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S.A.M.P.L.E.R.—Statistics As Multi-Participant Learning-Environment Resource—is a
participatory simulation (Wilensky & Stroup, 1999a). In participatory simulations, a classroom of
students collectively simulates a complex phenomenon that they are studying, with each student
playing the role of a single agent or a set of agents in this phenomenon. For example, students
each may “be” an atom in a molecule, a bird in a flock, or a distributed population sample-mean.
Technology-based participatory simulations are built in the NetLogo cross-platform agent-based
modeling-and-simulation environment (Wilensky, 1999) and operate through the HubNet
architecture (Wilensky & Stroup, 1999b). Each student operates a NetLogo “client,” e.g., a
computer or a calculator, that is connected through wireless hubs to the NetLogo “server.” This
server “scoops up” student input, processes and displays this collective input, and sends
information back to the students–clients. The activity moderator, e.g., the teacher or student
leader, controls the simulation parameters. So students embody agents in the virtual simulation
they see projected onto a classroom screen. Also on this screen, monitors and plots display
mathematizations of the simulation, so the class can explore relations between the model’s initial
conditions, student–agent rules of behavior, and collective outcomes. One example of a HubNet
participatory simulation is “Disease,” in which students “become infected” and then infect others
in their virtual population. In “Gridlock,” another example, each student controls a traffic light in
a city grid. SAMPLER is a mathematics participatory simulation. It is part of the NetLogo
ProbLab model-based curriculum under development (Abrahamson & Wilensky, 2004a, 2004b,
2004c). SAMPLER classroom activities are designed to help students: (a) ground statistics in
visual proportional judgments, stochastic-process intuitions, and additive and multiplicative
action models; (b) reconcile micro–probabilistic (samples) and macro–gestalt (population) levels
of reasoning; and (c) negotiate and integrate these personal resources through interpersonal
discourse. SAMPLER statistics activities involve collecting data that informs estimations of
population metrics under conditions of uncertainty and limited resources.

Figure 1. NetLogo S.A.M.P.L.E.R.: fragment of server interface with revealed population mosaic
(scrambled, on the left, or ‘organized,’ in the middle) and histograms of students’ guesses of the color
density and mean of these guesses (note alignment with population green–blue contour). On right is a

fragment of the student (“client”) interface with personal samples from the population. The average color
density of these ten 3-by-3 samples is 60/90, and the student has input 67% as a population estimation.

Design of Classroom Activities
The population in SAMPLER is a large square “mosaic” of thousands of green and blue tiles
(NetLogo “patches,” see Figure 1, on left). The population property in question is the overall
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percentage of green or the greenness in the population. Alternatively, one might couch the issue in
terms of the chance of a single hidden tile to be found as green. Yet, one might adopt a mid-level
perspective (Levy & Wilensky, 2004) and focus on the greenness of 9 cells, or 25 cells, etc.

Working in SAMPLER, students use their individual computers to sample from the shared
population (see Figure 1, on right) and then each student determines and inputs a calculated guess
of the overall greenness based on his/her samples. Student input is pooled and displayed as a
histogram. If enough students are participating, then even if some of the guesses are outliers, the
histogram’s central tendencies will be quite accurate, stimulating discussion about the advantages
of collaboration, pooling resources, and strengths inherent in inclusion and diversity of opinions.

