Action Selection and Individuation in Agent
Based Modelling

Joanna J. Bryson

University of Bath
Department of Computer Science
Artificial models of natural Intelligence (Amonl)
http:/ /www.cs.bath.ac.uk/~jjb

April 26, 2004

Abstract

This paper is a tutorial on action selection for Agent-Based Mod-
elling (ABM). Having a clear idea of how you are organizing your
agent’s intelligence will make your code cleaner and easier to main-
tain, and your models easier to communicate to others. This paper
describes four means of orgainizing agent action selection in increas-
ing order of complexity These are: environmental determinism, finite
state machines, basic reactive plans, and Parallel-rooted, Ordered, Slip-
stack Hierarchical (POSH) reactive plans. Modellers should use the
simplest mechanism possible — this paper describes the contexts in
which more complicated mechanisms may be required, as well as sug-
gesting coding and commenting schemes for all four systems.

This paper also addresses the issue of Individuated Agent-Based
Modelling (IABM), where individual agents display different behav-
ior. It gives examples of existing IABM systems and describes how
these can be moved into more mainstream ABM simulators via two
relatively simple mechanisms: either exploiting individual local vari-
ables or by specifying different priorities within the action selection
mechanism. This allows individual agents to vary in their behavior
while sharing the vast majority of their code.

1 Introduction

This paper discusses action selection in the framework of agent based mod-
elling. Action selection is the means by which an autonomous agent solves

the ongoing problem of choosing what to do next. Action selection is the
executive part of agent intelligence.

The remainder of agent intelligence — which is at least as important
and difficult to construct — are the actions which are chosen between and
the perceptions which inform the decisions and shape the acts. There is of
course a tradeoff here in the granularity of control: the more an “action” is
capable of, the less complexity the executive must handle, but the less con-
trol it has. For example, the action “‘walk-to attended-location” is at a much
larger granularity than ‘extend left-knee’. If you are developing an entire
agent intelligence from scratch, then the best way to optimise this trade
off is to follow an iterative development process that provides heuristics to
allow refactoring when either actions or action selection become too com-
plicated (see further Beck, 2000; Bryson and Stein, 2001b; Bryson, 2003). For
most people doing agent-based modelling (ABM), however, the actions and
perceptions are already provided, either by the simulation platform or in
terms of existing libraries of behaviours from other developed simulations,
so these issues will not be further discussed here.

Because agent-based modellers often lack experience with artificial in-
telligence, they frequently don’t use formal action-selection mechanisms.
This can make programming the agents unnecessarily complicated, and
simulations more difficult to understand, maintain and extend. This paper
sets out a description of a number of established idioms for action selection,
each of which is useful in at least some domains. As such, it is intended to
help modellers increase the clarity of their work. Another emphasis of this
chapter is on relatively complex action-selection required for supporting
individuated agent based modelling — ABM where each agent may be pro-
grammed with different behaviour. Section 2 begins with a short discussion
of the utility of IABM. Section 3, which makes up the bulk of the paper, is
a description of four different action-selection idioms, which may be use-
ful for either conventional ABM or IABM. The paper then concludes with
a description of engineering issues in bringing the more complex forms of
action selection into familiar agent-based modelling environments, such as
Swarm, RePast and NetLogo.

2 Individuated Agent Based Modelling

Much of the research which exploits ABM examines the patterns that emerge
from the behaviour of very simple agents. This research has shown that
such simple agents can do a good job of replicating the behaviour of com-

plex real-world actors, even humans, at a high level of abstraction. This
level of abstraction seems to be most useful for large numbers of agents,
where individual variation or details of decision making can be treated as
random noise. In recent years, a number of software tools have been de-
veloped which support this sort of research, including Swarm, RePast and
NetLogo.

