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ABSTRACT. In the Connected Learning projects, we are studying students’ learning of
content through exploring and constructing computer-based models of that content. This
paper presents a case study of a high school physics teacher’s design and exploration of a
computer-based model of gas molecules in a box. We follow up the case study with shorter
vignettes of students’ exploration and elaboration of the Gas-in-a-Box model. The cases
lead us to analyze and discuss the role of model-based inquiry in science and mathematics
education as well as to draw some general conclusions with respect to the design of model-
ing languages and the design of pedagogies and activities appropriate for model-based
inquiry in classroom settings.

1. INTRODUCTION

Several high school students are huddled around a personal computer, eyes
intent on the screen. They watch as little blue, green and red shapes speed
across the screen, bouncing off a containing “box” and colliding with each
other and changing speeds. One shouts, “that slow molecule just sped up
real fast when it hit the other one. Why does it do that?” The others nod
in agreement with his puzzlement and they all start to suggest computer
“experiments” that could help them answer the question. “Collide a bunch
of them all from the same locations and see if it’s always the same”. “Do
the slow ones always speed up after a collision, or do they sometimes slow
down even more?”

These high school students at a run-of-the-mill urban high school
in Massachusetts are engaged in heated discussion of statistical thermal
physics. This content, considered amongst the hardest topics for graduate
students in physics, is made accessible to these students through the
medium of a computer-based modeling environment, NetLogo (Wilensky,
1999), in which the students can explore, experiment and analyze the
interactions of large numbers of simulated molecules.

� A version of this paper was reprinted in Wilensky, U. (1999). GasLab – an Extensible
Modeling Toolkit for Exploring Micro- and Macro-Views of Gases. In N. Roberts, W.
Feurzeig and B. Hunter (Eds), Computer Modeling and Simulation in Science Education.
Berlin: Springer Verlag. The present paper is, however, significantly revised and updated
due to a five year delay in publication.
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In this paper, I will present several vignettes of a secondary teacher and
students constructing and exploring NetLogo models of statistical mech-
anical phenomena. These vignettes illustrate the powerful learning these
so-called average students achieved through their model-based inquiry.
The students’ explorations led to the development of a set of models,
dubbed GasLab, that collectively form a toolkit enabling exploration and
further construction of gas molecule models. The argument will be made
that multi-agent modeling toolkits such as GasLab enable a much larger
and younger segment of society to engage with the powerful ideas of
statistical thermal physics and thereby obtain much deeper explanations
of traditional secondary physics/chemistry content as well.

We begin in the next two sections with an introduction to dynamic
systems modeling. The subsequent two sections present the case studies
and vignettes that are the heart of the paper. We then move on to discuss
general pedagogical and design issues educators face when we introduce
model-based inquiry into learning environments and classroom settings.

2. DYNAMIC SYSTEMS MODELING

Computer-based modeling tools have largely grown out of the need to
describe, analyze, and display the behavior of dynamic systems. During
recent decades, there has been a recognition of the importance of under-
standing the behavior of dynamic systems – how systems of many inter-
acting elements change and evolve over time and how large-scale patterns
can arise from local interactions of these elements. New research projects
on chaos, self-organization, adaptive systems, nonlinear dynamics, and
artificial life are all part of this growing interest in systems dynamics.
The interest has spread from the scientific community to popular culture,
with the publication of many general-interest books about research into
dynamic systems (e.g., Barabasi, 2002; Bonabeau et al., 2001; Buchanan,
2002; Gell-Mann, 1994; Holland 1998; Johnson, 2001; Kauffman, 1995;
Kelly, 1994; Roetzheim, 1994; Waldrop, 1992).