SAMPLER units begin with two preparatory stages that familiarize students with the learning
environment. Initially, students observe and interpret a classroom projection of the population
without the help of their own computers. The population is uncovered so all the green and blue
tiles are visible (Figure 1, on left). Students initiate and practice strategies for gauging, measuring,
and indexing the greenness of the population, each student guesses the greenness, and students
suggest, evaluate, and debate methods for establishing a class guess (e.g., sharp-eyed student’s
guess, teacher’s guess, the mode or mean guess). Once a class guess has been established, for
instance by calculating the mean of all student guesses, the moderator “organizes” the population
(see Figure 1, middle). The ‘organize’ function rearranges the mosaic tiles, putting all the green
tiles on the left and all the blue tiles on the right. Students are encouraged to see how the
organized population self-indexes its greenness along a left-to-right continuum. For instance, in
the organized population in Figure 1 (middle image), the green extends 2/3 of the population’s
width. Next, the moderator creates a new population with a random, unknown greenness. The
moderator demonstrates a sampling action by mouse-clicking on the server interface at locations
the students select. Each click reveals a square sample around the cursor. Students discuss how to
optimize sample parameters, such as the location, size, and number of samples, so as to maximize
the accuracy of their guess that is based on these samples. Finally, and during most of the unit,
each student, clicking on their personal monitor, samples from a new hidden population (so
students each see only their own samples). Students may choose to work alone, in pairs, or in
groups. In between rounds, the teacher leads conversations about sampling and data-analysis
strategies. Students receive a limited sampling “allowance” (how many tiles in the population
they may reveal per round). Also, students receive initial points and then points are deducted for
imprecision, 1 point for every 1% off mark. Students may discover that it is worthwhile to pool
information and “gamble” on the group guess, but some students may wish not to do so in order
to get ahead of the group. SAMPLER is designed to facilitate and mobilize classroom group
dynamics: students are encouraged by the design to engage in interpersonal negotiation of facts
and skills. Just as samples may be individually different yet must all be embraced in quantifying
population metrics, so each student’s voice may be unique yet equally important as all other
classroom voices. In a sense, the mathematical machinery of statistics that is embedded in the
design of the SAMPLER participatory simulation projects onto the classroom forum as a model of
diversity, equity, and collaboration.

Design Principles
We strive to build learning environments that foster students’ grounding deep understanding of
mathematics in accessible and engaging contexts (Confrey, 1993; Lesh & Doerr, 2002; Papert,
1980; Wilensky, 1997). Based on our previous research into student intuitions about probability
(Wilensky, 1993, 1995, 1997), we designed SAMPLER so as to foster a community of users who:
(a) experience a complementarity of probability and data analysis (Biehler, 1995); (b) distinguish
and connect theoretical and empirical probability (Henry, 2001); (c) see a population as an
aggregate of successive sampled events (keeping all the raw data rather than representations of the
data); (d) experiment through re-sampling (Simon & Bruce, 1991; Konold, 1994); (e) express
probability as base rate (Gigerenzer, 1998); (f) understand statistical patterns as emergent
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Figure 2. A 6th-grade student interpreting the SAMPLER population of green and blue tiles. On the left and in the
middle, the student is explaining a histogram that compiles his classmates’ guesses of the population’s greenness

(the tall thin line between the histogram bars is the mean guess). On right, the student discusses how the scrambled
population that is 50% green became “organized” (all green on the left, all blue on the right) to facilitate comparison
between the histogram mean and the population greenness (note how the green–blue contour indexes the greenness).

phenomena (Wilensky, 1997); (g) engage judgments of proportion (Spinillo & Bryant, 1991) and
density (Gelman & Williams, 1998) as natural qualitative-cum-quantitative interpretations of
visual information; (h) ground stochastic processes in visual–spatial metaphors (Abrahamson &
Wilensky, 2003), i.e., ‘bridging tools’ (Abrahamson & Wilensky, 2004b); (i) analyze color
density/intensity as a metric affording conceptual continuity between micro and macro levels of
reasoning (from small sample to large sample to whole population); (j) re-invent mathematical
strategies in response to challenging problems (diSessa, Hammer, Sherin, & Kolpakowski, 1991);
(k) use fairly simple arithmetic to broaden the zone of classroom inclusion (Fuson et al., 2000); (l)
build a cohesive, coherent, and fluent conceptual domain through mathematizing phenomena and,
reciprocally, ‘storyizing’ mathematical representations (Fuson & Abrahamson, 2004); and (m)
utilize collaborative group dynamics to connect to statistical constructs (Wilensky, 1993).

