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Abstract— New technological developments in wireless networks 
and location-based information systems are greatly affecting the 
prominent scenarios represented by mobile markets, commercial 
and industrial organizations, and cooperative social 
environments. To model and control such complex organizational 
systems, the use of scientific methodologies, such as participatory 
simulation and agent-based modeling is becoming increasingly 
common. Further, users of these collaborative systems demand 
the availability of sophisticated tools that are able to present 
visually the results of cooperative simulation activities on the 
screen of handheld devices. In this context, we have designed and 
developed a software architecture able to support the execution 
of agent-based participatory simulation activities, and to render 
them in a 3D virtual world over wireless devices. We report on 
several experiments, gathered on the field, showing that the 
architecture we have developed is able to render, in a timely 
fashion, on a wireless device, the results of cooperative simulation 
activities performed by agent-based programming platforms. 

Smart services; 3D rendering on handheld devices; Multimedia 
technologies; Wireless scientific visualization; Participatory 
simulation; Agent-based modeling; Mobile business games 

I.  INTRODUCTION 
The wireless revolution has started with Internet phones 

and continued with many kinds of wireless handheld devices 
that allow users to access the Internet. Thanks to the technical 
developments in high speed chips, mobile networks and 
software protocols, the wireless technology is enabling a wide 
range of exciting possibilities, including, for example, wireless 
sensors networks, wearable computers, ubiquitous computing 
and innovative use of Web phones. 

In this context, it is easy to envisage that future mobile 
users will enjoy a near ubiquitous access to the vast storehouse 
of technical and intellectual resources offered by high 
bandwidth (wireless) networks. For example, in social 
organizations, or in collaborative human environments, 
workers are starting to exploit wireless technologies to connect 
to colleagues and carry out different kinds of cooperative tasks, 
including brainstorming, task planning, resources sharing, 
instant messaging, and waving the Internet together. In essence, 
due to the use of these new technologies, secure virtual spaces 

(or environments) may be created where workers, after been 
identified, may cooperate to accomplish common tasks. In this 
challenging scenario, a great popularity has been gained by a 
modern form of “semi-automatic” collaborative scheme, 
termed participatory simulation [1, 2]. With the term 
participatory simulation Wilensky and Stroup [3] refer to such 
role-playing cooperative activities aimed at exploring how 
complex dynamic systems evolve over time. As an example of 
participatory simulation, consider that of a virtual stock 
exchange, where each player (investor) could play the role of a 
virtual buyer or of a seller who engages in the activities of the 
resulting share exchange dynamics.  

Obviously, we have just mentioned only a simple example, 
but a wide set of possible content areas for participatory 
simulation include different scientific and technical fields, 
ranging from the spread of a disease, to the flow of energy in 
an electric network, to the diffusion of innovation, to the 
distribution of goods in an inventory system [5]. 

From a scientific standpoint, participatory simulation 
typically employs some form of Agent Based Modeling 
Simulation (ABMS) technology. Simply put, an ABMS 
platform is a programmable modeling environment for 
simulating complex systems where programmers can give 
instructions to several independent agents working in parallel. 
In essence, in an ABMS the global state of the system emerges 
as a result of the interaction of hundreds, or thousands, of 
elementary agents engaged in a variety of local processes such 
as exchange, cooperation and competition. These agents (which 
may be either completely controlled by humans or 
automatically programmed) can play their moves based on an 
intrinsic capability of local investigation and local action. 

Perhaps the most common way to present the simulation 
results produced by the complex interactions of an ABMS-
based virtual world is visual display. A prominent example of 
using visual representation to display the results of ABMS-
based simulation is reported in Figure 1, where the graphical 
interface of the Massive system is reported from [4]. The 
problem here is that the actual ABMS-based software 
platforms only provide for limited graphical functionalities.  



 
 

Figure 1.  Massive simulator: 2D graphical display (reported from [4])  

 

For example, well known ABMS platforms such as 
Netlogo, Swarm, Jas, and Repast only render their agent based 
models through a 2D raster graphics visualization methodology 
[6, 7, 8, 9]. 