Research into dynamic systems touches on some of the deepest issues
in science and philosophy – order vs. chaos, randomness vs. determinacy,
analysis vs. synthesis. The study of dynamic systems is not just a new
research tool or new area of study for scientists. The study of dynamic
systems stands as a new form of literacy, a new way of viewing, describing,
and symbolizing phenomena in the world. The language of the present
mathematics and science curriculum employs static representations. Yet,
our world is, of course, constantly changing. This disjunct between the
world of dynamic experience and the world of static school representa-
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tions stands as one source of student alienation from traditional curricula
(Bertalanffy, 1975; Stroup, 2002; Wilensky, 1997b). The gap between
students’ experience of the world around them and mathematical represen-
tations of that experience has grown even larger as students increas-
ingly play in virtual worlds and games (Turkle, 1995; Bruckman, 1994;
Kafai, 1998) which make use of dynamic representations. Such dynamic
representations, theoretical perspectives and computer-based tools arising
out of the study of dynamic systems can describe and display the changing
phenomena of science and the everyday world. Moreover, these tools can
do so in ways that are accessible to large numbers of students. There is
therefore now an opportunity to enable many more students to engage in
genuine science and mathematics inquiry, to explore and characterize how
systems unfold and change over time, to uncover the dynamics at work
that create seemingly static patterns in nature and society and, through
such inquiry, to bring this new form of literacy, a literacy in the dynamics
and patterns of change, to the great majority of students and citizens.

3. DYNAMIC SYSTEMS MODELING IN THE CONNECTED
LEARNING PROJECTS

At the Center for Connected Learning and Computer-based Modeling, over
the past fifteen years,1 we have conducted a large number of “Connected
Learning” projects in which student learn a variety of content domains
through computer-based modeling. Among these are the Connected
Probability project (Wilensky, 1995a, 1995b, 1996, 1997b; Wilensky and
Resnick, 1999; Wilensky and Stroup, 2000; Abrahamson and Wilensky,
2003), the ConnectedScience project (Wilensky and Reisman, 1998, in
press), the Connected Chemistry project (Stieff and Wilensky, 2002,
2003), the Connected Evolution project (Centola et al., 2000; Centola and
Wilensky, 2000) and a number of others. The goal of these projects is to
study learners (primarily high school students) engaged in model-based
inquiry of scientific phenomena. As part of these projects, learners are
provided with access to a variety of modeling tools that they can use in
pursuit of their investigations. They make particular use of the computer-
based modeling languages StarLogoT2 (Wilensky, 1995a, 1997b) and
NetLogo3 (Wilensky, 1999) to conduct their investigations.4

StarLogoT and NetLogo are instances of a new class of computer-based
modeling languages known as “multi-agent” languages (aka object-based
parallel modeling languages). Such languages enable users to visualize,
explore and construct computer-based models of a wide variety of worldly
phenomena. Users can create these models by giving rules of behavior



4 URI WILENSKY

to large numbers of so-called “agents,” graphical objects that can move
about the computer screen and interact. StarLogoT and NetLogo are multi-
agent languages specifically designed to enable users without modeling
experience to explore and construct models. Both these languages are
extensions of the Logo language in which a user controls a graphical
turtle by issuing commands, such as “forward,” “back,” “left,” and “right”
and they are descendents of the StarLogo5 language. In StarLogoT and
NetLogo, the user can control thousands of graphical turtles. Each turtle
is a self-contained “agent” with internal local state. Besides the turtles,
these languages automatically include a second set of agents, “patches.” A
grid of patches undergirds the environments’ graphics window. Each patch
is a square or cell that is computationally active. Patches have local state
and can act on the “world” much like turtles. Essentially, a patch is just
a stationary turtle. For any particular model, there can be arbitrarily many
turtles (from 0 to 32000 is the range found in the models we have used), but
there are, typically, a fixed number of patches (e.g., something like 10,000
laid out in a 100×100 grid).6

Over the years of the Connected Learning projects, several different
versions of multi-agent Logo languages have been developed. The first
implementation ran on a connection machine, a parallel supercomputer.
Parallel emulation implementations soon ensued for UNIX workstations
and personal computers. Each of these implementations preserved the
essential ingredients of the language, but differed in some important ways.
The modeling projects described in this paper have run in several different
versions of the language on several different platforms. For simplicity of
the exposition, all models will be described in their re-implemented form
in NetLogo.7

This paper will describe in detail the evolution of a collection of
NetLogo models for exploring the behavior of gases. The models evolved
as they were constructed and extended by a high school physics teacher and
several high school students. The theory of gases is a classical and central
topic in chemistry and physics education – a topic that historically gave rise
to the field of statistical mechanics. It has been and still is the subject of
considerable writings by leading scientists engaged in intellectual debates
replete with subtle arguments and paradoxes. As such, it is considered a
difficult topic for graduate students in physics and chemistry. Yet, in this
paper, we will “see” average high school students deeply engaged and
doing quite sophisticated reasoning about this advanced content.