Design-Research Methodology, Implementation, and Findings
We maintain that SAMPLER engages and carries students’ probabilistic–statistical intuitions
towards mature domain fluency. This section presents data to support this claim. We have worked
with focus groups and two 6th grade- and a 8th-grade classroom, with students ranging in age (10
to 15), SES, ethnicity, and mathematics achievement. Each implementation informed
modifications in the design towards the subsequent implementation. The students were told they
would play mathematics learning games. The design-research team conducted the interventions
according to a lesson plan that evolved into the plan laid out earlier in this paper. Throughout the
intervention, students were encouraged to share and discuss their opinions. All interventions and
pre- and post-interviews were video- and audio-taped for close analysis, and extensive parts were
transcribed and debated in our research team. The following findings are based on microgenetic
analysis of the data. We discuss only themes that recurred across interventions and many
participants. The themes are mathematical, social, metaphorical, and combinations thereof.

“Group Theory” of Social–Statistical Interaction
A surprising analogy emerged between student intuitions regarding the two axial populations
inherent in SAMPLER: the mosaic as a collection of samples and the classroom as a collection of
guessers. Students’ anticipation of the validity of their collective guess interacted with these
aggregates. On the one hand, students expected an increase in the variability of the distribution of
guesses as a result of an increase either in the number of samples or of guessing students. On the
other hand, they argued that whereas adding samples always increases accuracy, adding humans
beyond some critical number of peers decreases guessing accuracy. So a design that taps group
dynamics of collaborative mathematical practices must negotiate social sensitivities.
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Group guessing modeled mutual liability in democratic societies: diligent students complained
when taxed by the errors of classmates. Also, students discovered that in order to avoid a biased
distribution of guesses, it is better to “guess first, discuss later” rather than “discuss first, guess
later.” That is, first bidders—in particular charismatic and/or high-achieving students—may sway
the group towards an anchor point, around which the group converges. Perhaps the most curious
debate occurred after three students saw that whereas their histogramed guesses were clustered,
their fourth group-mate’s guess was “way off.” At first, they accused him of ruining the group
guess. Lo, once we revealed the true population value, it turned out that all 4 students as a group
had achieved a perfect hit. The outlying student took full credit for having tugged the group
towards the hit. His three peers had mixed feelings: they were not sure how to judge him now,
since he was still more “off” than each one of them individually.

The Law of Large Social Numbers
Students must take a leap of faith in order to surrender themselves to the power of aggregate
guessing. In particular, students struggle with what is for them an apparent paradox: an increase in
the number of guessers increases the cluster of guesses around the mean, yet it also increases the
range of all guesses. Perhaps the law of large numbers is difficult to understand precisely because
students have difficulty reconciling this apparent paradox. It is a challenge of our design to
articulate, clash, and synthesize these would-be irreconcilable beliefs through simulation and
dialogue. One interesting direction to pursue is that of the notion of compensation or balance in
distributions, which students were groping at—for every guess that is x percentiles “way off” to
the left there may be another guess that is equally deviant to the right (see also Wilensky, 1997).

Equity and Inclusion
Because all students—the more and the less “number crunchers”—work and guess under shared
uncertainty, alternative mathematical thinking is embraced as long as it is effective. For example,
a 10-year old low-achieving student gained new social status through innovative pragmatic
strategies, even though she could not quite explain the strategies in mathematical nomenclature.

Sampling Strategies
Students developed complex strategies to maximize the effectiveness of their sample distribution
over the mosaic. They debated over optimal tradeoffs between few–large and many–small
samples. Students were particularly concerned with strategies for addressing populations with
non-random distribution of green and blue tiles (see Figure 1, on left). Those students who had
argued that strategic distribution of samples over the mosaic is irrelevant to the accuracy of
sampling re-evaluated their hypotheses once the entire population was revealed.

