
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2004; 00:1–25 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Distributing RePast
Agent-Based Simulations with
HLA

R. Minson
�
, � , � and G. K. Theodoropoulos

�

�
School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.

SUMMARY

Large, experimental Multi-Agent System (MAS) simulations are highly demanding tasks, both
computationally and developmentally. Agent-toolkits provide reliable templates for the design of even the largest
MAS simulations, without offering a solution to computational limitations. Conversely, Distributed Simulation
architectures offer performance benefits but the introduction of parallel logic can complicate the design
process significantly. The motivations of distribution are not limited to this question of processing power. True
interoperation of sequential agent-simulation platforms would allow agents designed using different toolkits to
transparently interact in common abstract domains. This paper discusses the design and implementation of
a system capable of harnessing the computational power of a distributed simulation infrastructure with the
design efficiency of an agent-toolkit. The system permits integration, through an HLA federation, of multiple
instances of the Java-based lightweight-agent simulation toolkit RePast. Our main contribution is in abstractly
defining the engineering process necessary in creating such middleware, and in reporting on our experience in
the specific case of the RePast toolkit.

KEY WORDS: Distributed Simulation, Multi-Agent Simulation

1. INTRODUCTION

Multi-Agent Systems (MAS) are a useful paradigm for the decomposition of many complex problems [13].
MAS simulations have been put to use in the physical sciences [18, 12], anthropological and biological
experiments [26] and AI research [24] to name but a few areas. The vast diversity of agent design and
simulation systems is therefore unsurprising [23, 9, 20, 4, 3, 22]. Some systems focus on providing
complex structures for the modelling of the agent’s internal cognitive functions. Other systems, often used
in models with a large number of lightweight agents, focus more on providing an open framework, limited
to the executive and some environmental features. Often different implementations of the same model
use heterogeneous executives, agent-design paradigms and environment implementation toolkits, leaving
little consistency in the implementation of abstract domain semantics between one implementation and
another. However, no one testbed can be appropriate to all agents and environments. There is therefore a
strong incentive to reuse existing toolkits and models and somehow combine them to build larger and more
complex scenarios [16].

Further to this, the complexity of MAS models can quickly take on a computational profile which
prohibits their execution by sequential processing systems. In AI or anthropological experiments for
example, the agent itself is a large, complex system (e.g. [17]) and the need to be able to scale to a larger
number of agents and a larger interaction domain quickly outstrips the storage and processing capabilities
of a single machine [22, 3, 11, 21].

�
Correspondence to: R. Minson, School of Computer Science, The University of Birmingham, Birmingham B15 2TT, UK�
E-mail: R.Minson@cs.bham.ac.uk

Copyright c
�

2004 John Wiley & Sons, Ltd.



2 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

Large scale, distributed simulation can offer a solution to both problems of toolkit interoperation and
model scalability. Distributed simulation has received an explosion of interest in the last decade, as a
strategic technology for both speeding up simulations as well as linking simulation components of various
types at multiple locations to create a common virtual environment. The culmination of this activity
(which originated in military applications where battle scenarios were formed by connecting geographically
distributed simulators via protocols such as the Distributed Interactive Simulation protocol (DIS)), has
been the development of the High Level Architecture (HLA) [14]. HLA, which is now an IEEE standard,
facilitates interoperability among simulations and promotes reuse of simulation models. Using HLA, a
large-scale distributed simulation can be constructed by linking together a number of (geographically)
distributed simulation components (or federates) into an aggregate simulation (or federation).

This paper investigates the problem of integrating an agent toolkit into HLA in order to achieve both
interoperability and scalability. The paper introduces HLA REPAST, a middleware layer between the HLA
and the sequential MAS simulation toolkit RePast [7], assessed by [25] as the most effective development
platform currently available for large-scale simulations of social phenomena.

The rest of the paper is organized as follows: the next section provides a short overview of HLA and
section 3 discusses the RePast toolkit, describing its nature as a sequential simulation platform; section 4
discusses the fundamental issues that need to be addressed to achieve a mapping between sequential and
distributed simulation platforms; section 5 describes the HLA REPAST system itself; section 6 illustrates
the application of the system in an implementation of a classic MAS benchmark model; section 7 discusses
the performance profile of the finished system; finally, section 8 presents some conclusions on the design
of such systems in general and discusses proposed future work.

2. THE HIGH LEVEL ARCHITECTURE

The High Level Architecture (HLA) interoperability protocol [19, 1] provides the simulation executive
designer with a mechanism for solving both the problem of scalability and of interoperation.

The HLA is a protocol based around the notion of the ‘federation’. An individual federate in a given
federation is an instance of some simulation executive, which is currently modelling a portion of the larger
simulation. The federates may be written in different languages and may run on different machines. The
federates in a federation communicate through a central ‘Runtime Infrastructure’ or RTI, and synchronise
their local schedules with the global schedule through one of the RTI’s time management services � .

Each federate shares in the global model through a common semantic understanding of the data delivered
to it by the RTI. The structure of this data is defined in a ‘Federation Object Model’ (FOM), while the actual
interpretation of this data is the responsibility of the federate itself. This semantic independence of data in
the HLA, provides the basis for model interoperation. Within a given FOM the classes of objects, which
are to be used in a specific federation, are defined by a name (unique within the hierarchy) and a set of
un-typed attributes.

At run-time the federate interfaces with the RTI through the use of an RTIambassador instance. This
object provides access to the remote invocation services provided by the HLA specification. In a similar
way, the federate itself must provide an implementation of the FederateAmbassador interface, which
accepts callbacks from the RTI to notify of events pertinent to this federate.

Communication between the RTI and the federates in a simulation takes place in the language of
the HLA, using the specific semantics defined by that federation’s FOM. State changes in general
are communicated from federate to RTI via invocations of the UPDATE ATTRIBUTE VALUES service.
In response to this invocation, the RTI will invoke the REFLECT ATTRIBUTE VALUES callback on the
FederateAmbassadors of other federates. This call contains a set of ���������	��
����� �������������������������
tuples, which the federates are expected to use to update their local copies of the simulation state.

�
The HLA also provides support for real-time simulations which do not use time-management, these will not be discussed here.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 3

RTIFederate

Before Federation Initialisation

RTI

Federate

Federate

Federation Initialisation

Federate

FederateAmbassador FederateAmbassador

RTIAmbassador

FOM

FOM FOM

RTIAmbassador

Figure 1. The ’Ambassador’ abstraction used by the HLA

In logical-time synchronised simulations, all UPDATE ATTRIBUTE VALUES invocations are time-
stamped. Under conservative synchronisation schemes � REFLECT ATTRIBUTE VALUES callbacks in
response to updates do not happen at arbitrary points but only when the federate requests to advance to or
beyond the logical time at which the event occurred. In this way the local schedule of the individual federate
can be harnessed to act as the engine to drive forward the tightly-coupled activities of state-transition and
time-advance of the simulation at large.

3. THE RePast SIMULATION TOOLKIT

The RePast system [7] is a Java-based toolkit for the development of lightweight agents and agent models.
It was developed at the University of Chicago’s Social Science Research Computing division and is
derived from the Swarm simulation toolkit. It has become a popular and influential toolkit, providing
the development platform for several large multi-agent simulation experiments, particularly in the field
of social phenomena [2].

Unlike some large simulation infrastructures, such as HLA/RTI itself, RePast can properly be termed
a ‘toolkit’. The system provides an inter-dependent collection of tools and structures, which are generally
useful for the simulation of agents, but does not require that the modeller use these structures. It is therefore
incorrect to think of RePast models as having any describable generic structure, since this is wholly left
to the discretion of the modeller. Despite this, it would also be wrong to imagine RePast simulations as
executing in a wholly unconstrained manner (this being a vital first-step in the development of middleware
such as that with which we are here concerned).

3.1. The Model/Executive Paradigm

At the highest level, each RePast simulation has two components. The first of these is the model, specified
by the simulation designer and composed usually of a mix of bespoke components and RePast library

�
Optimistic synchronisation schemes will not be discussed at this point, a discussion of the propriety for the HLA REPAST system

of each of the time-advance schemes is presented in 5.2.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



4 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

Extract schedule
from model

Events modify
model state

schedule
Model

execute

Executive

STATE

Figure 2. The Standard RePast Model-Executive Interface

components (such as grids to represent the environment, or graphical display components). The second
component is the executive object (an instance of the RePast Controller class), this interacts with a
model to affect a single simulation execution. These two components interact initially by a model being
loaded in to the controller, the state-transitions in the model are then controlled (monotonically) through
the executive - i.e. the model can be ‘stepped’ forward to the next scheduled event by invocations of ‘step’
upon the executive. For this control to be achieved, there exists a well defined interface, which a model
must expose to an executive, this interface is exploited in the HLA REPAST system and is described below.