We now call this collection of models GasLab. The original GasLab
model was built, in the connection machine version of StarLogo, by
a high school physics teacher involved in the Connected Probability
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project. He called the model GPCEE (Gas Particle Collision Exploration
Environment). In the re-implementation of GPCEE for StarLogoT and
then for NetLogo, the GPCEE model was renamed Gas-in-a-Box and it is
one of an evolving collection of models that constitute GasLab. As part of
the Modeling across the Curriculum project (Horwitz et al., 2002), many
of the GasLab models have been adapted and have been incorporated as
core elements of the (secondary level) Connected Chemistry curriculum
(Wilensky, Bruozas and Levy, 2003).

4. THE CREATION OF THE GAS-IN-A-BOX MODEL –
HARRY’S STORY

In the context of the Connected Learning projects, students were offered
the opportunity to construct NetLogo models of phenomena of interest to
them that involved probability and statistics. Harry, a high school physics
teacher enrolled in an education class that I was teaching, had long been
intrigued by the behavior of a gas in a sealed container. He had learned
in college that the gas molecule speeds were distributed according to a
famous law, the Maxwell-Boltzmann distribution law. This distribution
had a characteristic right-skewed shape. He had taught this law and its
associated formula to his own students, but there remained a gap in his
understanding – how/why did this particular distribution come about?
What kept it stable? To answer these questions, he decided to build (with
my help8) a multi-agent model of gas molecules in a box.

Harry built his model based on certain classical physics assumptions:

• Gas molecules are modeled as spherical “billiard balls” – in partic-
ular, as symmetric and uniform with no vibrational axes.

• Collisions are “elastic” – that is, when particles collide with the sides
of the box or with other gas molecules, no energy is lost in the colli-
sion, all the energy is diverted back into the kinetic energy of the
moving molecules.

• Points of collision between molecules are determined stochastically.
Because it can be hard to calculate the exact collision points of many
spherical particles, it is reasonable to model the points of collision
contact between particles as randomly selected from the surface of
the balls.9

Harry’s model displays a box with a specified number of gas particles
randomly distributed inside it. The user can set various parameters for the
particles such as: Mass, speed, number. The user can then perform “exper-
iments” with the particles and observe the results in the graphics window,
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Figure 1. Maxwell-Boltzmann distribution of molecule speeds (illustration from Giancoli,
1984).

Figure 2. Gas-in-a-Box interface.

or in dynamic plots or in the numeric “monitors” (such as “avg-speed” in
Figure 2).

Harry called his program GPCEE though other students subsequently
dubbed it “GasLab”. Harry’s program was a relatively straightforward
(though longish) NetLogo program. At its core were three procedures that
were executed (in parallel) by each of the particle “agents” in the box:

At each “tick” of the NetLogo “clock”:

go: each particle checks for obstacles and, if none are present, moves forward an
amount based on its speed variable;
bounce: if the particle detects a wall of the box, it bounces off the wall
collide: if the particle detects another particle in its vicinity, the particles bounce off
of each other like billiard balls.
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Harry was excited by the fact that the laws of the gas should emerge
“automatically” from the simple rules he had written for the particles.
He realized that he wouldn’t need to program the macro-level gas rules
explicitly; they would come “for free” if he wrote the underlying (micro-
level) particle rules correctly. He hoped to gain further confidence in the
gas laws through this approach – seeing them emerge as the result of
the laws of individual particles and not as some mysterious orchestrated
properties of the gas.

In one of his first experiments, Harry created a collection of particles of
equal mass randomly distributed in the box. He initialized them to start at
the same speed but moving in random directions. He kept track of several
statistics of the particles on another screen. When looking at this screen,
he noticed that one of his statistics, the average speed, was going down.
This surprised him. He knew that the overall energy of the system should
be constant: Energy was conserved in each of the collisions. After all,
he reasoned, the collisions are all elastic, so no energy is lost from the
system. Since the number of molecules isn’t changing, the average energy
or total energy/number of molecules should also be a constant. But energy,
he continued, is just proportional to the mass and the square of the speed.
Since the mass is constant for all molecules, he concluded that the average
speed should also be constant. The puzzle, then, was why did the model
output show the average speed to be decreasing? In Harry’s words

The IMPLICATION of what we discovered is that the average length of each of the
individual vectors does indeed go down. PICTURE IT!! I visualize little arrows that
are getting smaller. These mental vectors are just that. Little 2 (or 3)-dimensional
arrows. The move to the scalar is in the calculation of energy (with its v∗∗2 terms.)
Doesn’t it seem difficult to reconcile the arrows (vectors) collectively getting smaller
with a scalar (which is a quantity that for a long time was visualized as a fluid) ’made
up’ from these little vectors NOT getting less!