In this context, the main contribution of our work is the 
design of a 3D visualization engine that can be used to 
represent visually simulation results of ABMS-based virtual 
environments on mobile devices, such as laptops, PDAs and 
smart phones. From a graphical standpoint, it is worth 
mentioning that, as typical 3D rendering problems are here 
exacerbated by the need to display virtual worlds on wireless 
(possibly handheld) devices, we resorted to special rendering 
techniques based on triangular meshes that guarantee an 
optimal trade off between fast visual reproduction and device 
compatibility. Alongside a detailed description of the 
architecture of our visualization engine, we report a set of 
experimental results which confirm that an appropriate 
integration of our visualizer with the software architecture of 
the ABMS system enables a fast 3D representation on wireless 
devices. 

 

 
 

Figure 2.  ABMS rendering on different devices 

The reminder of this paper is organized as follows. In 
Section 2, we illustrate the main features of the software 
architecture of the system we developed. In Section 3, we 
present a set of empirical results we obtained with a prototype 
implementation of our system. Finally, Section 4 concludes our 
work with some hints for future developments of our work. 

II. SYSTEM ARCHITECTURE  

We have designed a (client-server) software architecture 
able to support the execution of ABMS-based virtual worlds 
and their 3D rendering on wireless devices (see Figure 2). The 
three main software components of our architecture are the 
following: i) the ABMS platform, ii) the 3D visualizer and, iii) 
the wireless network communication subsystem. As shown in 
Figure 3, a complete “execute and visualize” session of our 
system works as follows. Initially, a user from his/her device 
issues an order to his/her set of controlled agents in a virtual 
world. 

This order is intercepted by a dedicated user process, 
termed Agent Manager (AM). After collecting orders from a 
given user, the AM sends them to its software counterpart on 
the ABMS platform, called the Request Manager (RM). Apart 
from the RM, the ABMS platform (hosted on a wired 
machine) is comprised of a State Updater (SU) and a Snapshot 
Creator (SC). In essence, the SU computes, on a periodical 
basis, a new state of the virtual world, based on the 
interactions with the system users. After that a new state has 
been computed, the SC constructs a text-based image of the 
newly calculated state. Upon reception of these data, the 
visualizer displays them on the screen of the wireless device. 
It is worth pointing out that all the above mentioned 
communications are carried out by the wireless network 
communication subsystem based on a TCP/IP stack. 

 
 

 

Figure 3.  An “execute and visualize” session 

State 
Updater 

Request 
Manager 

Snapshot 
Creator 

 

AM 

Visualizer 

AMBS 
platform 

Wireless 
devices 

AM 

Visualizer 



 

 

Figure 4.  System architecture 

 
The next Subsections are devoted to examine, in turn, the 

two main software components (i.e., the ABM platform and the 
visualizer of Figure 4) of our system, along with a number of 
relevant design and implementation details.  

A. The ABMS Platform 
The AMBS platform, on the top of which our system is 

built, is partially based on the Netlogo software environment 
[6]. In particular, the RM and the SU are technologies provided 
by Netlogo; instead, we developed a Snapshot Creator (SC) 
that is able to capture the states of the system generated by 
Netlogo, and to transform them into input parameters for our 
visualizer. 

As to the functions provided by Netlogo, it is important to 
notice that all the most complex models produced by Netlogo 
may be built based on three different types of agents, namely: 
observers, turtles and patches. In substance, each model has 
only one observer that represents the most general framework 
where all other agents live and cooperate. Turtles, in turn, are 
the most active types of agents which can be defined in a 
Netlogo model: they can perform several types of actions, on a 
local basis, ranging from spatial movements, to visual 
interpretation of other agents actions, and generic data 
exchange. Finally, patches are agents which are typically used, 
within the Netlogo framework, to represent static pieces of 
information, such as background colors and spatial landscapes, 
for example. Patches may also represent “resources” that turtles 
produce and/or consume. Hence, within Netlogo, agents are 
able to perceive their environment and respond to changes in a 
timely fashion, further they are able to interact with each other 
to perform cooperative activities. 

Our contribution to the Netlogo platform, here, has been 
that of developing a software module which captures, on a 
periodical basis, all the data which refer to a given model and 
inputs them into a FIFO queue. Subsequently, following the 
order given by the queue, the data are fetched and sent to the 

visualizer for 3D rendering, as described in the following 
Subsection. 