3.2. Scheduling

All models are first required to make available to the executive an instance of the Schedule class, which
is an implementation of a discrete event scheduling engine. In RePast, events are modelled as instances of
the BasicAction class, which defines a single method, execute(), whose invocation represents the
occurrence of the event in question. The BasicAction instances extant in the Schedule at any point
represent events, which have been scheduled but are yet to occur in the system.

An important observation at this point is the distinction between the classical interpretation of a ‘Discrete
Event’ and the one that can be derived from RePast’s implementation. Generally, and vitally in the case
of HLA, a discrete event is taken to be a single, atomic, state transition in one of the model’s member
entities. An agent moves one square to the left, for example. While an event can cause the scheduling of
future events, it is not generally accepted that the execution of a discrete event will itself involve more than
one discrete state transition in the model. By contrast, the definition of ’Discrete Event’ one infers from
the RePast implementation, is a potentially infinite and unconstrained sequence of state transitions, whose
order and magnitude is undecidable. We discuss the general implication of this semantic distinction further
in section 5.2.

The RePast executive in its sequential form interfaces with the model by extracting and loading the
schedule into a Controller object, which incrementally executes events with increasing timestamps
from the schedule. This continues until the executive experiences a SimulationStop event. This
structure is demonstrated in figure 2.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 5

3.3. State Composition

Unlike the case of the RePast scheduling system, which is defined in a constrained (although not altogether
constraining) way, the actual state of the simulation is wholly unspecified. While the toolkit provides
collections of classes, which can be used to construct the state, it does not constrain the model in the
use of instances of these classes. In much the same way, then, that the number and magnitude of state
transitions during one ‘discrete’ event is unknown, so the composition of the state at any given time in the
model is also not accessible by the executive, and therefore indeterminable without prior knowledge of the
composition of the model.

3.4. Agent-State Interaction

Just as RePast defines no constraints concerning the composition of the model’s state, it also defines no
mechanism for interaction between the environment and the agents that make up that state. The implication
of this is that there is no protocol for state transition (beyond that already defined by the Schedule) to,
which the model must conform. Again, therefore, access to and modification of the agent’s environment
cannot be observed by the executive.

4. A General Approach

Having given an overview of one agent toolkit, it is now worth presenting some observations on what is
generally needed to achieve this type of mapping between sequential and distributed simulators, before we
discuss the specifics of the current implementation. In general such a mapping involves three intellectual
tasks:

� Mapping the Scheduling System. This task involves first determining what type of time-advance
paradigm best suits the sequential system being mapped (e.g. conservative, optimistic, etc.). From
this point the task is then to determine how best to integrate the sequential scheduler itself in to the
parallel scheduling algorithm of the distributed kernel. A critical first step in general in this process,
is understanding how the notion of event in the sequential system relates to the notion held to by the
distributed system.

� Mapping the State-Representation. This task is concerned with determining how to communicate
state-transitions in the sequential simulator through the distributed simulator to other sequential
instances. Again this involves two ideas. Firstly there must exist some way for the model to
express the distinction between ‘public’ data (transitions in which should be communicated to the
global system) and ‘private’ data (which are of concern only to the local model and should not
be communicated). Once this partition is define-able, the next task is to determine some way of
detecting the transitions in public state when they occur, thus enabling their communication to the
global system. This is likely to be the aspect of the mapping that is most critical in terms of retaining
transparency of the distribution, as a non-transparent mechanism for recognising updates when they
occur will mean that large sections of modelling code must be re-written.

� Conflict Resolution for Shared Variables. This task is not immediately as evident as the previous
two. Most simulation models, particularly in the case of models of agent-systems, involve large
numbers of shared variables. These variables (usually modelling some element of the agent’s
environment) can be the subject of frequent concurrent updates and, in many cases, these updates
may be attempting to place the variable in logically conflicting states. In a sequential system these
conflicts can be dealt with using a sequential logic, with some operations being allowed and some
being rejected. In the distributed case however, this ‘conflict resolution’ is complicated by the
lack of a centralised, sequential logic. Firstly some mechanisms must be determined within the
distributed kernel to achieve reliable resolution for conflicts and, secondly, the sequential model
must be presented with an interface on to these mechanisms. This interface must be as simple and as
transparent as possible.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



6 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

RTI

HLA_REPAST_3 HLA_REPAST_4

HLA_REPAST_1 HLA_REPAST_2

model

exec

modelmodel

exec

model

exec

model

exec

Figure 3. An HLA REPAST Federation

In general, the process described above is interested in two elements of the design: firstly, determining
mechanisms for achieving distributed execution of a given sequential simulator, and secondly, devising
transparent interfaces for accessing these mechanisms. Having described the tasks one must complete in the
general case, section 5 presents the design process for the specific case of HLA REPAST and demonstrates
how these tasks were approached.

5. THE HLA REPAST SYSTEM

HLA REPAST is a middleware layer which enables the execution of a federation of multiple interacting
instances of RePast models within HLA as depicted in figure 3.

In general distributed simulation systems start from this notion of independent but communicating
processes. In order to achieve parallel execution of a single model in such a system, the model must be
partitioned in to several sub-models, each modelling a subset of the components of the system. In the case
of a MAS simulation examples of possible partitions are:

� For an
�

agent model partitioned across
�����

federates: one agent at each federate and one federate
to model the environment.

� The environment divided in to
�

physical regions across
�

federates, with agents moving from
federate to federate as it moves through the environment.

� For an agent architecture with
�����

discrete cognitive components: one federate for the environment
and one federate for each component. Here each of the cognitive federates houses � separate
instances of its given component, where � is the number of agents in the model.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 7

KEY proxyprivatepublic

federate_2federate_1

executive

model

executive

model

Figure 4. The HLA REPAST system of model-distribution

Given a partition of the model in to a set of components and the distribution of the components across
federates, there must exist some mechanism by which a component can interact with the rest of the model.
In the case of HLA REPAST this is achieved through the use of proxy objects which reflect the state of
remotely modelled objects. Each federate in an HLA REPAST federation sees the local model as a set of
objects. Some of these objects will be locally modelled and shared with the rest of the federation (public
objects), some will be locally modelled and not shared (private objects) and some will be proxies for public
objects at other federates (proxy objects). This architecture is depicted in figure 4.

This approach to the distribution of the model was derived from an analysis of the imperatives found
when considering the RePast system and the HLA. This derivation came through the process of first
studying both systems and then attempting to address the three design tasks identified in section 4. The
remainder of this section describes this process.

5.1. Fundamental Issues

The critical task of the middleware is to detect the occurrence of changes in the RePast model and be
capable of reliably communicating them to the HLA. Given that the HLA is based on the principle of
discrete events, the solution that seems immediately to present itself, is to map from BasicAction
instances to HLA events. Recall from section 3, however, that there is no clear mapping, or at least
mapping constraint, between a RePast BasicAction and a discrete state-transition. A BasicAction
may contain 0, 1 or an infinite number of individual attribute value modifications, which may be all on
a single object, or to multiple objects. In order to obtain a reliable mapping between state-transitions in
RePast and UPDATE ATTRIBUTE VALUES invocations in the HLA, the system must be capable of detecting
individual variable accesses and generating events for each one.

This approach leads us to review the general case discussed in section 4. The RePast scheduler itself is
now only used to ensure a constrained progression through logical time. It is the state-representation itself
that must provide the middleware with the information it needs to accurately communicate state-updates.
Due to this, the mapping of the scheduling system is a relatively minimal activity, with the majority of the
architecture being defined by the approach to the mapping of the state-representation.

This being so, some further constraint must be placed on the modes of interaction that may occur within a
RePast model to allow the executive to observe state-transitions. This said, transparency is a critical aspect
of the system design, the essential flexibility of the sequential toolkit should not become a casualty to
pragmatism. The eventual system is an extension (and constriction) of sequential RePast, which provides a
level of abstraction low-enough to retain the toolkit’s flexibility without over-complicating the development
process. The following section discusses the essential elements of the middleware and the process of its

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



8 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

design. The only element of the middleware visible to the model is an instance of the LocalManager
class � , which provides a very minimal number of basic functions to the model, thoughl, generally, direct
accesses to the LocalManager by the model code itself will be very infrequent � .