Harry was dismayed by this new “bug” and set out to find what “had to”
be an error in the model program code. He worked hard to analyze the
decline in average speed to see if he could get insight into the nature of the
calculation error he was sure was in the program.

But there was no error in the code. After some time unsuccessfully
hunting for the bug, Harry decided to print out average energy as well. To
his surprise, the average energy stayed constant.

At this point Harry realized that the “bug” must be in his thinking rather
than in the code. His reasoning had led him to believe that if average-
energy was constant, so would average-speed be constant. But, in this
model, average energy was constant but not so average speed. He, thus, felt
the need to further explore the behavior of the model in order to understand
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better how his reasoning could have led him astray. He began his explora-
tion by trying to get a more visual understanding of the gas dynamics.
To do so, he decided to color-code the particles according to their speed:
Particles are initially colored green; as they speed up, they get colored red;
as they slow down, they get colored blue. Soon after starting the model
running, Harry observed that there were many more blue particles than red
particles. He realized that this was yet another way of thinking about the
average-speed problem. If there are more slow (blue) particles than fast
(red) ones, then the average speed would indeed have to drop – so this was
consistent with the hypothesis that the problem was in his thinking not in
the code.

Upon seeing the color asymmetry, Harry realized that, of course, if
the particles were to be distributed into the predicted Maxwell-Boltzmann
distribution, there would necessarily have to be more slow particles than
fast since the distribution was skewed. The color-coding gave him a
concrete way of thinking about the asymmetric Maxwell-Boltzmann distri-
bution. He could “see” the distribution: Initially all the particles were
green, a uniform symmetric distribution, but as the model developed, there
were increasingly more blue particles than red ones, resulting in a skewed
asymmetric spread of the distribution.

Even though Harry knew about the asymmetric Maxwell-Boltzmann
distribution, he was surprised to see the distribution emerge from the
simple rules he had programmed. Since he had programmed the rules,
he had faith that this stable distribution does indeed emerge. Harry tried
several different initial conditions and all of them resulted in this distribu-
tion. He was now starting to believe that this distribution was not the result
of a specific set of initial conditions, but that any gas, no matter how the
particles’ speeds were initialized, would attain this stable distribution. In
this way, the NetLogo model served as an experimental laboratory where
the distribution could be “discovered.” This type of experimental labora-
tory is not easily (if at all) reproducible in a physical experimental setup
outside of a computer-based-modeling environment.

But there remained several puzzles for Harry. Though he believed that
the Maxwell-Boltzmann distribution emerged from his rules, he still did
not see why they emerged. And he still did not understand how these
observations fit with his mathematical knowledge – how could the average
speed change when the average energy was constant?

Reflecting on this confusion gave Harry the insight he had originally
sought from the GasLab environment. Originally, he had thought that,
because gas particles collided with each other randomly, they would be
just as likely to speed up as to slow down10 so the average speed should
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Figure 3. 8000 gas particles after 30 ticks. Faster molecules are red, slower molecules
blue, and average-speed molecules are green.

Figure 4. Dynamic histogram of molecule speeds after 30 clock ticks.
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Figure 5. Dynamic plot of fast, slow, and medium speed particles.

stay roughly constant. But now, Harry saw things from the perspective
of the whole ensemble. The law of conservation of energy guaranteed,
Harry knew, that the overall pool of energy was constant.11 Although there
were many fewer red particles than blue ones, Harry realized that each
red particle “stole” a significant amount of energy from this overall pool
of energy. The reason: energy is proportional to the square of speed, and
the red particles were high speed. Blue particles, in contrast, took much
less energy out of the pool. So each red particle need to be “balanced” by
more than one blue particle to keep the overall energy constant. In Harry’s
words:

There have to be more blue particles. If there were the same number of blues as reds
then the overall energy would go up. Let’s say 1000 green particles have mass 1
and speed 2, then the overall energy is equal to 2000 [ED − 1/2∗m∗V∗∗2]. If half
the greens become red at speed 3 and half become blue at speed 1, then the energy
of the reds is 500 ∗ 1/2 ∗ 9 which equals 2250. (Wow, that’s already more than the
total energy) and the energy of the blues is 500∗1/2∗1 which equals 250. Oh, yeah, I
guess I don’t need the 500 there [ED – noticing that 500 occurs in both expressions,
so it can be factored out], a red is nine times as energetic as a blue so to keep the
energy constant we need 9 blues for every red.

Harry was now sure he had discovered the nugget, the crux of why the
Boltzmann distribution arose. As particles collided they changed speeds
and the energy constraint ensured that there would be more slow particles
than fast ones. Yet, he was still puzzled on the “mathematical side”. He
saw that the greater number of blue particles than red particles ensured
that the average speed of the molecules would indeed decrease from the
initial average speed of a uniform gas. But, how did this knowledge fit
with the classical Newtonian formulas?

Harry had been working on the classical physics equations when he felt
sure there was a bug in the NetLogo code. He had been working on them in
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two different ways and both methods led to the conclusion that the average
speed should be constant. What was wrong with his previous reasoning?12

In his first method, he had started with the assumption that momentum13

is conserved inside the box. Since mass is constant, this means the average
velocity as a vector is constant. Since the average velocity is constant, he
had reasoned that its magnitude, the average speed, had to be constant as
well. But, now he saw that this reasoning was faulty, in his words:

[I] screwed up the mathematics – the magnitude of the average vector is not the average
speed. The average speed is the average of the magnitudes of the vectors. And the average
of the magnitudes is not equal to the magnitude of the average.

In his second method, he began with the assumption that the energy
of the ensemble would be constant. This could be written as �i 1/2 mv2

i

is constant. Factoring out the constant terms, it follows that �i v2
i is a

constant. From this he had reasoned that the average speed, �i abs(vi ),
would also have to be constant. He now saw the error in that mathematics
as well. It is not hard to show that if the former sum (corresponding to
energy) is constant then the latter sum (corresponding to speed) is maximal
under the uniform initial conditions.14 As the speeds of the particles
diverge, the average speed decreases just as he “observed”. For a fixed
energy, the maximum average speed would be attained when all the speeds
were the same – as they were in the initial state. As the system evolves from
that initial state, more particles would slow down than would speed up.

Although both these bugs were now obvious to Harry and he felt
that they were “embarrassing errors for a physics teacher to make”, this
confusion between the different kinds of averages was still lurking in the
background of his thinking. Once brought to light, it could in principle
be readily dispensed with through standard high school algebra. However,
the standard mathematical formalism did not cue Harry into seeing his
errors. His confusion was brought to the surface, leading to his under-
standing, through constructing and immersing himself in the Gas-in-a-Box
model. In working with the model, it was natural for him to ask questions
about the large ensemble and to get experimental and visual feedback. This
also enabled Harry to move back and forth between different conceptual
levels, the level of the whole ensemble, the gas, and the level of individual
molecules.

Harry was now satisfied that the average speed of the ensemble would
indeed decrease from its initial uniform average. The above reasoning
relieved his concerns about how such an asymmetric ensemble could be
stable. But it had answered his question only at the level of the ensemble.
What was going on at the level of individual collisions? Why were colli-
sions more likely to lead to slow particles than fast ones? This led him to
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Figure 6. Broken symmetry leads to changing speeds.

conduct further investigations into the connection between the micro- and
macro-views of the particle ensemble.

Harry was led inexorably to the question: Why would the particle
speeds spread out from their initial uniform speed? Indeed, why do the
particles change speed at all? Harry knew that the particles change their
speeds when colliding with other particles, but he wondered: “But the
collisions between particles are completely symmetric – why does one
particle change speed more than the other?” To answer this question, Harry
conducted further modeling experiments that focused on only two particles
that repeatedly collided in fixed trajectories. After seeing two particles
collide at the same angle again and again, but emerging at different angles
each time, he remembered that “randomness was going on here”. The
particles were“ choosing” random points on their surface to collide, so
they did not behave the same way each time. By experimentally varying
the collision points, he observed that the average speed of the two particles
did not usually stay constant. Indeed, it remained constant only when the
particles collided head-on.