There is another sort of agent-based social simulation though, where
the individual agents are given relatively complex intelligent controls. This
is typically done to simulate the behaviour of relatively small numbers of
individual actors. One of the most spectacular examples of this kind of
work is that of Tu (1999), which replicates aquatic animal behaviour from
swimming through fluid dynamics up to mating and predation. Another
example is the work by Hemelrijk (2002, 2000), which has made significant
contributions to evolutionary theories of the differences in macaque social
behaviour. Hemelrijk’s work involves modelling colonies of primates with
individual differences in initial rank. She has shown that differences in
social organisation can emerge as a simple consequence of a single vari-
able, the level of violence in the average antagonistic interaction (Hemel-
rijk, 2000).

Tyrrell (1993) built a complex simulated environment (which he cre-
atively called the SE) to test a variety of action-selection mechanisms. The
test agent in the SE is a small omnivorous animal which needs to survive
and breed. This involves six types of subproblems:

o Finding sustenance. This includes water and three forms of nutrition,
which are satisfied in varying degrees by three different types of food.

o Escaping predators. There are feline and avian predators, which have
different perceptual capabilities and hunting strategies.

o Avoiding hazards. Latent dangers in the environment include wander-
ing herds of ungulates, cliffs, poisonous food and water, temperature
extremes and periodic (nightly) darkness. The environment also pro-
vides various forms of shelter including trees, grass, and a den.

e Grooming. Grooming is necessary for homeostatic temperature con-
trol and maintaining general health.

e Sleeping. The animal is blind at night and needs to sleep to maintain
its health.

e Reproduction. The animal is male, thus its reproductive task is reduced
to finding, courting and inseminating mates. Attempting to insemi-
nate unreceptive mates is hazardous.

The success of the agent in the SE is counted as the number of times it
mates in a lifetime. This is highly correlated with life length, but long life
does not guarantee reproductive opportunities — these have to be actively
sought. Tyrrell tested five well-known action-selection mechanisms from
psychology and Al one of which he chose as favourite and extended. What
makes Tyrrell’s work noteworthy is that there are very, very few Al or ALife
domains in which a single agent must meet such a diverse set of goals.
These include intrinsic and extrinsic goals, homeostatic and cyclic goals as
well as opportunistic event-based ones. Of course, real animals deal with
such conflicting goals and desires all the time.
The work of these three researchers has two things in common:

1. Compared to most ABM, the individual agents have relatively com-
plex individual behaviours, and

2. They have all conducted their research in proprietary research en-
vironments which they have either developed or had developed for
them at their institutions.

Many researchers would like to be able to produce models exploring
their own theories or hypotheses working at this level of complexity, but
are either unwilling or unable to accept the cost of constructing such simu-
lations. I personally am aware of several theoretical biologists wanting to
construct models of social insects (e.g. particular species of wasps and ants)
with small numbers of members per colony, at least two groups of prima-
tologists interested in exploring and demonstrating their own hypotheses
which are at odds with Hemelrijk’s, and a cross-disciplinary group work-
ing on understanding social predator communication. It would be nice if
we could find a way to enable such research within existing ABM toolkits.
If we cannot, it may be that a new toolkit is called for.

As indicated in the introduction, one way to get more complex be-
haviour from existing simulators is just to simplify code by using (and
commenting) a good model of action selection. In the next section, I will go
through several such models in increasing order of complexity. Following
that, we will return to examining the question of whether current toolkits
can support IABM.

3 Models of Action Selection

3.1 Environmental Determinism

There is no established name for what is really the simplest way to do ac-
tion selection, so I have called it ‘Environmental Determinism’. This model
assumes that:

1. There are only a limited number of salient situations the agent can
find itself in,

2. These situations are mutually exclusive, and

3. Actions can easily be mapped to situations.

While these assumptions may seem unrealistic, they have been usefully
applied in sufficiently abstract models. The clearest example is probably
Conway’s Game of Life (Gardner, 1970), a very early ALife system, which
takes place on a two dimensional grid. If I am allowed the liberty of re-
ferring to any cell of that grid rather than any live cell as an agent (which
is how life is typically programmed) then Conway determined that there
are nine environmental situations that matter, because the only thing that
determines action in Conway’s system is how many neighbours you have,
and you can only have 0-8 neighbours on a 2-D grid. Figure 1 further sum-
marises these into four situations. Too few neighbours (0-1) and the cell is
dead, regardless of its previous state. For two neighbours the cell holds its
current state, alive or dead. Exactly three neighbours and the cell is alive
regardless of its previous state, but with four or more neighbours it is again
dead regardless.