5.2. Mapping the Scheduling System

In integrating the RePast and HLA scheduling systems the critical step was to identify the time-advance
paradigm most appropriate, both to agent-based modelling and to the existing RePast scheduling system.
The first choice, between optimistic and conservative scheduling was dictated largely by the demands of
transparency.

Optimistic synchronisation [8] requires a rollback facility at each node, which in turn requires some
form of state-saving mechanism. The two possibilities for implementing this mechanism were, firstly, to
obtain references from the model of all mutable elements of the system. While this was conceivable (as
is clear from section 5.3) it would also have reduced transparency by demanding the constant registration
of new objects and notification of the removal of old ones. The alternative to this system was to allow
state-saving to be done in-situ by the modeller herself. This would most likely have taken the form of some
model-defined function, accessible by the executive. Unfortunately the viability of an application-level
saving mechanism is very much dictated by the complexity of the model itself; for example, models based
on entirely reactive agents tend to have less permanent cognitive state - memory and planning is not an
issue here - and hence the effort to save this state is insignificant (and simple to implement). Models, which
contain largely intelligent agents, by comparison, must save potentially vast amounts of very complex
cognitive data, reducing not only the overhead of the save but, more importantly, the complexity of the
development process. Since RePast models have no clear uniform complexity, it was impossible to decide
the viability of this second optimistic scheme.

Conservative synchronisation [10, 6, 5] was therefore the preferable paradigm. In conventional
distributed simulations, even non-deterministic processes will produce events in response to a stimulus
(i.e. incoming events) with some deterministic delay, specifiable by a lookahead value (the minimum
amount of time in to the simulated future before which the process will produce another event relevant
to the system at large). However the traditional method of using this lookahead value to ensure against
deadlock is not appropriate when a node contains an agent process. Agent processes are inherently non-
deterministic, but further than this, and as discussed in [15] and [27], they are also capable of producing
events on a non-reciprocal basis - an agent can cause an event in the system apropos of nothing but its own
internal motivations. The de facto lookahead value of such a system is therefore 0.

To ensure a maximum of transparency in scheduling, the normal RePast algorithm for stepping through
the schedule was replaced with a new algorithm that constrained local advance in synchronisation with the
rest of the federation. The kernel of the new algorithm - as with all conservative algorithms - was to not
execute a BasicAction scheduled for time � until it is possible to ensure that all events incoming from
the RTI with timestamp � � had been received. This is achieved by first ascertaining this � (the time of
the earliest event in the local schedule), and then requesting advance to � . The RTI will then send a set of
events to the federate, all with timestamps ��� , these events are stored in an external event buffer. Once
advance to � is granted the buffer is flushed for all events with timestamp � � , resulting in a number of
modifications to the model. After this point the set of local events with timestamp � can be executed and
the process repeated. Figures 5 and 6 shows this algorithm in a more detailed format. From a modelling
perspective the only modifications that need to be made for use of this distributed schedule is to obtain a
reference to an instance of the HLA REPAST class DistributedSchedulewhich can then be populated
transparently as a standard Schedule instance.

The only further requirement was that linked to I/O and to the accurate representation of the current
simulation time (known in RePast as the ‘tick’). In standard RePast, display updating and data collection

�
This architecture can be seen as an extension of the general ’ambassador’ scheme employed by the HLA (see [19] for more

detail).�
Throughout this section the term ’middleware’ refers to the HLA REPAST system in general, but where it is used in reference to

a service accessed by the model it can be considered synonymous with this LocalManager class.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 9

external buffer

local schedule

schedule

RTI populates
external buffer
with updates

Events from local schedule
and external buffer modify
state

Local events trigger
HLA update messages
sent to RTI

RTI

Model

Executive

STATE

Figure 5. The HLA REPAST Model-Executive Interface (A Single HLA REPAST Federate)

are simply performed through BasicAction instances inserted in to the schedule. In the distributed
situation this is unacceptable, as a local I/O action would be executed at a point at which the model was
accurate for local events to some time � while only being accurate for external events � � � . The solution
is to provide a ‘safe’ slot for the execution of a single BasicAction to perform ‘end-of-tick’ actions such
as these. The correct position for this slot in the algorithm described above is immediately after the flushing
of the external event buffer but before the execution of the proceeding local events. Executing here ensures
that the model is correct for all local and external events up to time � � � and no further. The scheme here
described ensures transparent interaction between the model and executive vis-a-vis scheduling to achieve
synchronisation in a federation such as that depicted in figure 3. Comparing figures 2 and 5 it can be seen
how the flow of events in and out of an individual federate appears the same from the RePast perspective
but from a global perspective has been integrated with the rest of the federation.

5.3. Mapping the State-Representations

As mentioned above, the structure of RePast itself dictates that the middleware, as a system for
communicating state changes to the HLA, cannot operate solely at the level of the scheduling system.
It was determined that the state-representation itself would have to take responsibility to ensure the
communication of events when necessary and do so in a consistent and reliable way. Realising this
required two mechanisms: firstly, a way of ensuring that the middleware receives notification of state
changes in the model, and secondly, a way of translating from the Java expression to an HLA
UPDATE ATTRIBUTE VALUES invocation.

�
This problem of establishing I/O safepoints is similar to the problem of establishing such safepoints in optimistic simulation

where it is more frequently reffered to as the problem of establishing Global-Virtual-Time (GVT). An implementation of a GVT
control system is the TimeWarp kernel [8].

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



10 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

���
new DistributedSchedule� �
external event queue

populate
�

with local events
while simulation running do
��� � � � lowest timestamp in

�
� ��� �
	 ��� ������ ��� � ���
while not granted to ��� � � � � do

invoke NEXT EVENT REQUEST ( ��� � � � � )
//This will populate

�
with external events with ��� � ��� � � � �

while
������ do

deque and execute(
�

)
end while

end while
//no more events with ��� � ��� � � can now be recieved
execute I/O action with ����� ��� � � � �
���! ��� � � � � � ��� � �
while

�"���� do
deque and execute(

�
)

//If I/O occurs now model is only correct for local events, not remote ones
end while

end while

Figure 6. Integration of the RePast schedule

5.3.1. The PublicObject scheme

The second requirement above was in fact a more trivial one and required simply some formal scheme for
the translation. This was based largely on the system described in section 5.4. The mechanism to ensure
complete notification, whilst retaining the highest possible level of transparency, was far more complicated.
Three general schemes were investigated:

� Libraries. The first scheme provides library services, which are manually accessed by the model.
The modeller is responsible for keeping track of the handles of variables and for passing � handle,
value � tuples to these services as updates occur. This scheme effectively presents a simplified
version of the HLA interface to the model and it is flexible, but it is wholly opaque from the
modeller’s perspective.

� Tracking. This scheme tracks the values of variables manually in the middleware. This would require
some initial registration of all variables in the model, a means of accessing the value periodically
and some way for the model to notify the executive of the appearance of new attributes or the
disappearance of old ones. With these mechanisms in place, it is simply a question of copying the
values at the beginning of each tick, noting any external updates during the tick, then checking the
values against the copy at the end of the tick. Any values that are inconsistent with their copies
and have not experienced an external update will then have updates sent for them. This is the most
transparent scheme in principle, but it has no way of constraining the updating of attribute values.
It is therefore impossible to implement the attribute synchronisation schemes critical to the run-time
transparency of the system at large (see section 5.4).

� Registration.The final scheme is a compromise between the first two and relies very much on
constraining the model to behave in as HLA-like a way as possible. The modeller registers
new objects with the middleware, which provide access to a set of variables, which in turn are
considered its ‘public interface’, viewable by the entire federation. These variables are wrappers
around primitive types, which can only be accessed through an ‘access’ and ‘update’ protocol. Upon

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 11

Model

Instances

Position

Color

Age

update()

UPDATE_ATTRIBUTE_VALUES(...)

LocalManager

Figure 7. PublicObject/PublicVariable Paradigm

updating of an variable, the code in the update wrapper executes, notifying the RTI of this update.
This is the scheme that was implemented in the system.