It was not long from this realization to the discovery of the broken
symmetry: “when particles collide, their trajectories may not be symme-
trical with respect to their collision axis. The apparent symmetry of the
situation is broken when the particles do not collide head-on – that is,
when their directions of motion do not have the same relative angle to the
line that connects their centers” (Figure 6).

Harry then went on to do the standard Newtonian physics calculations
that confirmed this experimental result. In a one-dimensional world, he
concluded, all collisions would be head on and, thus, average speed would
stay constant; in a multi-dimensional world, collisions cause particle
speed distributions to become non-uniform and this leads inevitably to
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the preponderance of slower particles and the characteristic asymmetric
distribution.

Harry had now adopted many different views of the gas and used many
different methods to explain the asymmetry of the particle speed distribu-
tion. Through connecting the macro-view of the particle ensemble with the
micro-view of the individual particle collisions, he had come to understand
both levels of description in a deeper way. Through connecting the mathe-
matical formalism to his observations of colored particle distributions, he
caught errors he had made on the “mathematical side” and, more impor-
tantly, anchored the formalism in visual perception and intuition. Harry
felt he had gained great explanatory power through this connection of the
micro- and macro-view. This connection was made feasible through the
support offered by the NetLogo modeling language.

When asked what he had learned from the experience of building the
Gas-in-a-Box model, Harry made one more trenchant observation. He had
found that the average speed of the gas molecules was not constant. Upon
reflection, he had a “meta-cognitive” realization:

Of course the average speed is not constant. If it were constant, I’d have known
about it. It isn’t easy to be a constant and that’s why we have named laws when we
find constants or invariants. The law of conservation of energy guarantees that the
energy of the gas is a constant. We do not have a law of conservation of speed.

In saying “it isn’t easy to be a constant”, Harry was understanding the
concept of energy in a new way. He saw that energy could be seen as a
statistical measure of a particle ensemble and that it was a special such
measure, a measure that characterized the gas across all its changes. He
saw that there could be many statistical measures that characterize an
ensemble – each of them could lay claim to being a kind of “average”, that
is a characteristic measure of the ensemble. The idea of “average” is thus
seen to be another method for summarizing the behavior of an ensemble.
Different averages are convenient for different purposes. Each has certain
advantages and disadvantages, certain features that it summarizes well and
others that it doesn’t. Which average we choose or construct depends on
what aspect of the data is important to us. Energy, he now saw, was a
special such average – a measure that characterized invariantly a funda-
mental aspect of the collection of particles in a box. Of the many measures
we can use to characterize a gas, only a very few had this invariant property.
Speed, as he observes, does not. Harry thus came to see energy, no longer
as a mysteriously chosen formula, but rather as a measure selected by
scientists for human reasons15 – selected from the set of possible measures
for its utility in unchangingly describing the gas as its molecules moved
and collided.
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5. CREATION OF THE GASLAB TOOLKIT – EXTENSIBLE
MODELS

After Harry finished working with the Gas-in-a-Box model, I decided to
test the model with students who had not been involved in its development.
I contacted a local high school and arranged to meet three hours a week for
several weeks with a few juniors and seniors taking introductory physics.
The group met with me when we could work it into our schedules, some-
times during free periods and sometimes before or after school. The group
was somewhat fluid, consisting of three regular members with 3–4 others
sometimes dropping in. The students who chose to be involved did so out
of interest. Their teacher described the 3 regular members as “average
to slightly above average” physics students in his (non-honors) class. I
introduced the students to the Gas-in-a-Box model, showed them how to
run the model and how to change elementary parameters of the model.
I asked them to begin by just “playing” with the model and talking to
me about what they observed. I describe below these students’ experience
with GasLab. I have introduced GasLab to dozens of groups of students
(high school and collegiate) since that time. While the details of their
explorations are quite different in each case, the overall character of the
model-based inquiry is typified by the story related below.

The students worked as a group, one of them “driving” the model from
the keyboard with others suggesting experiments to try. One of the first
suggested experiments was to put all of the particles in the center of the
box.16 This led to an aesthetically pleasing result as the gas “exploded” in
rings of color, a red ring on the outside, with a nested green ring and a blue
ring innermost.