Some students who spontaneously applied a many–small sampling strategy, appeared comfortable
in basing their approximation of the population’s greenness on a quasi-quantitative impression
accumulating over repeated sampling (‘base rate’ strategy). For example, one 10-year old student
rapidly re-sampled 3-by-3 arrays of tiles (“9-blocks”) that each vanished the moment a new
sample was taken. While sampling, this student uttered the number of green tiles in each
sample—“3, 0, 1, 2, 2, 1, 2, 3, 3, 1, 0, 2, 3, 2”—and then stated that about 2/9 of the population

  
Figure 3. Students of diverse mathematical skill engage in sampling and calculating population metrics in the

SAMPLER participatory simulation. From left: students (a) compute the mean of their samples; (b) lead the class by
taking samples from the server; and (c) share a computer in taking their own samples from the population.
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were green. This strategy was emulated and modified by another student who, working at the
maximum speed the software allowed her, took numerous repeated samples of size 1 tile.

Students showed great flexibility and creativity in their sampling strategies. For instance, at a
moment when 5 samples were revealed on the screen, each of 25 tiles, one student computed that
each tile was weighted as .8% of the data because 100/125 = .8. When the total number of green
tiles in the data was tallied at 64, his peer computed 64 * .8 and they inferred a 51.2% greenness
in the population. These students were comfortable, for later samples, to work in a manner which,
using the same numbers as above, would look as following: first count up the total tiles (125) and
the total green tiles (64) and then divide 64/125, to get 51.2%. Yet another strategy, initiated by a
10-year old student, was to plan how many tiles she would reveal in total and then figure out how
many green tiles would comprise 1% of this total, e.g., 3 tiles are 1% of 300 total sampled tiles.
As she sampled, she eyeballed each sample, adding up 1 percent for every additional 3 green tiles
that were revealed. Although she worked rapidly, nonchalantly, and not too accurately, her
strategy proved highly effective, probably because her errors compensated one for the other.

Agent–Aggregate Relations
SAMPLER populations can be set as not bi-linear randomly distributed (see Figure 1, on left),
creating clumps of green and/or blue tiles. Students were wary of hasty inferences in the absence
of what they came to deem as sufficient information. Their strategies and discourse revealed both
an interpretation of samples as instances within a distribution and sensitivity to the typicality of
samples. Small- and medium-sized samples were not expected to be representative of the
population, especially when initial samples revealed high variability in local density. Also,
samples that were “way off” caused surprise and updating of macro values but did not call for re-
evaluation of strategy and did not harm students’ esteem as mathematicians. Although students
playfully guessed the greenness of individual samples, their attitude gradually shifted towards less
commitment to samples and more to the population. That is, participants’ intellectual investment
and personal stakes centered on inferences concerning the aggregate distribution and mena and
not on guesses concerning each successive bit of local data.

Spatial Metaphors and Statistical Reasoning
In order to contextualize students’ discourse and rationalize the sampling procedure, we set the
following task: “I am the CEO of an international shampoo company, and I’ve assigned you, my
statisticians, to determine the average number of hairs on peoples’ heads around the world.”
Fortuitously, the mosaic resembled a map of the world, with the green clumps being continents in
a blue sea. So context guided metaphor, and metaphor served as a vehicle of reasoning. One
student said that if we concentrate our limited sampling resources in “South America” (green
clump on lower left hemisphere of the mosaic-as-map), our inferences would not generalize to
other continents. Another student localized the metaphor to sampling from different states in the
U.S. We suggested a sampling strategy by which all samples should be taken from a remote town
in the north of Finland. Students were not stumped. As one 10-year-old student objected, “What if
they’re all bald?”