To more precisely specify the implementation of the scheme defined above, the model can register
instances of any subclass of the PublicObject class. This class defines the mechanisms for the
middleware to access the public interface of the object. The interface is defined by the model as a set
of instances of the PublicVariable class. This class (and its subclasses) define the wrappers around
primitives as mentioned above. Upon registration with the middleware, these instances are passed a
reference to the LocalManager, which they then access upon an invocation of update(), in order
to ensure the update is reflected throughout the federation. This mechanism is depicted in figure 7.

From the perspective of the middleware, this scheme results in simulation entities, which are expressed
in a very similar manner to those found in other HLA-interfacing executives, such as [16]. By defining
this structural protocol to which ‘public’ objects must conform, this approach brings RePast slightly closer
to an HLA-like modelling architecture, wherein models are defined strictly in terms of objects and their
attributes.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



12 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

At the other federates, update of attribute values is received by the REFLECT ATTRIBUTE VALUES

RTI callback � . These events are translated by the middleware into modifications of some extant
PublicVariable instance. These instances will be member variables of either a PublicObject or
a RemoteObject instance (see below), both these classes provide the same interface to the middleware,
this being a ‘public’ interface of a set of PublicVariable objects. Updates to variable values are
therefore handled by accessing the appropriate PublicObject or RemoteObject instance, obtaining
the correct PublicVariable from its public interface, and updating the underlying value.
PublicObject instances are instantiated by the local RePast model, while RemoteObject

instances are instantiated by the middleware itself, on receipt of a DISCOVER OBJECT INSTANCE callback.
The objects resulting from this process are then maintained by the middleware and stored in a datastructure
termed a ReflectedList, one instance of this class exists for each class in the local FOM (see section
5.3.2). The population of this list changes in response to the receipt of callbacks to discover or remove
remote instances. The ReflectedList for a specific class of remote object can be retrieved by the local
model through a call on the LocalManager; the model then keeps a reference to the object and observes
insertions and deletions from it, as new instances are created or deleted elsewhere.

Note, with reference to section 5.2, that the integration of the RePast scheduling system is not in fact
performed at the event-scheduling level. Since an event is generated by the local federate in response to
an operation performed on a PublicVariable instance, there no longer exists any canonical mapping
between events extant in the RePast scheduler and events that are eventually dispatched to the RTI. The
removal of this canonical mapping solves the issues resulting from the distinction between the HLA concept
of a ‘discrete event’ and that derived from RePast’s scheduling system.

5.3.2. FOM creation

Before the mechanism described in 5.3.1 can operate, the simulation classes defined by the model must be
expressed at initialisation time in the FOM. This demands either that the modeller create a ‘.fed’ file � , or
that it be created for them. Given that the existing scheme of PublicObject and PublicVariable
provides the middleware with a natural mapping from the Java types present in the model at run-time to
an HLA expression of these types, it is logical to create the FOM automatically, further increasing the
transparency of the system.

At initialisation time, each federate presents a set of object classes to the executive. The inheritance
relationships within this set are determined using Java’s reflection facilities and are parsed in to a local
view of the FOM ( ���
�������
	�� ). The goal after this point is to integrate these local FOMs in to a single
global FOM, which can be used to instantiate the actual federation. To achieve this the federates first
participate in a bootstrapping federation (� �!�	� �  �	� ). Within the bootstrapping federation the federates
first elect a leader, which, once elected, collects all local FOMs and merges them in to a single global FOM
( ���
����������	�� ), returning this to all other federates. The full algorithm is given in figure 8.

5.3.3. Deletion of Objects

The final building block of state-modelling that must be accounted for is the deletion of objects. In the
HLA the removal of an object from the simulation is an explicit event with a well defined semantic: the
DELETE OBJECT INSTANCE service. In RePast the situation is far more ambiguous, as with many other
things, deletion is a matter for the model itself, rather than the executive. As with value updates, there
is no ‘hook’ for object deletion on which to hang RTI notification code. Further than this even, unlike
value updates in which the low-level semantic is clear (i.e. a change to a variable value represents a state-
transition in the model), object removal is an event for which the semantic is far harder to define. Some

�
Note that REFLECT ATTRIBUTE VALUES and DISCOVER OBJECT INSTANCE are events and, as such, are only received between

a federate call to NEXT EVENT REQUEST and an RTI callback of TIME ADVANCE GRANT.�
The .fed format is the file format for the expression of a federation’s FOM. It is a hierarchically structured class definition

schema. The RTI1.3 version used for the HLA REPAST system employs a bespoke nested mark-up language, HLA 1516 - the recently
established IEEE standard - employs an xml encoding in its place, see [19] and [1] for further details.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 13

���
����� �
	�� � � � ���	� �  ��� � � �!� �	� ��� � � � � � ���	� � ��� � �
� � �  �	��� � ����� � � � � ���	� � � � �  �	��� � ����� �
CREATE FEDERATION EXECUTION(� �!�	� �  �	� )
if creation successful then� ������� � � � � � ��� �
else� ������� � � � �������
end if
JOIN FEDERATION EXECUTION(� �!�	� �  �	� )
if � ������� ����� ������� then

REGISTER OBJECT INSTANCE( ���
�������
	�� )
UPDATE ATTRIBUTE VALUES ( ���
�������
	�� )
wait for receipt of ���
����������	��

else� �	����� �	�  ��� ��� � ���

while � �	����� � �  � � ���	� � � � �  �	��� � ����� � do
wait for receipt of ���
�����	� �  �



� �	����� � �  ��� ���	� � � �	����� � �  ��� ���	� � �

end while
���
������� ��	�� � ���
�����	� �  �

��
����� ���
�����	� �  �




REGISTER OBJECT INSTANCE( ���
��� � ����	�� )
UPDATE ATTRIBUTE VALUES ( ���
� � � ����	�� )

end if
RESIGN FEDERATION EXECUTION(� �!�	� �  �	� )
if � ������� ��� � � � ��� � then

CREATE FEDERATION EXECUTION(  �	����� � � )
end if
JOIN FEDERATION EXECUTION(  �	� ��� � � )

Figure 8. Algorithm for automatic FOM generation

models, for example, may remove objects from some master list, which is then reflected on the environment
each tick; others may remove objects from some environmental datastructure; others still may simply set
some variable belonging to the object itself to denote the end of participation in the model. It is therefore a
far more taxing problem than the other issues of this kind addressed by HLA REPAST.

An attractive starting point is to observe that although Java contains no explicit object destructor, it does
include an internal memory reclamation system. Through interaction with this system, one can embed code
to execute upon the reclamation of an object. While this seems an attractive (and most importantly, wholly
transparent) solution to the issue of object deletion, it is based on the assumption that the model view of
an object lifecylce will be identical to the Java view. The allusion here is to objects, which are extant in
model code despite being semantically removed from the model. Examples of such objects are references
in event-listeners, caches in data loggers, ‘self’ references in object code, or (perhaps most perniciously of
all) references to objects in the environment held in the datastructures modelling the cognitive processes
of agents. The general problem of resolving the semantics of object deletion is an ongoing research issue
in this project and is anticipated to contribute substantially to interoperability work between HLA REPAST

and other HLA-interfacing platforms (see section 8).
There are two viable alterntives to exploiting this internal system. The first is to equip the

PublicObject and RemoteObject classes with the explicit destructors, which Java lacks. This option
is both viable and would effectively solve all object-deletion issues internal to the middleware, there is,

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



14 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

Federate A Federate B
updates attribute � of instance � ( � 	 ) to � at ��� updates � 	 to � at ���
Variable object �

	 at Federate A ( ��� 	 ) invokes
UPDATE ATTRIBUTE VALUES ( � )

���
	 invokes UPDATE ATTRIBUTE VALUES ( � )

Federate A receives REFLECT ATTRIBUTE VALUES

callback for � � 	 with new value of �
Federate B receives REFLECT ATTRIBUTE VALUES

for � � 	 with new value of ��
	
� � despite being updated to � �

	
� � despite being updated to �

Table I. The Dangers of Unconstrained Attribute Updates

however, the serious problem of transparency, which this solution raises. The other alternative is to simply
ignore the issue all together, stipulating that all inter-model communication should be undertaken using
the variable system provided. None of these solutions is seen as optimal but the current implementation
of HLA REPAST has used explicit destructors as a stopgap solution pending further investigation of likely
modelling paradigms and the correlation of this with the most appropriate scheme for deletion-detection.