The students soon hit upon the same initial experiment that had stimu-
lated Harry. They started with a uniform distribution of 8000 green
particles and immediately wondered at the preponderance of blue particles
over red particles as the simulation unfolded. Over the next week, they
went through much of the same reasoning that Harry had gone through
connecting the energy economy of the gas particle ensemble with the speed
distribution of the particles.

But these students were not as motivated by this particular question as
Harry had been. One student, Albert, became very excited by the idea that
the laws of physics would emerge from the model rules:

What’s really cool is that this is it. If you just let this thing run then it’ll act just like
a real gas. You just have to start it out right and it’ll do the right thing forever. We
could run experiments on the computer and the formulas we learned would come
out.
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Figure 7. Gas molecules “explode” from the center of the box.

Albert went on to suggest that since this was a fidelous simulation (“a
real gas”), they could verify the ideal gas laws for the model. The group
decided to verify Boyle’s law that changing the volume of the box would
lead to an inverse proportional change in the pressure of the gas.

Now the group was faced with creating an experiment that would
test whether Boyle’s law obtained in the GasLab model. Tania made a
suggestion:

We could make the top of the box move down like a piston. We’ll measure the
pressure when the piston is all the way up. Then we’ll let it fall to half way down
and measure the pressure again. The pressure should double when the piston is half
way down.

The group agreed that this was a reasonable methodology, but then were
stopped short by Isaac who asked: “How do we measure the pressure”?
This question was followed by a substantial pause. They were used to
being given instruments to measure physical magnitudes, such as pressure,
a black box that they could just read out a number from. As Albert said for
the group: “We have to invent a pressure-measure, a way of saying what
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the pressure is in terms of the particles”. The group pondered this question
for the next several days. Tania suggested the first operational measure:

we could have the sides of the box store how many particles hit them at each tick.
The total number of particles hitting the sides of the box at each tick is our measure
of pressure.

They programmed this measure of pressure into the model. Lots of
discussion ensued as to what units this measure of pressure represented.
At long last, they agreed that they did not really care what the units were.
All they needed to know, in order to verify Boyle’s law, is that the measure
would double, so a scale factor (due to units) would not affect the result of
the experiment.

They created a “monitor” that would display the pressure in the box and
ran the model. To their dismay, the pressure in the box fluctuated wildly.
Tania was quick to point out the problem:

We only have 8000 particles in the box. Real boxes full of gas have many more
particles in them. So the box is getting hit a lot less times at each tick than it should
be. I think what’s happening is that the number of particles isn’t big enough to make
it come out even.

Persuaded by this seat-of-the-pants “law of large numbers” argument,
they made an adjustment to the pressure measuring code. They calculated
the number of collisions at each tick over a number of ticks, then aver-
aged them. Trial and error simulations varying the averaging time interval
convinced them that averaging over ten ticks led to a sufficiently stable
measure of pressure.17

Now that they had a stable pressure gauge, they were ready to construct
the piston and run the experiment. But, here again, they ran into conceptual
difficulties. How was the piston to interact with the particles? Were they to
model it as a large massive particle that collided with the particles? In that
case, how massive should it be? And, if they did it that way, wouldn’t it
affect the pressure in the box in a non-uniform way? As Albert said:

If we do the piston, then the North-South pressure in the box will be greater than the
East-West pressure, that doesn’t seem right. Shouldn’t the pressure in the box stay
even?

This issue was discussed, argued and experimented on for several hours. It
was at this point that Tania suggested another approach.

I’m confused by the effect the piston is supposed to have on the particles. I have an
idea. Why don’t we start the particles out in half the box, then release the “lid” and
let them spread out into the whole box. If we do that, we won’t have to think about
pistons and we can just see if the pressure decreases in half.
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Figure 8. Box with lid down: volume = 1200 box with lifted lid: volume = 2400 lifting
box lid proportionally reduces pressure.

Figure 9. Plot of pressure as measured in the box at two different volumes.

The group agreed that this was a promising approach and quickly imple-
mented this code. They were now able to run the experiment that they
hoped would confirm Boyle’s law. Indeed their experiment worked as they
hoped. When they lifted the lid so that the box had double the volume, the
pressure in the box did indeed drop in half.