0-1 2 3 4-8

die stay be- born die

Figure 1: Environmental Determinism: Enumerate the possible salient states
of the environment, and state what action should be done in each. Example
is Conway’s Game of Life (Gardner, 1970).

In the event that a reader is unfamiliar with the Game of Life, I strongly
recommend typing “game life” into Google™™, to view the incredible va-
riety of ‘emergent’ (higher-level) growth and action that results from this

5

simple program. There are claims that this system is a fairly realistic model
of bacterial life in a petri dish, but I leave it to the reader determine their
veracity.

Coding Environmental Determinism only requires a set of if-then
statements. The environmental conditions should be made clear by using
functions and function names to keep them clean, and of course comments.
For example:

if (cell is dead) AND (number-of-neighbors is 3)
then {set cell alive}; /* new cell is born */
if (cell is alive) AND (number-of-neighbors is 2 OR 3)
then {no action}; /* Leave the cell alive */
if (cell is alife AND (number-of-neighbors is NOT 2 OR 3)
then {set cell dead}; /*lonely or over-crowded cells die*/
if (cell is dead) AND (number-of-neighbors is NOT 3)
then {no action}; /* leave cell dead */

3.2 Finite State Machines

In general, programmers prefer to think about agents rather than environ-
ments. Generally speaking, agents tend to be much simpler than there envi-
ronment — they tend to have less possible behaviours than there are possi-
ble external situations. So programmers find it simpler to organise coding
around actions, not events. The standard way of controlling many ma-
chines, notably Al game agents, is by using the abstraction of a Finite State
Machine (FSM). Programming a finite state machine requires two thing:

1. Enumerating the states the agent can be in, and
2. Enumerating the causes for an agent to change state.

Again, assumptions are made that both states and transitions can be enu-
merated and that they are mutually exclusive.

For the purpose of ALife action selection, we can think of each state
as being a situation in which an agent should perform a particular action.
To go back to the Game of Life, we now have to think of the cell/agent as
expressing one of two behaviours: looking alive, or looking dead (Figure 2).

Documentation for an FSM should ideally include a diagram. The cod-
ing should be the possible transitions clustered by state:

/* Transitions from state DEAD */

1, 4- 8 nei ghbours

2,3 dead 1,2 4-8
nei ghbours nei ghbours

3 nei ghbours

Figure 2: Finite State Machines: Enumerate the possible states the agent can
be in / actions it might take, and the environmental contingencies that

might make the agent change state. Example is also Conway’s Game of
Life (Gardner, 1970).

if (self dead) AND (number-of-neighbors is 3)
then (self be-born);

/* Transitions from state ALIVE */

if (self alive) AND ((number-of-neighbors NOT in {2,3})
then (self die);

To be formal, a finite state machine should also enumerate all possible
environmental or internal events, and specify the situations in which no
change takes place, like this:

The advantage of this is that one can check the code to make certain
their are no possible transitions the programmer overlooked or forgot to
code. The disadvantage is that it might make the code less readable, and
that in most situations such a check may take intractably long. In gen-
eral, programmers should try to put in as much code and comments as
is required. For example, if a condition existed that either the program-
mer had to take a long time to think about or that another person needed
explained to them, then those conditions deserve comments and possibly
code to make the comments more explicit. For ALife modellers who run
large and long simulations, it is almost never a good idea to code the cases
where there is no change explicitly because they will take CPU time, though
they can be coded for clarity and then commented out.