5.4. Conflict Resolution for Shared Variables

The scheme thus far described ensures that any object registered to the LocalManagerwill have its local
updates sent to the RTI and will remain synchronised with remote updates occurring on RemoteObject
proxies of itself. This system does, therefore, realise the fundamentals of communication between RePast
instances, which is the basis of the architecture. It does, however, lack the sophistication necessary for
modelling complex interactions between simulation entities, where the particular semantic of an attribute
update may require that the number and provenance of such updates are constrained in some way.

To demonstrate why this is true consider the sequence of interactions between two federates described
in table I.

An object, for example, cannot be picked up by two separate entities during the same timestep, as this
very act by the first entity invalidates the pre-conditions of the act by the second � .

The HLA’s ownership management services provide general solutions for consistency problems such
as this. The simple principle is that only the federate, which owns a given variable may invoke
UPDATE ATTRIBUTE VALUES services upon for that variable. Ownership can be ‘divested’ to the RTI,
from which it can be reclaimed by another federate � .

In HLA REPAST, ownership management is used to implement a set of variable-types, which provide
the various semantic behaviours required by agent models, and which are described in table II. Using the
ownership management services, the implementation of these semantics is relatively straightforward. The
general mechanism is to default all ownership of variables to the RTI itself, ownership is then acquired on
a ‘pull-only’ basis. Three different types of variables are distinguished

�
, namely exclusive, cumulative and

viewable, as described in table II.
In this discussion of conflict resolution we refer to concurrent updates with the notion of logical-

time concurrency. The HLA’s ownership management services, which we use to implement our conflict
resolution algorithms, use instead the notion of real-time concurrency - they prevent concurrent real-time
ownership of a single variable by more than one federate. Because of this notional inconsistency, two

�
Note that were both entities in this example being modelled at the same federate, the event would automatically take effect and

hence the model’s own logic would prevent the inconsistency. The conflict-resolution system described simply ensures that potentially
conflicting updates only ever occur between entities at the same federate.�

Although HLA does have in-built support for negotiated divestiture between federates where the RTI is never involved, these
services are not used in HLA REPAST and will therefore not be discussed further.�

Note that the given taxonomy for variable types is not necessarily complete. Their may exist a hybrid type variable. Consider,
for example, a cake. Initially everyone can modify the size of the cake concurrently without violating any preconditions - the size
variable is therefore semantically cumulative. However, at the point at which the cake is all gone the last piece cannot be taken by
two people, so it suddenly acquires an exclusive semantic. To satisfy this form of variable semantic it must be possible to modify the
global type of a variable in full synchronisation with accesses to that variable, this is considered ongoing research.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 15

Type Semantic Implementation
Exclusive May only be updated by one federate at a given

logical time. This prevents situations occuring
where an initial update invalidates a precondition
for a second event occurring, but (because the
second event occurs at the same logical time) the
invalidation is not reported to other federates in
time to prevent them allowing the second event to
occur. (e.g. a door object with a variable open,
this must be modelled as an exclusive variable as
the precondition for opening (or closing) a door is
that it is closed (or open), this precondition being
violated by the action itself )

request ownership from RTI
if (acquisition successful)

update value
else

throw exception
wait for end of � � ���
divest ownership to RTI

Cumulative May be updated cumulatively by one federate
at a time, updates are only ever permissible
as adjustments relative to the current value as
opposed to assignments of an absolute value. This
would be necessary in situations where many
entities at disparate federates need to modify the
value of some variable at the same logical time.
(e.g. a stack of pennies with a variable height,
this variable must be modelled as a cumulative
variable as placing a penny on a stack is not an
operation which invalidates its own precondition)

while (attribute not owned)
request ownership from RTI

accumulate value
divest ownership to RTI

Viewable May only ever be updated by one federate during
the entire federation execution. This semantic is
required for attributes that can only be modified by
the entity to which they belong. (e.g a chameleon
with a variable color, note that this type of
variable could be modelled as any of the three
types, as it requires no special constraint, however
the executive can minimise the communication
and synchronisation necessary for a variable if it
can guarantee it will only be modified at the local
model.)

if (attribute of local object)
update value

else
throw exception

Table II. Variable Semantics and their Implementations

potential problems exist for logical-time conflict resolution systems based on the ownership management
services of the HLA � :

1. Two federates at different points in real time may make requests for ownership with the same logical
times. In this situation both federates will be granted ownership, even though a system respectful
of logical-time concurrency should detect this conflict and grant ownership to only one of the two
requests.

2. Two federates at different logical times may request owernship of the same variable at the same
real-time. In this situation one of the federates will experience an erroneous conflict detection.

�
Note that these are not general problems of scheduling or state mapping. They are problems which only arise due to our interest

in providing conflict resolution at the middleware layer. If logical-time mutual exclusion could be guaranteed at the application layer
then the mechanisms already described for schedule- and state-mapping would be sufficient.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



16 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

At present in HLA REPAST we avoid the first problem through the architecture of the scheduling system
itself. To demonstrate this we will consider the example of the algorithm used to implement the exclusive
semantic. In the current algorithm a federate, upon receiving ownership of a variable at ��� , will not release
it until it is granted time advance to a time � ��� . This being true, as long as we can ensure the property
that no other federate will execute events at ��� after the first federate is granted to � ��� in real-time, then
we can ensure that only one federate will actually be granted ownership of the variable at ��� throughout
simulation execution. From the time-advance algorithm given in figure 6 and from the guarantees given by
the HLA’s time-management services, we can observe that our current scheduling algorithm does, indeed
have this property. To put this more formally: consider a federate � 	 , assume that � 	 will modify some
variable � at (logical) time ��� . At some point in real time, � 	 requests advance to ��� . Because we use
conservative time advance with a 0 lookahead, the RTI will not send a time advance grant of � � to � 	 until
all other federates have requested advance to

� � � . At this point two possible scenarios exist:

1. There is no other federate in the federation with an event scheduled for ���
2. There is some number of federates with an event at ��� . Zero, one, or more of these events may

modify � .

In the first scenario � 	 will receive a grant to � � only once all other federates have requested advance to a
time � � � . Because our time advance system is strictly monotonic, � 	 will be the only federate which can
ever request ownership of � at � � during this execution. In the second scenario � 	 will only be granted to
� � once (in real-time) all other federates have requested advance to a time

� � � . After this point assuming
� 	 is the first federate (in real time) to request ownership of � and is therefore successful, it will then not
divest ownership until receiving a time advance grant to a time � ��� . Following a similar logic to above
we can show that this will not occur until all other federates have requested advance to some time � ���
and can therefore not legally request ownership of � with timestamp ��� .

At present there is no reliable and transparent system in HLA REPAST for avoiding occurences of the
second problem stated above, that of erroneous conflicts due to requests from federates at different logical
times at the same real time. In general the problem will not manifest itself, simply because no federate can
execute events at a time � ��� if some other federate is at ��� . The only events that can legally be executed
in this situation are events at a time

� ��� , and no federate will be permitted to advance beyond ��� while
there exists some federate which has not requested advance beyond � � . However, following on from the
scenario envisaged above, when the RTI sends time advance grants to all federates to time � � � , � 	 will
divest ownership of � , however this will not happen instantaneously and there will be a period during which
the other federates may issue ownership requests for � with timestamp � � � which will be denied because
� 	 has not yet divested ownership. Mecahnisms for guaranteeing this second problem cannot manifest
itself in this way are issues for future research.

6. An Example Model - The Tileworld

In order to evaluate HLA REPAST, an implementation of the popular agent simulation-testbed Tileworld
was developed. A sequential model was first implemented, using standard RePast. This model was then
distributed using the middleware and modification of the model’s code � .

The Tileworld, introduced in [20], is a grid-based domain containing obstacles (which agents must
navigate), tiles (which agents can pick-up), and holes (which agents can drop tiles in to). The goal of the
domain is for the agent to score as many points as possible by filling holes with tiles. The greater the initial
depth of the hole, the greater the score available for filling it. Figure 6 shows an example of Tileworld, with
two agents in a 20x20 environment. There are a number of reasons why Tileworld is a pertinent testbed for
this system, these are largely the same reasons for Tileworld’s general popularity in the agents modelling
community. The inherent dynamism of the model in terms of rapid (and adjustable) object creation and

�
The sequential model was developed prior to the development of the middleware itself and uses modelling paradigms similar to

a number of existing independent RePast models. These measures were taken to evaluate the system in as credible a usage scenario
as possible.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 17

A

A

T

A

H

H

H

T

T

T T

T

T T

T

:agent T :tile

H

H :hole

Figure 9. A 20x20 Tileworld

deletion make it useful for analysing the registration and removal mechanisms of HLA REPAST. The
parameterisability of the domain gives it flexibility when analysing the effects on performance of such
parameters as model size, agent architecture, modes of interaction, etc. Finally, Tileworld is a domain rich
in conflict, with a high frequency of conflicting tile-pickups and hole-fills between agents.

