in Schelling’s model. The abstract algorithm uses the satisfaction
state of a peer to decide whether it should execute its topology adaptation steps. Satisfaction
state criteria and topology adaptation steps will vary across different versions of Schelling’s
algorithm. They are discussed in detail along with the abstract algorithm in Section 4.

The rest of the paper is organised as follows. Section 2 describes Schilling’s work in detail.
Section 3 discusses the motivation behind the work in this paper. Section 4 presents an
abstract form of Schelling’s algorithm which can be executed by peers to change the topology
to satisfy particular constraints. Section 5 discusses the design of the simulator used for the
experiments. Section 6 presents a case study containing a sample satisfaction state criteria
and topology adaptation steps, and a concrete realisation of the abstract algorithm; which can
be used to improve the performance of a P2P network by bringing together peers with similar
bandwidth.

2 Thomas Schelling’s Model

In Schelling’s model [10] [11] the world is an m x n grid. A random number of cells in the
grid are populated by blue or red turtles 2. A cell can host only one turtle. In the beginning,
a random number of blue and red turtles are randomly distributed on the grid. About one
third of the cells in the grid are left empty. All the turtles desire a certain percentage of their
neighbours to be of the same colour. If a turtle is not satisfied with its neighbours, it moves
to an adjacent empty cell, chosen randomly. The simulation goes on till all the turtles are
satisfied with their neighbours.

The model can be simulated using Netlogo [5], a modelling environment used to simulate
complex multi-agent systems. Netlogo comes with a sample [6] which can be used to simulate
Schelling’s model. The sample model has two parameters: the total number of turtles (N)
and the percentage of similar neighbours (PSND) that each turtle desires. In the NetLogo

! The algorithm executed by individuals in Schelling’s model is referred as Schelling’s algorithm in
the paper.
2 Schelling studied his model using nickels and pennies on a chess board.

111

model, segregation can be observed visually in a graphical display of the turtle world. The
model tracks percentage of turtles having all similar neighbours (PTASN) over time. The
metric gives a numerical idea of segregation. A small value of PSND, leads to the emergent
behaviour of a very high percentage of turtles having all similar neighbours (PTASN). The
parameter PSND, has a critical value PSN D, pstapie, beyond which the simulation do not
converge to a state where all the turtles are happy with their neighbours. Segregation does
not depend upon the number of turtles. The sample NetLogo model was modified so that the
world is populated with more than two type of turtles. An emergent behaviour similar to the
old model was observed.

3 Motivation

Schelling’s model is an example of a complex system, in which the desire of the individual
turtles to stay in a neighbourhood with a very small number of similar turtles leads to an
emergent behaviour of highly segregated neighbourhoods. The turtles act using their aware-
ness of the local network topology, which makes this model especially attractive for P2P
systems in which the peers lack a global picture of the network topology. Schelling’s model
is perhaps the most famous model of self-organising behaviour [7]. Clustering occurs in the
model without any central direction or control. The self-organising and decentralised cluster-
ing in Schelling’s model makes the model a suitable candidate solution for clustering peers in
P2P networks.

The network of individuals in Schelling’s model is different from the network in P2P.
Schelling’s world is an m X n grid. A turtle can only be placed in an empty cell in the grid.
In a P2P network there is no constraint on the location of a peer. In Shelling’s model the
neighbours of a turtle can only be turtles located in the eight cells adjacent to its own. In a
P2P network neighbours can be located anywhere. To the author’s knowledge, the effect of
applying Schelling’s algorithm to a P2P overlay network has not yet been studied. This paper
studies the effect of applying Schelling’s algorithm to peers in a P2P network.

P2P networks are graphs and can be studied easily in a simulation environment that
supports graph-related functions. NetLogo lacks support for graph-related functions, which
makes modifying the NetLogo model to simulate P2P networks a tough task. Instead a sim-
ulator has been developed using C++, which can be used to study the impact of applying
Schelling’s algorithm to P2P networks.

In Schelling’s algorithm a turtle is satisfied if a percentage of its neighbours has the same
colour as the turtle. If the turtle is not satisfied with its neighbourhood, then it moves to a
randomly chosen empty adjacent cell. Numerous variations of Schelling’s algorithm can be
created by choosing different satisfaction criteria, and steps to be performed if a turtle is not
satisfied. The next section 4 presents some examples of satisfaction criteria and steps to be
performed if a turtle is not satisfied.