B. The 3D Visualizer  
The main obstacles that need to be tackled for the 

development of the visual engine for an ABMS system concern 
the choice of the most appropriate structuring of the 
hardware/software architecture. This architecture must be able 
to render visually on a wireless device the states of the 3D 
virtual worlds generated by the simulative platform. To this 
aim, we have developed a visual engine, based on open source 
graphical libraries, whose architecture is depicted in Figure 4. 
The main software components of our 3D visualizer are the 
Snapshot Manager (SM), the Virtual World Creator (VWC) 
and the Rendering Engine (RE). Upon receiving data into a 
FIFO queue from the ABMS through a wireless connection, the 
SM manages the subsequent activity of data decompression, 
and checks for their integrity. In turn, the VWC extracts data 
from the FIFO queue and creates the 3D virtual world based on 
a scene graph model which exploits triangular meshes as basic 
3D objects [10, 11, 12]. This is accomplished by following an 
augmented reality strategy, where real images, captured with a 
camera, can be attached to the virtual world generated by 
Netlogo. The final activity is performed by the RE which 
renders in 3D on the wireless screen the virtual world generated 
by the VWC. It is important to mention that our RE is able to 
support the introduction of graphical optimizations (such as the 
use of textures) without affecting the rendered data. In addition, 
it has the capability to sustain dynamically the display of a 
given frame rate (on the wireless device) while scaling down 
with respect to the graphical quality of the rendered 3D objects. 
Further, this software module allows for frame skipping, when 
a too large transmission delay is experienced at the client side. 
Finally, it is worth mentioning that our RE displays the virtual 
world generated by the VWC based on the OpenRM/OpenGL 
graphical libraries [13, 14], the main advantage of this 
graphical library being its portability across different operating 
systems. (Thus, our visualizer may run on different hardware 
equipments, such as laptops, tablet PCs and PDAs.)  

III. SYSTEM ARCHITECTURE  

To test the efficacy of our visualizer, we developed an 
experimental study based on the use of the following prototype 
implementation of our system. 

We run the Netlogo-based ABMS platform (RM+SU+SC) 
on a server equipped with a Windows 2000 Pentium III, 
working at 900 MHz and with 512 MB RAM. The client, 
instead, was running on either a laptop machine (a Dell 
Inspiron 8200 equipped with a NVIDIA GeForce4 Go 440 with 
64Mb of RAM) or on a PDA (iPAQ 3970). The laptop 
mounted a Windows 2000 OS, while the PDA mounted the 
Familiar Linux OS equipped with the GPE x-Windows 
graphical interface [15, 16]. Both clients where connected to 
the server through a TCP/IP wireless connection on a Wi-Fi 
802.11b network.  

We wish to illustrate now the results we obtained both on a 
visual and on a numerical standpoint. To this aim, in Figure 5 
we present the 3D results we have obtained by rendering, on 
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the wireless device, the virtual model termed “Climb-the-Hill” 
produced by the Netlogo engine. Several considerations are in 
order here. First, we wish to point out that our 3D models are 
rendered dynamically, following the evolution of the simulative 
models produced by Netlogo. In the example above, turtles are 
rendered, in a timely fashion, that climb the hill, looking for the 
highest patch in their neighborhoods (local maximum).  

Second, it is easy to understand that the observer may 
manipulate dynamically the virtual world, for example by 
changing the perspective under which the world is considered, 
or by zooming on a detail, or by highlighting (using wireframe 
techniques) the lattice over which the turtles play their moves. 
This final characteristic is of particular interest when the 
observer wants to verify if the visual representation rendered 
by our 3D engine matches the underlying numerical data.  

 
Based on the consideration that our 3D engine guarantees 

that the correctness of the numerical data is maintained in the 
visual representation, it is easy to understand that local visual 
manipulations of the virtual world are made possible, without 
affecting the integrity of the performed operations.  

As a final consideration, with respect to the discussion 
above, we wish to encourage the reader to note that a great 
visual difference exists between the graphical 3D 
representation which our system is able to produce and the 
standard 2D graphical representation generated by the Netlogo 
platform, shown in Figure 6 as an alternative display strategy.  