It's important to realise that in either environmental determinism or
finite state machines, the programmer winds up needing to create discrete
categories of both environmental events and behavioural acts. The only

7

differences are that in the FSM, the programmer also needs to enumerate
states for the agent, and that actions are tied to these states rather than
to the environmental categories. Often the states turn out to be a useful
abstraction, but that doesn’t have to be the case. For many simulations, it
may be that the environment really is the more salient actor, and the agents
really are simple enough that there is no reason to add theoretical entities
such as internal states for the agents.

3.3 When Enumerating Transitions is Too Hard

Most agents, of course, have more than two possible actions. If there are
a limited way of transitioning from each action to the next, then FSMs are
a good way to describe that behaviour. However, if behaviour is largely
driven by environmental prompting, and the environment is very dynamic
and unpredictable (as when it contains many other types of complex ac-
tors), then there may be transitions from every state to every other state.
This means that for every new action or capability added to an agent, as
many transitions will need to be added to both it and to the other states as
there are other capabilities. The number of transitions (and therefore the
size of the code) grows quadratically, since all NV nodes must have N — 1
transitions in them. It would be better to have a way to code action selec-
tion that didn’t grow much faster than the number of possible actions.

Consider an example where the agents approach a more humanoid sort
of intelligence than Conway’s cells. Let’s start with some arbitrary charac-
ter chosen from a Jane Austen novel. The typical Austen character might be
thought of as having four states: flirting, engaged, in church and married.
A first cut at an FSM for this agent might look something like Figure 3.

The problem comes when we start trying to label the transitions. When
you think about it, a good Georgian English agent wouldn’t only go to
church in order to get married, but might attend regularly at any stage of
his or her life. On reading Austen further, one realises that marriage is
not in fact a terminal state: some characters continue to flirt and may even
become re-engaged. In fact, the only terminal state is death, which can
occur at any time (Figure 4).

The problem with the FSM is that it is required to represent all possible
transitions for an agent. But if we are trying to create a working agent, we
really only need to specify the transitions that the agent makes itself. In fact, in the
Al for abstract simulations, we generally only need to model the transitions
that an agent might rationally choose to take in pursuit of its own goals.

T

engaged

married

_/

Figure 3: A first cut at an FSM for a Jane Austen character. The double circle
on marriage indicates that it is a terminal state — the end of autonomous
action selection, at least for this controller.

3.4 Basic Reactive Plans

The Basic Reactive Plan (BRP) is a name I've given to an idiom or pattern
found in several (though not most) influential reactive planning architec-
tures (Fikes et al., 1972; Nilsson, 1994; Bryson and McGonigle, 1998; Bryson
and Stein, 2001a). Building a BRP requires a few assumptions. For exam-
ple, it requires that one assumes that the agent has a goal, and that it has a
set of actions it is capable of doing that can lead to solving that goal. The
BRP is a prioritised list of these actions. The most important action is the
one that consummates the goal, the second most important action is one
that enables the most important act, and so on.

If the agent can already do the most important action it doesn’t need
to execute the other ones. A reactive plan recognises this situation, which
means it can behave opportunistically. This means that each action is paired
not only with a priority but also with a perceptual condition which allows
it to know when it can execute that action. This is important not only for
opportunism (skipping unnecessary steps in a conventional plan) but also
for robustness (possibly repeating steps if they fail or if they simply need
repeating such as digging a hole until you hit water).

Instead of having to explicitly code how to recognise every possible

T

engaged

_/

Figure 4: A somewhat more realistic draft FSM for an Austen character.
Notice that labelling the transitions would still be fairly complex.

dead

)

married

transition between action states, a BRP programmer needs only code how
to recognise the situation in which each action can fire, a task made simpler
by the invariant that no better (higher priority) action can fire, or the current
one wouldn’t be considered. This means that for each action, the program-
mer only has to hand-code one situation: the minimal requirements where
that action might be usable. There is no reason to describe when the action
should be skipped anyway, because that is encoded by its priority within
the BRP.