6.1. Sequential Tileworld

The key classes, which comprise the implementation of the sequential Tileworld are detailed below, while
the specifics of their attributes and types are given in table III; the distributed versions of these details
are also given for comparison. The three environmental object types; Terrain, Tile and Hole are very
simple objects whose state (position, age, depth, etc) is maintained by a single instance of the TileWorld
class. The Agent class holds a reference to this instance and invokes methods on it in order to move
through the environment and interact with its contents. The Agent object itself is internally highly
complex. Its structure is divided in to motive and cognitive components, as demonstrated in figure 10.
Both these components are themselves compositions of many interacting objects, such as long- and short-
term planners, deliberators and, importantly, snapshots of the environment, gathered during the continuous
process of perception. These snapshots themselves are copies of the environment at some point in the past
and, as such, are composed of patterns of Tile and Hole objects.

6.2. Distributing Tileworld

When assessing the level of transparency provided by the middleware, the key concern was the extent to
which the logic of the model had to be modified. The actual units of transaction (i.e. whether a variable is
a variable object or an integer) is of less consequence as these modifications will be relatively trivial. By
comparison, having to modify the algorithms and interactions, which drive the model is a major task, and

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



18 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

Agent
current_score

X_Position

Y_Position

Motive Functions

Cognitive Functions

(snapshots)

Visible Members

Figure 10. A Tileworld Agent’s Internal Structure

one which scales in proportion to the complexity of the model. The reimplementation detailed in table III
should therefore be considered in the context of this measurement.

6.2.1. Conflict Resolution

As explained in section 4, one of the areas in which a model’s logic may have to be altered to achieve
distribution is that of conflict resolution. In the case of Tileworld, conflict resolution was needed to handle
the possibility of simultaneous tile-pickup or hole-fill operations. It was generally assumed during the
development of the middleware that conflict resolution would be one of the most arduous development tasks
during re-implementation of an existing model. However, in the case of our implementation of Tileworld,
there already existed a protocol for interaction between agent and environment. Conflict detection was
simply integrated in to this existing protocol. To give an example of the existing protocol and how it was
modified, we consider the exclusive-semantic applied to the action of picking up a Tile object. Where the
� �  ���� � � ������� � � ����� method of the TileWorld class previously threw an exception if the agent was not in
the correct position, in the distributed version the same exception is thrown in response to notification that
the federate has been excluded from ownership by the middleware. Although it is therefore necessary to
modify the internal mechanisms of individual object classes, the interface these classes still present to the
model at large is essentially identical.

In general, for HLA REPAST it has been hypothesised that there exists a correlation (for any reasonably
well-behaved model) between the complexity of the sequential model, and the likelehood that it will already

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 19

Class Public Interface ( RePast model) Public Interface (HLA REPAST

model)
Terrain int X Position

int Y Position
ViewablePoint position

Tile int X Position
int Y Position
int age

ExclusivePoint position
ExclusiveBoolean is held

Hole int X Position
int Y Position
int initial depth
int current depth
int age

ViewablePoint position
ViewableInteger init depth
CumulativeInteger curr depth
ExclusiveBoolean is full
ViewableInteger age

Agent int X Position
int Y Position
int current score
Tile held tile

ViewablePoint position
ViewableInteger currentScore

Table III. Sequential Tileworld - Classes and Attributes

employ such a protocol for interaction between agent and environment. In simplistic models, where such
a protocol is less likely to exist, the simplicity of the model will minimise the hardship of modifying it for
conflict resolution. It is therefore anticipated that this coincident fact will generally minimise the impact
of conflict resolution on transprency, although an empirical survey of modelling paradigms is required to
justify this assumption.

6.2.2. Object Deletion and the Internalisation of State

The general theme for the modifications so far discussed was to ‘internalise’ the representation of object-
state as far as possible. Where previously the ‘held’ status of a tile was represented purely by its external
situation (i.e. whether it was held in some slot in the environment datastructure or whether it was held
in the slot of some Agent entity), it is now represented explicitly by the internal state values of the
object. To clarify this, the reader should refer back to table III, noting how the tile’s ’held’ status is
represented externally in the left-hand column (as the Agent’s held tile variable), and internally in the right-
hand column (as the Tile’s is held variable). Externally defined state is not something that the variables
system described in section 5.3 can easily communicate, hence any externally represented state with global
significance must be internalised.

A similar case is encountered for object deletion where, as outlined in section 5.3.3, only certain
representations of deletion are feasibly communicable and/or detectable by the middleware. Using
the reference tracking mechanism, models which allow program-extant references to objects that are
conceptually deleted from the model, must arrange some other mechanism for detecting the remote
‘deletion’ of these objects. The sequential Tileworld model did allow such reference states to occur in
the form of the ‘snapshots’ extant in the memory of the agents, as mentioned in section 6.1. This fact made
it impossible, without major modifications to the cognitive functions of the agent, to use the reference
tracking mechanism and forced the implementation of deletion-tracking at the model-level. The general
point is whether other, or even the majority of models will allow references to enter such a state, and
whether the scheme is generally infeasible for modelling languages that rely heavily on references as an
internal mechanism. These questions are considered open topics of investigation at this time.

Generally the implemented system can only report model-state that it can observe. Programmatically
this is defined as anything provided to it by the public-interface of the object-classes. It is therefore the

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



20 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

1: check for obstacle at ( 
 � � 
�� )
2: remove agent from grid( � � ����� )
3: place agent in grid( 
 � � 
�� )
4: update agent.position to ( 
 � � 
�� )

Figure 11. Semantically Dependant Steps in a RePast Event

responsibility of the modeller to ensure that state-changes of global significance are always explicitly
represented internally, rather than implied by more subtle relationships between objects.

6.2.3. Contextualising External Events

In sequential Tileworld events of global significance (e.g. an object moving) occur as single elements of
larger, semantically related procedures. For instance, an agent moving from ( � � ����� ) to ( 
 � � 
�� ) involves the
steps shown in figure 11.

In a sequential model these steps can be atomized to prevent inconsistency, simply by placing all steps in
a single commit/abort style procedure. In the distributed version, events such as these occur disjoint from
their semantic context, arriving simply as object additions/deletions or as attribute value changes. To refer
back to the example of figure 11, a remote federate observing objects of the class Agent would see only
step 4 of the operation and would need some way of understanding that steps 2 and 3 are implied by step 4
and therefore must be ’filled-in’ at the local model.

Two general measures can be used to re-establish model-consistency. One option, similar to the notion
of an I/O event (see section 5.2), is to have a general ‘consolidation’ event, which executes after the
middleware has flushed the external event-queue. Once all remote events for a particular time have been
processed, the model is scanned for any resultant inconsistencies (for example the agent in figure 11
remains in at grid( � � � � � )) and realigns the model to reflect the global state. This approach, although
reliable, is extremely inefficient, particularly for models where the number of potential inconsistencies (and
hence the magnitude of the scan � ) is large in comparison to the number of actual inconsistencies caused by
external events. The preferable approach is to provide some mechanism for model-specific event-handlers
for discovery, removal and update events. In this manner all events can be contextualised with maximum
efficiency. In the example of figure 11 an event handler would be registered to the positional attribute of
each agent, which executed steps 2 and 3 when an update occured. Listeners can also be registered to
ReflectedList instances in order to listen for object discoveries and deletions - for example, to place
a new object in the grid at the correct position.