Besides the visual results, it is also important to provide 
quantitative measurements that capture the performance of our  
designed system. To this aim we carried out two different sets 
of experiments. The former set (30 experiments) refers to the 
ability of the ABMS platform  to update  the virtual state of the 
virtual world, as a function of the number of agents. In Figure 
7, we plotted the average number of states, on a logarithmic 
scale, that our ABMS platform is able to generate per each 
second, depending on the number of agents involved in the 
simulation. 

In particular, the lower curve accounts for the performance 
of the ABMS system including the data export activities 
performed by the Snapshot Creator (SC) we have developed. It 
is easy to deduce from an analysis of Figure 7 that the larger 
the number of agents, the lower the number of the states of the 
virtual world that can be updated per each second. For 
example, Figure 7 shows that with a thousand of cooperating 
agents the ABMS platform is able to provide state updates at 
the very low frequency of 1.5 states per second.  

The latter set of experiments aims at highlighting the 
number of frames per second that may be displayed by our 
visualizer on the wireless client device, yet again depending on 
the number of agents involved and on the quality of the 3D 
rendered graphical objects. In particular, in Figure 8, the 
number of the frames per second are plotted which were 
obtained, on average, over thirty different experiments carried 
out on wireless devices, as a function  of the number of agents 
involved in the simulation. 

 

 
 
 

Figure 5.  3D visual representation produced by our visualizer  

 

  

 

Figure 6.  Netlogo-generated visual representation of the same world of 
Figure 5 

 

Precisely, three different curves are plotted, denoted as low, 
middle and high, respectively. The curve denoted as low 
represents a situation where the quality of the rendered image 
was obtained with 8 triangular-meshed faces per each graphical 
object. The quality of the curve denoted as middle was 
obtained by exploiting 32 faces per each rendered object. The 
quality of the high curve was, instead, obtained with 128 faces. 
As shown in the Figure, the larger the number of agents, the 
lower the number of frames which may be created and 
visualized per each second. Further, the higher the graphical 
quality of the rendered 3D object, the lower the number of 
frames that can be displayed per each second. From a 
comparative analysis of Figures 7 and 8, it is easy to 
understand that our visualizer has been tuned to sustain a rate 



of rendered frames which is attuned with the frequency 
according to which the ABMS platform provides updates of the 
virtual world state. In other words, from a communication 
viewpoint it suffices that our wireless communication 
subsystem be able to transport, over the air, per each second the 
same number of state updates produced by the ABMS 
platform. This would guarantee a perfect synchronization 
between the producer (the ABMS platform) and the consumer 
(the visualizer). 

Following this consideration, our experiments with an 
iPAQ 3970 PDA, equipped with the pocketGL graphical 
library, show that an average rate of 10-15 frames per second 
may be safely tolerated over a Wi-Fi connection with a 
hundred of agents. 

 

  
 

Figure 7.  Performances of the ABMS (server-side) 

 

 

 

Figure 8.  Performances of the visualizer (wireless device) 

 

IV. CONCLUSIONS  

We have designed and developed a software architecture 
able to support the execution of agent-based participatory 
simulation activities and to render them in a 3D virtual world 
over wireless devices.  We have conducted several empirical 
trials (both visual and numerical) that confirm that the 
structuring of the software architecture we have devised is able 
to guarantee the visual delivery of ABMS-based virtual worlds 
on wireless devices in a timely fashion. We wish to point out 
here that the visual aspect of the 3D virtual worlds we are able 
to reproduce with our system is very realistic, as our current 
implementation permits us to manage textures and other 
augmented reality-based objects in a sophisticated fashion. As 
an example of the use of texture-based 3D virtual worlds we 
report in Figure 9 a landscape where the photos of the four 
authors of this paper are mounted on the represented surfaces. 
Further, two visual examples of the use of 3D augmented 
reality-based worlds are depicted in Figures 10 and 11. We 
wish to conclude by mentioning that possible future 
developments of our system may foster new applications 
relevant to the fields of participatory simulation, mobile 
business, digital cinema, edutainment, multiplayer games and 
pervasive computing on wireless devices [17, 18, 19, 20, 21, 
22, 23, 24, 25].  

 

 
 

Figure 9.  A virtual world with textures representing the faces of this paper’s 
authors 



 

 

Figure 10.  A virtual world generated by real geospatial data with minotaurs as 
characters 

 

 

Figure 11.  A virtual world generated by real geospatial data with sonics as 
characters 
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