Let’s return to the Jane Austen agent. We'll assume we are program-
ming one of the ‘pure’ characters with no devious intentions. The agent’s
highest goal is to become married. In order to become married, the agent
must be in a church, but there is no point in going to the church without
one’s fiancé, and one can’t have a fiancé without having gotten engaged. If
one isn’t engaged, one must flirt. Flirting of course also has preconditions,
but for the sake of simplicity we’ll stop here.

10

Here is a possible BRP:

1. (fiancé present AND in church) = marry

2. (fiancé present) = goto church

3. (engaged) = goto fiancé

4 (receiving attention) = become engaged
5 () = flirt

The numbers on the left list priority, with 1 being the highest. Thus
if one is in a church but does not have a fiancé present, one does not get
married, rather one either goes to be with the fiancé (if one exists) or else
one flirts. Unless of course one is receiving attention already, in which case
flirting can be skipped; one can become engaged and on the next iteration
become married, assuming nothing has happened to remove the new fiancé
from the church between program cycles. On the other hand, a character
that never receives attention can flirt indefinitely, or, if suddenly receiving
notice that it has become engaged (perhaps by arrangement of its parents),
skip directly to going to the fiancé.

Obviously, encoding this BRP in an FSM would take at least 25 lines of
code, assuming that the goal takes one line to describe and each possible
transition between states could be specified in one line. Similarly, a large
amount of possible environmental states have been neatly ignored as not
relevant to this particular agent’s pursuit of its goal.

For all its elegance, a BRP is simple to code in most programming lan-
guages. Itis best coded as a switch (in Java or C) or cond (in Lisp), though it
can also be coded as cascading if-then-else statements in pseudo-languages
that lack this idiom. Details of building successful BRPs can be found in
Bryson (2003), but essentially they are a simple derivation from a conven-
tional, sequential plan e.g.

flirt = become engaged = go to church = get married

The BRP simply inverts the ordering and then specifies a mechanism for
recognising when each item could be activated.

3.5 POSH Reactive Plans

The life-like agents such as I have described as Individuated above gen-
erally have more than one goal. Further many ‘actions” may themselves
require some multiple sub-actions to complete, and these in turn may re-
quire a BRP to organise.

11

If you examine the history of the action-selection literature (see for a
review Bryson (2000a)), you find that there are three sorts of problems that
any successful approach must address:

1. Some things must be checked at all times. For example, if you hear
a loud noise, you will nearly always stop what you are doing and
direct your visual attention toward the source, without any conscious
processing of this attention switch.

2. Some things hardly ever need to be checked. For example, when you
are walking, you have a reliable pattern for controlling your legs in
turn which is characteristic of your individual gait. It would be very,
very unusual for you to ever become aware of, let alone attempt to
control or alter, the muscle patterns involved.

3. Some things need to be checked only in particular contexts, but then
in unpredictable order. For example, if you are doing a jigsaw puzzle,
you may have a set of rules about where you are piling edge pieces
or pieces with a particular shade of blue on them. Unlike the walking
situation, you cannot predict what the next piece your attention falls
on will be like so your plan cannot be ordered in advance. This is the
situation that requires a BRP.

It might seem simpler to represent everything as a sense/action pair
— one enormous BRP!. However, it is untenable (that is, computationally
intractable) to have every possible skill that requires this level of attention
be equally accessible all the time. The reflexive response to the loud noise
I mentioned is one of a relatively limited number of such stimuli (some
learned, some innate) which seem to be stored in a separate (and fairly
small) part of the brain, the amygdalic system. This is not only a conse-
quence of combinatorics and computational limits, but also of perception
and context. In another context, that shade of blue might trigger you to
follow a friend wearing a particular shirt through a large crowd or to pass
a ball to a teammate rather than having anything to do with puzzle pieces.