Given certain design patterns this appraoch can produce inconsistencies. Events in this system can be
viewed as a cascade, with each node in the cascade representing one of three types of event, as shown
in figure 12. Generally, the purpose of consolidation event-handlers is to re-structure the local model in
response to external events. In this sense the cascade below the root event will usually consist only of
local-type nodes. As is shown in the example, instability is introduced where the cascade contains external
output-type nodes. The given scenario actually shows the pathalogical case that is clearly an incorrect
usage. Here the system is responding to an incoming event by generating a semantically identical event.
Because neither the HLA nor the HLA REPAST system has any way to determine that this second event
is a duplicate, it will be treated exactly the same as the first, creating an infinite loop between the two
federates. This scenario is plainly a logic error. A more pernicious scenario is presented in figure 13,
where a consolidation cascade that, from the local perspective, seems rational, is revealed as unstable

�
Note that this magnitude is also determined by the complexity of the relationships between entities. Where there is only a single-

dimension of consistency (i.e. as in this example of object-position) the scan’s size is proportional to the number of entities. Where
there are multiple dimensions of consistency the scan’s size increases exponentially, an example of this is an n-dimensional graph
where the consistency of � vertices must be checked against all other vertices through � dimensions, giving a scan size of �

�
� .

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 21

FED_1

FED_2
Time

agent position:

(Ax,Ay) −> (Bx,By)

agent position:

(Ax,Ay) −> (Bx,By)

remove agent:

tileworld(Ax,Ay)

insert agent:

tileworld(Bx,By)

Figure 12. Example of an unstable event cascade. The second position update is erroneous.

toast.brownness += 10

toaster = on

toaster = on

FED_1

FED_2
Time

handle = down

toast.brownness += 10

toast.brownness += 10

Figure 13. Example of an idempotence-violating cascade. Again the second update is erroneous.

when viewed from a global context. Here the ’brown-ness’ of the toast experiences a second, erroneous
modification. It should be noted that this scenario is only of danger to non-idempotent variables, such as
cumulative variables, or toggle-like variables, for exclusive variables, idempotence is guaranteed by the
semantics. The dangers of logic-errors in cascades presented here are part of the motivation for the creation
of reliable design patterns for HLA REPAST models discussed in section 8.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



22 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

7. Performance

This paper has so far largely been concerned with the engineering challenge of mapping between a
sequential and a distributed simulation platform. As section 1 explains, one of the key motivations for
doing this was to enable the computation of large simulations on reasonable time scales. This section
evaluates the system from a scalability perspective. This evaluation was undertaken by a direct comparison
of the sequential and distributed implementations of Tileworld.

Experiments were run on a 42 processor cluster of 1.6GHz 1900+ AMD CPUs with 1GB of main
memory, interconnected by a 100 Mbps ethernet switch. The NG RTI version 1.3 for Linux RedHat 7.2
was used in conjunction with the attendant Java bindings. Of the 42 processors available a maximum of 32
were used at any given time.

In all experiments we used two types of federate: the environment federate, which simulated the objects
in the tileworld (holes, tiles and obstacles); and the agent federate, which simulated some number of agents,
depending on the particular experimental setup.

The experiments varied two model parameters, namely the total number of agents - determining
computational complexity - and the rate at which each agent interacted with the environment - determining
the beuraucratic workload on the middleware. Other parameters remained static: a 50x50 grid with an
obstacle density of 0.15 � , a tile-generation probability of 0.05 and a hole-generation probablity of 0.02 � .
All runs were executed over 1000 modelling cycles.

Two general strategies for experimentation were followed, both focused purely on elapsed time as a
performance metric.

The first strategy, depicted in figures 14(a) and 14(b), was to scale the computational power available
(i.e. the number of nodes) in line with the computational complexity of the model (i.e. the number of
agents to be modelled). The complexity of the sequential case is also scaled but in this case the access to
computational resources is static (i.e. one node).

This scenario was implemented by having all agent federates instantiate only a single agent, then varying
the number of federates at each run. As can be seen, initially in the case of a single agent federate the
overhead of network communication and middleware beuraucracy was distinct, with the distributed run
executing approximately 10 times slower. As the computational load on the sequential model increases
with the number of agents, the execution times increase in a linear manner. The distributed version stays
almost constant in comparison, with the computation for

�
agents always being distributed across

�
nodes, the gradual rise that can be perceived in the distributed case is a manifestation of the central RTI
component acting as a bottleneck.

In each figure we observe a point of intersection of the two lines, denoting the level of complexity
beyond which distribution becomes advantageous. Note that the precise location of this intersection on
the complexity axis depends on the type of agent being modelled

�
. As was speculated in [16], from a

distributed perspective computationally intensive agents are CPU-bound while reactive (or ‘lightweight’)
agents are network-bound. This observation is based on the simple principle that, since computationally
intensive agents spend more time ‘thinking’ and less time ‘acting’, they will cause less globally significant
events (such as picking up a tile) and hence less network communication over a given real-time interval.
We therefore observe that this intersection occurs early - around 14 agents - on the graph for a model using
computationally intensive agents, while it occurs comparatively late - around 27 agents - on the graph for
a model using simplistic, reactive agents.

The second experimental method was to keep a constant level of complexity while varying the
computational resources available. In this vein the number of agents modelled in each run was kept at
a constant. Each run used a different number of federates to distribute this model, starting with one agent-

�
Being the probability of a given square being occupied by an obstacle.�
These being the probability at any given time step that a new object will be created in the model. The ageing rate of objects was

set to a corresponding level.�
Note that these two figures also vary in the ‘smoothness’ of the distributed graph. This is largely a function of the fact that the

magnitude of the computation performed by an individual deliberative agent is not a constant (as with the reactive case) but varies
according to more complex determinants

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 23

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1 2 4 8 16 32

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

Number of Agents

distributed sequential

(a) Elapsed Time for 1-32 Computationally Intensive Agents with
Scaling Resource Availability

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1 2 4 8 16 32

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

Number of Agents

distributed sequential

(b) Elapsed Time for 1-32 Reactive Agents with Scaling Resource
Availability

Figure 14. Tileworld with Scaling Resource Availability

federate, then scaling up incrementally to end with enough federates to provide one node per-agent � . The
results for 32- and 64-agent models are given in figures 15(a) and 15(b), in both these figures the line
representing sequential performance extends across the � axis as a reference.

As expected the benefit of distribution is initially sharp, with this benefit levelling off as the magnitude of
distribution increases and the RTI spends more time engaged in communication and synchronisation. The
figures show that, even with small distributed resources (between 2 and 4 nodes), distribution will improve
the performance of the very complex models such as these.

One aspect of figure 15 seems, at first, anomalous. Namely that the initial height of the distributed
curve for figure 15(b) (64 agents) is far less than twice that of the distributed curve in figure 15(a) (32

�
Clearly in the case of the 64-agent model our 42-node cluster could not provide for a 64-node federation, the 64-agent model

therefore also uses just 32 nodes, with 2 agents at each agent federate.

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



24 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 16 32

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

Number of Nodes

distributed sequential

(a) Elapsed Time for 32 Computationally Intensive Agents with
Varying Resource Availability

 0

 500

 1000

 1500

 2000

 2500

1 2 4 8 16 32

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

Number of Nodes

distributed sequential

(b) Elapsed Time for 64 Computationally Intensive Agents with
Varying Resource Availability

Figure 15. Tileworld with Static Resource Availability

agents). This is further evidence of the extent to which HLA REPAST is a communication-bound system. If
(approximately) doubling the computation required only causes only a small ( �

�����
) increase in elapsed

time, we can deduce that in both cases the majority of time is spent performing actions common to both
cases. The only common actions are the basic simulation infrastrure procedures of the HLA REPAST layer:
initialisation; time advance; and ownership request/divestiture.

Another possible factor falls out of the observation above, that ‘internal’ agent actions (those that modify
only private variables of the agent) are less expensive per-operation in a distributed context than ‘external’
actions (those that modify one or more public variables, such as the agent’s position or the state of some
object in the environment). Analysis of the actual events occurring in executions of the models revealed that
the number of tiles and holes in the 64-agent model was being reduced to 0 (as they were picked up/filled
by the agents) at a far quicker pace than in the 32-agent model. In the context of performance it can be
seen that a model which is very quickly stripped of all tiles and holes, and hence all means for producing

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



DISTRIBUTED REPAST SIMULATION WITH HLA 25

an ‘external’ event, will thereafter indulge in far less network communication and hence will execute in a
shorter time.

These factors explain why the elapsed times are similar throughout the experiments for both the 32 and
the 64 agent cases.