4 Algorithm for Topology Adaptation

This section presents an abstract form of Schelling’s algorithm that can be executed by peers
in a P2P network in order to perform topology adaptation. The Template method design
pattern [8], is used to separate the steps of Schelling’s algorithm. These steps may be changed
to produce different versions of Schelling’s algorithm.

v

TopologyAdapter

#m_adaptationBResult: boolean
#m_isNodeSatisfied: boolean

+manageTopology(): woid
#calculateSatisfaction(): boolean
#executelddaptation(): boolean
+delayBeforeNextAdaptation(): int

wvoid manageTopology() {
m_isNodeSatisfied =
calculateSatisfaction();
if (Im_isNodeSatisfied)
{
preExecutingAdaptation();
m_adaptationResult =
executeddaptation(]);

postExecutinghdaptation();

Fig. 1. UML Class diagram of TopologyAdapter Interface

In the Template method design pattern the skeleton of an algorithm is defined in an
operation, deferring some steps to subclasses. The subclasses implement the steps that vary.
This makes it possible to redefine the steps in an algorithm without changing the algorithm’s
structure. The steps which may vary across various versions of Schelling’s algorithm are the
satisfaction criteria, the actions to be performed if a peer is not satisfied and the frequency
with which satisfaction state should be checked.

Figure 1 presents the class diagram for the TopologyAdapter interface. The interface en-
capsulates the topology adaptation algorithm. The simulator expects the peers to implement
the TopologyAdapter interface. The manageTopology method contains the skeleton of the
algorithm which will be executed by individual peers. The pseudo-code for the method is
presented as a note in the figure. A peer calculates its satisfaction state and, if not satisfied,
executes topology adaptation steps.

Satisfaction state is a boolean value indicating whether a peer is satisfied with the overlay
network’s topology. The satisfaction state of a peer is calculated using the calculateSatisfaction
method. Satisfaction criteria will vary depending upon the topology desired. For example, a
file-sharing P2P application might like to have a topology so that peers with high number
of files are mixed together with peers having a small number of files. In such a scenario, the
satisfaction criteria could be desire for a certain percentage of the neighbours to be dissimilar.

If a peer is not satisfied with its neighbours then topology adaptation steps are performed
by calling the executeAdaptation method. As a part of Topology Adaptation Steps, a peer
may decide to add a similar (or dissimilar) peer as its neighbour. Satisfaction criteria and
topology adaptation steps may vary across peers in an overlay network. For example, in an
overlay network some peers may be satisfied if they are with all dissimilar neighbours and the
rest may be satisfied if they are with all similar neighbours.

The topology management algorithm, specified in manageTopology method, is executed
successively. The time delay between successive executions of topology management algorithm
is determined by the return value of the method delayBeforeNextAdaptation. The time delay
will vary with application. For example, the algorithm may be executed repeatedly after a
constant delay of ten minutes.

All the three methods: calculateSatisfaction, executeAdaptation and delayBeforeNextAdap-
tation are virtual abstract methods implemented in subclasses.

5 Simulator

An overlay network simulator has been developed, in which all the peers are within one
simulator process. The simulator is single threaded, which means that the peers execute their
algorithm sequentially. Peers execute an implementation of Schelling’s algorithm. Each peer
is assigned a numeric identifier. Based on the result from delayBeforeNextAdaptation() the
peers calculate the time to execute the TopologyAdaptation algorithm. In each iteration the
simulator goes through the peers in an increasing order of identifier’s. An iteration is counted
as one time unit. The peers executes the topology adaptation algorithm when the simulator
time matches the time to execute topology adaptation.

The simulator can be used for evaluating different versions of Schelling’s algorithm. It is
used for evaluating the algorithms used in the case studies presented in this paper.

6 Case Study

2588

"1BEEENode s, BanduidthRiseSeedl " —e—
"SEEENodes BandwidthRize-Seedl" ——
"SEEAModessBanduidthRize-Seed2" —B—
"JEEANodes EBanduidthRize-Seed3" —w—

"SJEEANodes BandwidthRise-5Seedd" —%—

2a8s -

Topoloqy Dinccamerted Bapond thin point

1588

% rize in BEH-}

lg@s -

566

Fig. 2. Plot of percentage increase in BBN against PSND, after dropping dissimilar neighbours and
adding similar neighbours, for random networks with 1000, 5000 and 10000 nodes.