I have developed an action selection mechanism that supports all three
of these sorts of situations with three types of representations and a devel-
opment methodology to determine when to apply which (Bryson and Stein,
2001b; Bryson, 2001). The development methodology is called Behaviour
Oriented Design (BOD), and is an iterative process for determining not only

!'Or a large set of production rules — see e.g. (Newell, 1990).

12

which type of action-selection representation should be used, but also the
granularity of the primitive actions. Primitives are encoded in object-like
behavior modules, thus the name. Bryson (2003) gives a good summary of
the heuristics and practicalities of using BOD.

The representational framework for BOD action selection is called Parallel-
rooted, Ordered, Slip-stack Hierarchical (POSH) reactive plans. POSH re-
active plans contain five types of elements. First there are the primitives
actions and senses. There are only two differences between these:

e Return values: actions return no meaningful value, except in the case
of radical failure, when a flag may break the system out of its cur-
rent action-selection context, while senses return meaningful values
which can be used in predicates for comparisons.

e Duration: some actions may take some time (though usually no more
than 100ms). Senses are expected to return values very quickly, be-
cause many sensory preconditions may be checked on each cycle of
the action-selection architecture, which ideally runs at at least 100Hz
for real-time systems (e.g. robots), and orders of magnitude faster for
simulations. Some actions (such as shifts of visual attention) also take
place during sensory preconditions, but currently POSH plans have
no separate type for these sense-speed acts.

The other three types of components in POSH plans are action patterns
—- simple sequences to handle the second case above (things that almost
always follow), competences — essentially BRPs which handle the third case
above (things checked in certain contexts), and drive collections.

The drive collection is a special extension of the BRP. It serves as the root
of the POSH plan hierarchy. It has several important special characteristics:

e There is only one drive collection, and it is checked on every iteration
of the action-selection mechanism.

e Each element of the drive collection represents a separate goal for the
agent. These goals may be being met in parallel, so each element
of the drive collection keeps track of not only what it’s immediate
child is, but also what it was doing most recently — its current action-
selection context.

e To facilitate parallelism, the drive elements may have associated fre-
quencies. Thus some action (e.g. breathing, looking around) may

13

be very high priority every few seconds, but after initiating that ac-
tion the action-selection mechanism is free to consider other, lower-
priority goals over the next specified time interval.

The POSH action-selection mechanism is itself a sequential process, and
it grants only course-grained parallelism and scheduling, because it is de-
pendent on the return-time of the primitives. However, since the primi-
tives are supported by independent modules (which may themselves be
threaded) POSH agents can exhibit smooth, continuous parallel behavior.

For an example (drawn from Bryson and McGonigle (1998)), consider a
robot which is moving through a cluttered space. The robot in a dynamic
environment might need to resample its sensors 7 times a second, but there
is no reason for it to stop moving while it does this. The primitive that cre-
ates movement can send the wheel drivers the current direction and speed
for motion, with the understanding that the drivers will continue in that
velocity until the next message is received?.

4 Supporting IABM

Reflecting on the four types of action selection I've offered, let’s return to
the question of individuating agent based modelling. Can platforms such
as Swarm, NetLogo and RePast support individuated action selection? Ab-
solutely. The main requirement is only that each individual agent be able
to have its own variable state. From here there are two possible solutions:

1. Each agent can have a copy of a common intelligence. So long as some
decisions or other behaviour are made dependent on the content of
the individual’s behavior, their behavior will be individuated by the
different values of these variables. This is effectively what Hemelrijk
(2000) has done — her agent’s behaviors vary only in their relative
dominance ranking (their probability of success in a social contest
is determined by this) and by gender (males may be influenced to
approach females more frequently.)

2. Each agent may have a script describing its action-selection system
as a piece of variable state. This is actually just a special case of the
first solution — the common intelligence here is an action-selection
mechanism which can interpret that script.