8. Conclusions and Future Work

This paper has presented the interoperability middleware HLA REPAST. This system constitutes an
approach to the distribution and interoperation of agent-modelling platforms utilising the HLA
interoperability framework. The paper has discussed the design issues involved in constructing such a
middleware in general and has provided an example of the steps necessary to distribute an existing
sequential model.

Our experiments confirm that significant speedup of large simulation models can be achieved by
distribution using this system, this being particularly acute in the case of computation bound agents.

From the discussion of the modifications made to the RePast executive in section 5, one can derive some
general conclusions. The level of constraint present in the structure of a sequential executive determines
the level of transparency that will remain between the model and modified executive. To give an example
from HLA REPAST, where the RePast executive demonstrated a high level of structural constraint (e.g. in
the event scheduling system described in section 5.2), the modifications made were able to retain a wholly
transparent interface between model and executive. Where the RePast executive demonstrated little or no
structural constraint (e.g. in the definition of model representation), transparency was lost as some order
had to be enforced over the model’s internal expression of externally significant events.

A logical extension to the firm constraints placed on a model by HLA REPAST is to define a set of looser
modelling guidelines designed to ease the transition of a model from sequential to distributed. Such a set
of guidelines may include such nebulous concerns as an adherence to a general object oriented paradigm,
to specifics such as ensuring variable access occurs through a method-based protocol within the model. In
the absence of a wholly transparent model-executive interface, such primer guidelines could prove vitally
important in terms of the usability of the system from a modeller’s perspective.

Currently HLA REPAST employs no interest management beyond the simple attribute subscription
service. However, the HLA provides a far more sophisticated interest management scheme in the form of
the Data Distribution Management system (DDM). Providing the model access to some useful abstraction
of the DDM, or perhaps enabling the middleware to use this system transparently in some way, is a priority
for future development.

Another important area, which calls for further research is conflict resolution. The Ownership
Management services of HLA, based on real-time constraints, are not adequate to address logical-time
conflicts. HLA REPAST exploits the agent-environment interaction protocols already in place in RePast to
achieve conflict resolution with a minimal impact on transparency. An empirical survey of other existing
MAS modelling paradigms is required to assess the generality of this approach.

To our knowledge, the HLA AGENT system, described in [16], is the only other existing implementation
of middleware for distributing MAS simulation executives with the HLA. Considering that the primary
aim of the HLA is interoperation of simulations, the most intruiging possibility for future work is the
federation of HLA REPAST and HLA AGENT to achieve the interoperation of RePast and SIM AGENT

models. Theoretically the middleware abstraction of the actual HLA data-exchange mechanisms in both
cases will mean that all that is required is to agree on the abstract semantics of some domain to achieve
such inter-operation.

ACKNOWLEDGEMENTS

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls



26 R. MINSON, G. K. THEODOROPOULOS AND B. S. LOGAN

This work was funded by the School of Computer Science, University of Birmingham and the EPSRC research
grant No. GR/R45338/01 (PDES-MAS project

�
).

We would like to thank Mike Lees at Nottingham University, for the benefit of his experience with HLA, agent
toolkits and for sound advice on agent-architectures in general.

REFERENCES

1. IEEE 1516 (Standard for Modelling and Simulation High Level Architecture Framework and Rules), 2000.
2. RePast projects page. World Wide Web http://repast.sourceforge.net/papers/, June 2006.
3. John Anderson. A generic distributed simulation system for intelligent agent design and evaluation. In Hessam S. Sarjoughian,

François E. Cellier, Michael M. Marefat, and Jerzy W. Rozenblit, editors, Proceedings of the Tenth Conference on AI, Simulation
and Planning, AIS-2000, pages 36–44. Society for Computer Simulation International, March 2000.

4. S. M. Atkin, D. L. Westbrook, P. R. Cohen, and G. D. Jorstad. AFS and HAC: Domain general agent simulation and control. In
Jeremy Baxter and Brian Logan, editors, Software Tools for Developing Agents: Papers from the 1998 Workshop, pages 89–96.
AAAI Press, July 1998. Technical Report WS–98–10.

5. R. E. Bryant. Simulation of packet communication architecture computer systems. Computer Science Laboratory,
Massachusetts Institute of Technology, 1977.

6. K. M. Chandy and J. Misra. Distributed simulation: A case study in design and verfication of distributed programs. In IEEE
Transactions on Software Engineering, volume 5, pages 440–452, 1978.

7. Nick Collier. RePast: An Extensible Framework for Agent Simulation. http://www.econ.iastate.edu/tesfatsi/
RepastTutorial.Collier.pdf.

8. S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette. GTW: A time warp system for shared memory multiprocessors.
In 1994 Winter Simulation Conference, pages 1332–1339, December 1994.

9. Edmund H. Durfee and Thomas A. Montgomery. MICE: A flexible testbed for intelligent coordination experiements. In
Proceedings of the Ninth Distributed Artificial Intelligence Workshop, pages 25–40, September 1989.

10. Richard M. Fujimoto. Parallel and Distributed Simulation Systems. Wiley Interscience, 2000.
11. Les Gasser and Kelvin Kakugawa. MACE3J: Fast flexible distributed simulation of large, large-grain multi-agent systems. In

Proceedings of AAMAS-2002, Bologna, July 2002.
12. Dominique Groß and Barry McMullin. The Creation of Novelty in Artificial Chemistries. In Proceedings of The 8th

International Conference on the Simulation and Synthesis of Living Systems, pages 400–409. MIT Press, 2002.
13. Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent research and development. Autonomous

Agents and Multi-Agent Systems, 1(1):7–38, 1998.
14. Fredderick Kuhl, Richard. Weatherly, and Judith Dahmann. Creating Computer Simulation Systems: An Introduction to the

High Level Architecture. Prentice Hall, 1999.
15. Brian Logan and Georgios Theodoropoulos. The Distributed Simulation of Multi-Agent Systems. In Proceedings of the IEEE

- Special Issue on Agent-Oriented Software Approaches in Distributed Modelling and Simulation, 2000.
16. Brian Logan, Georgios Theodoropoulos, Michael Lees, and Tonworio Oguara. Simulating Agent-Based Systems with HLA:

The Case of SIM AGENT. PART II. In 2003 European Simulation Interoperability Workshop, pages 517–528. SISO, June 2003.
17. T. Lux and M. Marchesi. Scaling and Criticality in a Stochastic Multi-Agent Model of Financial Markets. Nature, 397:498–500,

1999.
18. Christopher J. Mackie. Studying Political Identity Formation and Change: A Testframe for Autonomous-Agent-Based

Simulations. In Annual Meeting of the Midwest Political Science Association, April 2003.
19. US Defence Modelling and Simulation Office. HLA Interface Specification, version 1.3, 1998.
20. Martha E. Pollack and Marc Ringuette. Introducing the Tileworld: Experimentally evaluating agent architectures. In National

Conference on Artificial Intelligence, pages 183–189, 1990.
21. Patrick Riley and George Riley. SPADES — a distributed agent simulation environment with software-in-the-loop execution.

In S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, editors, Winter Simulation Conference Proceedings, 2003.
22. Bernd Schattenberg and Adelinde M. Uhrmacher. Planning agents in JAMES. Proceedings of the IEEE, 89(2):158–173,

February 2001.
23. Alexander Serenko and Brian Deltor. Agent toolkits: A general overview of the market and an assessment of instructor

satisfaction with utilizing toolkits in the classroom. (Working Paper 455), McMaster University, Ontario, Canada, 2002.
24. Aaron Sloman and Ricardo Poli. A toolkit for exploring agent designs. In M. Woolridge, J. Meuller, and M. Tambe, editors,

Intellegent Agents II: Agent Theories, Architectures and Languages (ATAL-95), pages 392–407. Springer-Verlag, 1996.
25. Robert Tobias and Carole Hofmann. Evaluation of free Java libraries for social-scientific agent-based simulation. Journal of

Artificial Societies and Social Simulation, 7(1), January 2004.
26. A. Urmacher and M. Röhl. The role of deliberative agents in analyzing crises in pre-modern towns. Sozionik, (3), 2001.
27. A. M. Urmacher and K. Gugler. Distributed, Parallel Simulation of Multiple, Deliberative Agents. In 14th Workshop on Parallel

and Distributed Simulation (PADS 2000), pages 101–108. IEEE Computer Society, 2000.

�
http://www.cs.bham.ac.uk/research/pdesmas/

Copyright c
 

2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 00:1–25
Prepared using cpeauth.cls