This section presents a case study that demonstrates how Schelling’s algorithm can be
utilised in a P2P network. The case study shows how Schelling’s algorithm can be used
to increase the bottleneck bandwidth in a P2P network, so that information is exchanged
between peers at a faster rate.

In an overlay network a message is routed through a number of peers before it reaches
its destination. The bottleneck bandwidth between the source and the destination is the

VI

minimum of the bandwidth of the hops in the route. The bottleneck bandwidth gives an
accurate upper bound of the rate at which information will be exchanged between peers
[9]. In an unstructured decentralised network the location of the peers is decided randomly,
and therefore peers with high bandwidth may be adjacent to peers with low bandwidth,
introducing undesired low bottleneck bandwidths in the network. The bottleneck bandwidth
for the network (BBN) is the average of the bottleneck bandwidth between all possible pairs
of peers in the network. This case study demonstrates that BBN can be increased by applying
Schelling’s algorithm so that peers with similar bandwidth are clustered together.

For the case study two set of simulations using different topology adaptation steps have
been performed using random networks of peers with 1000, 5000 and 10000 nodes. In each
random network, half the peers (chosen randomly) have an available bandwidth of 10Mbps,
and the other half a bandwidth of 1Mbps. The connections between the peers is chosen
at random. A peer can have a maximum of ten connections. Self loops, parallel loops and
duplicate connections are not allowed. It is ensured that the generated random topology is
connected. The generated topology is similar to the topology of unstructured P2P networks.
In the simulations, PSND is varied from 10 to 100 in steps of 2. The algorithm is applied on
each random network, with different values of PSND and the rise in BBN is calculated. The
Topology management algorithm is executed successively at a constant interval. Simulations
stop if all the peers are satisfied or if the simulator has gone through five hundred iterations.

In both sets of simulations the satisfaction state criteria used is that a peer is satisfied
if a percentage of its existing neighbours have similar bandwidth. Two different topology
adaptation steps are used. They are:

1488

T T T
"1888@NodesEandwidthRize-Seedl " —+—
"SEE@Nodes EBandwidthRize-Seedl " —+——
"SE@@Nodes EandwidthRize-Sesde" —8—

"5EEEMades BandwidthRise-Seed3" —w— T—o—o—o—
1288 - vsp@@Nodes EBandwidthRize-SeedS" —%— A

Topology Disconnected Beyond This Point B

1888 - B

288 B

688

¥ rise in BEM-Z

488

=]

Fig. 3. Plot of percentage increase in BBN against PSND after dropping dissimilar neighbours self-
ishly for random networks with 1000, 5000 and 10000 nodes.

VII

6.1 Drop dissimilar and add similar neighbour (DDAS)

For the first set of simulations, a dissatisfied peer executes its topology adaptation steps, in
which it:

1. Drops a dissimilar neighbour if it is not the only neighbour of that peer (to ensure that
the topology remains connected).

2. Searches for a similar neighbour which has a free connection slot. A Depth First Search
(DFS) is performed. The horizon of the search is five. If a suitable peer is found then it
is added as neighbour.

Figure 2 plots the percentage increase in BBN against PSND, for random networks with
1000, 5000 and 10000 nodes. BBN increases with an increase in desire to have similar neigh-
bours. For the same PSND, a higher rise in BBN is observed if the network has more nodes. In
the simulations, all nodes are satisfied in less that ten iterations. The network topology was dis-
connected beyond a certain PSND called PSN D g;sconnected- The value of PSN D gisconnected
is 92 for all the random networks.

1eaaEa
"DropMbrsSel fishly-S888Modes" —s—
"Simple-SEEEModes" ——

8888

28888

7BeE0

[-3=1:1:1]

58888

48088

Mes=zagesExchanged -

38888

28080

lgeae

Fig. 4. Number of messages exchanged to perform topology adaptation against PSND, for a 5000
Node random network. Plot DropNbrsSelfishly-5000Nodes is for dropping dissimilar neighbours self-
ishly. Plot Simple-5000Nodes is for dropping dissimilar neighbours and adding similar neighbours.

6.2 Drop dissimilar neighbours selfishly (DD)

For the second set of simulations, a dissatisfied peer executes its topology adaptation steps in
which it selfishly drops a dissimilar neighbour, in each iteration.