2Good robots also have timeouts associated with their drivers, so if the action-selection
mechanism is hung or crashes, the robot will stop itself within a short time of not having
had any instruction, e.g. a second.

14

I can demonstrate that both of these methods are plausible in existing
ABM platforms. Of the three modelling platforms I've listed, Swarm and
RePast have access to ‘real” programming languages for describing agent
intelligence (objective C and java), while NetLogo only allows modellers
access to a toy / teaching language (Logo). Recently, two Bath M.Sc. stu-
dents have replicated some of the most basic Hemelrijk (2000) results in
NetLogo using method one above (Muhd Fathil, 2003; Wang, 2003). Thus
even in the simplest of the three platforms, method one is possible.

We have not yet demonstrated method two in a major ABM platform,
but Bryson (2000b) implements POSH action selection on a minor ABM
platform, the SE developed by Tyrrell (1993). This works because of the se-
quential nature (described above) of the actual action-selection mechanism
that exploits POSH plans. It was easy because I had a version of POSH in
the native language of the SE available at the time. All that was required
was that the POSH code was linked to the SE code, and then central iter-
ator for POSH was replaced by an individual call to a single POSH pro-
gram cycle from inside the modelled agent. Code for this implementation
is available from the Web page for that project, currently:

http://www.cs.bath.ac.uk/"jjb/web/edmund.html#code

The main obstacle in the way of using POSH on a major ABM platform
then is a version of POSH in the appropriate language. This would in prac-
tice be impractical done by modellers for NetLogo, because the overhead
of the extra action selection mechanism would be too high — the system is
already significantly slower than the other two platforms mentioned. On
the other hand, there’s no in principle reason that POSH couldn’t be trans-
lated into java — it currently exists in C++ (Bryson and McGonigle, 1998),
Lisp (CLOS) (Bryson, 2001) and Python (Kwong, 2003).

IABM by no means requires the complexity of POSH action selection —
Method 1 above does not require it, nor did the Hemelrijk replications. It
might also be possible to make a simpler systems for Method 2, though I
have tried to keep POSH plan structures as parsimonious as possible. As
I emphasised in the previous section, any sort of ABM can be improved
and extended by simply making clear, intentional decisions about how the
action selection will be handled, and by clearly coding and commenting
the action-selection part of the agent’s intelligence. In modelling as well as
the rest of computer science, it’s important to do the simplest, clearest thing
possible for the problem at hand.

15

5 Summary

This paper has presented two related topics: how to make action selec-
tion better for agent based modelling, and how to individuate agent based
modelling. The important steps of improving action selection are:

e Separate the problems of describing how the agent acts (coding its
possible behaviors) and describing when it takes an action (coding it’s
action selection.)

e Use a standardised mechanism for describing your agent’s intelli-
gence. Here ‘describing’ means both coding and commenting. Four
different action-selection frameworks were presented:

1. Environmental determinism, which requires enumerating con-
texts the agent may find itself in then saying what it will do in
each,

2. Finite State Machines (FSM), which requires enumerating the
things the agent might do, and then describing what might make
it switch between possible actions.

3. Basic Reactive Plans (BRPs), which require prioritising actions
the agent might take to achieve some goal, then describing the
minimal requirements for being able to take those actions.

4. Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) reac-
tive plans, which allow the encoding of full animal-like intel-
ligence.

The developer should choose the framework that most simply de-
scribes the minimum intelligence the agent will need.

The easiest way to individuate agent behaviors is to have all the agents
share the bulk of their behavior code, the ‘how’ part, then to individuate
their action selection, either by having their (shared) action selection pro-
gram reference individual agent state in its decision making, or by provid-
ing different action-selection for different agents.