Other interpretations students suggested for the mosaic were: (1) a maze; (2) “a green plain
viewed from above and people wearing square blue hats”; (3) “a patchwork quilt”; (4) a
representation of fashion styles over a whole year [sic]; (5) “the blue is small flocks of sheep and
the green is hundreds and hundreds of walls”;  (6) “the blue is flowers and the green is lots of
forest plants that eat flies.” These imaginative metaphors students construct for green and blue
tiles suggests that: (a) the mosaic does not necessarily constrain students to a narrow
conceptualization of the statistical construct “population”; and (b) any notion that students need
explicit imagery so as to be engaged and making sense of a learning activity and that nondescript
visual cues are too abstract is at the least questionable (see also Wilensky, 1991; Uttal and
DeLoache, 1997; Abrahamson, 2004).
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Living With Uncertainty
Students learned to compile samples and to average classroom guesses so as to approximate the
true population mean, which “you can never be certain of.” This tenuousness of statistical truth
informed students’ seeing sampling as a compromise between limited resources and desired
accuracy. Also, students often referred to the time factor. Yes, they could count up thousands of
tiles in a revealed mosaic to achieve 100% accuracy, but “that would take days.” In that, time
became as important a resource to consider in sampling strategies as were sample size, location,
and number. Time interacts with these three spatial attributes, because it dictates efficiency.
Finally, the semiotic message of statistics—the mathematical language—may be setting students
up to expect a certainty they are familiar with from elementary-school math. Also, students expect
computers to deliver unambiguous results. These language games need to be addressed.

Intuitive Statistics
Students’ spontaneously-intuited mathematical constructs closely shadowed a host of real
statistical concepts. Using simple quantitative vocabulary, students: (1) re-invented margin of
error and confidence level; (2) sensed that a mean is not always meaningful if the data is not
distributed normally; (3) manifested and argued for sophisticated sampling strategies that address
the gauged distribution of target values in the population; and (4) specifically expressed concern
that samples from clumpy populations are problematic (“you should spread it out!”). Thus,
probability and statistics can be seen as a high-precision enhancement of common-sense
calculated estimation under conditions of uncertainty.

Conclusions and Future Work
SAMPLER engages students in activities wherein a shared object serves as a platform for
articulating intuitions, learning professional vocabulary, testing hypotheses, and debating
strategies of statistical inquiry. The inherently collaborative activities in SAMPLER, embodied
primarily in students’ interdependence for data and for estimates from these data—impelled
students to scholastic argumentation that: (a) teased out individuals’ intuitions; (b) afforded
opportunities to engage in and refine mathematical terminology,
representational forms, and conceptual tools; and (c) introduced and
positioned ‘distribution,’ ‘variability,’ and complementary micro and
macro perspectives in probability and statistics as
social–mathematical constructs. We conclude that advanced
statistical conceptual tools that are traditionally introduced as
secondary school constructs already have their qualitative-cum-
quantitative roots in elementary-school students’ reasoning. These
roots can grow deeper and this reasoning can flourish, given
appropriate learning environments.

We have recently conducted further research on SAMPLER in middle
school. In this context, SAMPLER was implemented in conjunction
with ProbLab (Abrahamson & Wilensky, 2004a, 2004b, 2004c), a
suite of curricular models that we are designing in collaboration with
middle-school teachers. In ProbLab, students working with computer
models in a collaborative learning environment: (a) reason about their
own assumptions concerning randomness (see Abrahamson, Berland,
Shapiro, Unterman, & Wilensky, 2004); (b) analyze and represent
strings of random events (e.g., hit-miss-miss-hit-miss, etc.) using
multiple plots (of m/n, attempts-until-hit runs, and samples); (c)
manipulate and run experiments with mathematical objects that
bridge between the familiar–concrete and the virtual–conceptual
space of probability (e.g., computer-based dice and color boxes); (d)
conduct combinatorial analyses of mathematical objects; and (e) use

Figure 4. Fragment from
NetLogo ProbLab

Sample Stalagmite.
The combinatorial sample

space of 3-by-3 arrays
grows probabilistically.
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geometry to connect theoretical and empirical understanding of stochastic processes (Abrahamson
& Wilensky, 2003). A key mathematical object in Problab is the square array of NetLogo “tiles”
(e.g., the 3-by-3 “9-block,” see samples in Figure 1). Students investigate and build, in both
concrete and virtual media, the combinatorial sample space of all possible 9-blocks, where each of
the 9 squares may be one of two colors (see Figure 4). The perceptuality of this histogramed
sample space informs students’ sense of sample distribution in working with the ProbLab models.
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