VIII

Figure 3 plots the percentage increase in BBN against PSND, for random networks with
1000, 5000 and 10000 nodes. Like the previous set of simulations, BBN increases with an
increase in desire to have similar neighbours. For the same PSND, a higher rise in BBN is
observed if the network has more nodes. In the simulations, all nodes are satisfied in less that
twenty iterations. The network topology was disconnected beyond a certain PSND called
PSNDgisconnected- The value of PSN D gisconnectea Was 52 for random networks with 5000
and 10000 nodes. For random networks with 1000 nodes PSN D 4;sconnected Varied from 58 to
92.

6.3 Cost of Executing Topology Adaptation

Figure 4 plots the number of messages exchanged for topology adaptation against PSND, us-
ing DDAS(simple-5000Nodes) and DD (DropNbrsSelfishly-5000Nodes), for a random network
with 5000 nodes. With DDAS, for a PSND of 22, the number of messages exchanged are of
the order of 4000. The number of messages exchanged are of the order of 25000, for a PSND
of 50; and 95000 for a PSND of 92. In DD nodes without any neighbour reconnect to the
network. The number of messages exchanged for DD include the messages exchanged by these
isolated nodes to reconnect to the network.

There is a trade off between rise-in BBN and the number of messages exchanged. The
optimal choice of PSND and topology adaptation steps depends upon the application and its
characteristics. For an overlay network with a long life it may be advisable to gain a huge
rise in BBN by exchanging lots of messages. Whereas an overlay network with a short life
span may choose PSND and topology adaptation steps which do not provide a substantial rise
in BBN, but are less demanding in number of messages exchanged. For example an overlay
network with a long life may choose DDAS, with a PSND of 80 which will give it more than
600 percent rise in BBN, if there are around 5000 nodes in the network. But with this PSND
around 80000 messages will be exchanged, which is a very large number. An overlay network
with a short life may choose DD with a PSND of 50 which is just below PSN Dg;sconnected-
This will provide 50 percent rise in an overlay network with 5000 nodes, by exchanging 10000
messages.

Rise in BBN is high in an overlay network with higher number of nodes for both DDAS
and DD. But below 50 percent PSND there is no dramatic difference in the rise in Bandwidth
for overlay network with different number of nodes.

7 Conclusion

The paper has demonstrated that Schelling’s algorithm can be used effectively for adapting
P2P network topology. The abstract algorithm and the simulator presented can be used to
develop and evaluate different variations of Schelling’s algorithm. The paper presented a case
study where all the peers in a P2P network desire a percent of their neighbours to be similar
(PSND) to them. The case study demonstrates that the BBN of a P2P network can be
increased by using Schelling’s algorithm.

References

1. Napster, http://www.napster.com, 1999 version.

S Cvk W

10.
11.

12.
13.

14.

IX

. A. Rowstron and P. Druschel “Scalable Pastry Scalable, decentralized object location and routing
for large-scale peer-to-peer systems.” Proceddings of the 18th IFIP/ACM International Confer-
ence on Distributed Systems Platforms(Middleware 2001).

Jonathan Rauch “Seeing Around Corners” The Atlantic Monthly, April 2002.

The Gnutella Protocol Specifications v0.4 http://www.clip2.com

NetLogo, http://ccl.northwestern.edu/netlogo/.

Center for Connected Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

Mark Pollicott and Howard Weiss “The Dynamics of Schelling-Type Segregation Models and a
nonlinear graph laplacian variational problem” http://citeseer.ist.psu.edu/570913.html.
Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, Mass.: Addison-Wesley, 1995.

Saroiu S, Gummadi K. and Gribble S., “Measuring and analyzing the characteristics of Napster
and Gnutella hosts” Multimedia Systems Journal, Volume 8, Issue 5, November 2002.

Schelling C. T. “Micromotives and Macrobehaviour”, Nortan and Company 137-166: W. W.
Norton, 1978.

Schelling “Dynamic Models of Segregation”, Journal of Mathematical Sociology 1:143-186..
Barbasi, Albert and Jeong, “Mean-field theory for scale-free random networks”, Physica 1999.
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan, Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications, ACM SIGCOMM 2001, San
Deigo, CA, August 2001, pp. 149-160.

Kazaa, http://www.kazaa.com/us/index.htm.

Wilensky, U. NetLogo Segregation model. http://ccl.northwestern.edu/netlogo/models/Segregation