There is a danger that simplifying action selection coding may lead re-
searchers to make more complicated models than necessary. Already our
most difficult task as modellers is to analyse and explain the group behav-
ior that emerges from the interactions of agents — the more difficult their
behavior, the harder this explanation. I believe that having clearer code is

16

worth this risk. The history of science is full of examples where the first suc-
cessful model was not the simplest, but given that it was the first it must
have also been the most immediately intuitive. Once a good model has
been built, simplifying it is part of the scientific process of analysing how
it works. What good coding technique can do is to make it easier to build
both the first and the simplified models.

Acknowledgements

I must acknowledge that I grossly oversimplified many Jane Austin char-
acters. Thanks also to David Sallach and Tom Howe for encouraging me to
write on this topic.

References

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading, MA.

Bryson, J. J. (2000a). Cross-paradigm analysis of autonomous agent ar-
chitecture. Journal of Experimental and Theoretical Artificial Intelligence,
12(2):165-190.

Bryson, J. J. (2000b). Hierarchy and sequence vs. full parallelism in reac-
tive action selection architectures. In From Animals to Animats 6 (SAB00),
pages 147-156, Cambridge, MA. MIT Press.

Bryson, J. J. (2001). Intelligence by Design: Principles of Modularity and Coordi-
nation for Engineering Complex Adaptive Agents. PhD thesis, MIT, Depart-
ment of EECS, Cambridge, MA. Al Technical Report 2001-003.

Bryson, J. J. (2003). The behavior-oriented design of modular agent in-
telligence. In Kowalszyk, R., Miiller, J. P., Tianfield, H., and Unland,
R., editors, Agent Technologies, Infrastructures, Tools, and Applications for
e-Services, pages 61-76. Springer.

Bryson, J. J. and McGonigle, B. (1998). Agent architecture as object ori-
ented design. In Singh, M. P, Rao, A. S., and Wooldridge, M. J., editors,
The Fourth International Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL97), pages 15-30. Springer-Verlag.

17

Bryson, J. J. and Stein, L. A. (2001a). Architectures and idioms: Making
progress in agent design. In Castelfranchi, C. and Lespérance, Y., ed-
itors, The Seventh International Workshop on Agent Theories, Architectures,
and Languages (ATAL2000). Springer.

Bryson, J. J. and Stein, L. A. (2001b). Modularity and design in reactive
intelligence. In Proceedings of the 17th International Joint Conference on Ar-
tificial Intelligence, pages 1115-1120, Seattle. Morgan Kaufmann.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. (1972). Learning and executing
generalized robot plans. Artificial Intelligence, 3:251-288.

Gardner, M. (1970). Mathematical Games: The fantastic combinations of
John Conway’s new solitaire game ‘Life’. Scientific American, 223(4):120—
123.

Hemelrijk, C. K. (2000). Towards the integration of social dominance and
spatial structure. Animal Behaviour, 59(5):1035-1048.

Hemelrijk, C. K. (2002). Self-organization and natural selection in the evo-
lution of complex despotic societies. Biological Bulletin, 202(3):283-288.

Kwong, A. (2003). A framework for reactive intelligence through agile
component-based behaviors. Master’s thesis, University of Bath. De-
partment of Computer Science.

Muhd Fathil, N. H. (2003). The study of the evolution of macaque complex
despotic societies. Master’s thesis, University of Bath. Department of
Computer Science.

Newell, A. (1990). Unified Theories of Cognition. Harvard University Press,
Cambridge, Massachusetts.

Nilsson, N. J. (1994). Teleo-reactive programs for agent control. Journal of
Artificial Intelligence Research, 1:139-158.

Tu, X. (1999). Artificial Animals for Computer Animation: Biomechanics, Loco-
motion, Perception and Behavior. Springer.

Tyrrell, T. (1993). Computational Mechanisms for Action Selection. PhD thesis,
University of Edinburgh. Centre for Cognitive Science.

Wang, J.J. (2003). Sexual attraction and inter-sexual dominance among vir-
tual agents — replication of hemelrijk’'s domworld model with netlogo.
Master’s thesis, University of Bath. Department of Computer Science.

18