This confirming result could have led to an unfortunate acceptance of
Tania’s measure of pressure as accurate. Indeed, if the experiment had been
reversed, that is Boyle’s law was taken as given, they would not have been
able to disconfirm this pressure measure by experimental results. Fortu-
nately, there were other reasons to question Tania’s pressure measure. The
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group had by now developed the habit of making sense of macro-level
quantities such as pressure in terms of the micro-level interactions. Intui-
tively, if you have more massive or faster particles, the force they impart to
the box is greater. The students tested this intuition against the model by
experimenting with a single particle in a box and observed that (with the
pressure measure they had implemented) the pressure did not change as
they changed the mass of the particle. This conflict of the model with their
intuition led them to revise their pressure measure, in effect to reinvent
a classical measure of conventional physics – momentum transfer to the
sides of the box per unit time.18 Their escapade with Tania’s definition,
however, did yield insights as to the essential mechanisms behind Boyle’s
law. As Tania later said:

I guess for Boyle’s law to work, all that matters is how dense the molecules are in
the box. With more space [ED: more room in the box] they’re less likely to collide
[ED: with the sides of the box per time unit] so the pressure drops.

There is another incident of note surrounding the Boyle’s law experiment.
A week or so after completing the experiment, Isaac ran the model again
with all particles initialized to be at the center of the box. While watching
his favorite “explosion”, Isaac noted that the gas pressure registered 0!
Quickly, he realized that that was a consequence of their definition of
pressure – no particles were colliding with the sides of the box. This result
didn’t seem right to Isaac and led him to ask the group if they should revise
their concept of pressure yet again. Argumentation ensued as to “whether a
gas had internal pressure without any box to measure it”. They realized that
the experiment in question was not feasible in a real experimental setting,
but nonetheless, it did seem that there should be a theoretical answer to
the question. Isaac suggested various ingenious solutions19 to the problem,
but in the end, the group did not alter their pressure gauge. The ingenious
solutions were more difficult to implement and their current gauge seemed
to be adequate to the experiments they were conducting.20

Another noteworthy development related to the emergence of the
Boltzmann distribution discussed in the previous section. Albert came in
one day all excited about an insight he had had. The gas molecules, he
said, can be thought of as probabilistic elements, sort of like dice. They
can randomly go faster or slower. But while there is no real limit to how
fast they can go,21 their speed is bounded below by zero speed. It’s as if
particles were conducting a random walk on the right half plane but there
was a wall on the y-axis. Albert saw that this constrained random walk
would have to produce a right-skewed distribution. I challenged him to go
further: (a) Could he construct a NetLogo model to prove his theory? (b)
Could he determine what particular probability constraints would produce
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a strict Boltzmann distribution? (c) Could he find other seemingly unre-
lated phenomena that satisfied the same formal constraints and thus would
also produce a Boltzmann distribution? Albert and his fellow students were
up to these challenges.

These students (and subsequent groups of students) have conducted
many more experiments with the Gas-in-a-Box model. As they revised
and extended the model, they created a set of models that has since been
expanded and revised into the toolkit we now call GasLab. The set of
extensions of the original Gas-in-a-Box model is impressive in its scope
and depth. Among the many extensions they tried were: Heating and
cooling the gas, introducing gravity into the model (and a very tall box)
and observing atmospheric pressure and density, modeling the diffusion of
two gases, allowing the top to be porous and seeing evaporation, relaxing
elasticity constraints and looking for phase transitions, introducing vibra-
tions into the container and measuring sound density waves, and allowing
heat to escape from the box into the surrounding container. They also rein-
vented various well-known thought experiments of statistical mechanics
related to Maxwell’s demon and second law considerations.22

5.1. Statistical Mechanics for Secondary School

Over the course of several weeks, these high school students “covered”
much of the territory of collegiate statistical mechanics and thermal
physics and their understanding of it was deeply grounded in both (a)
their intuitive understandings gained from their inquiry experience with
the models and (b) the causal and explanatory relationships between the
micro-behavior of the gas molecules and the macro-features of the gas.

It is worth noticing that this is a remarkable achievement. As has been
noted, the territory of statistical mechanics is a difficult and confusing one
even for graduate students in physics. These graduate students have typi-
cally had several years of physics instruction at an undergraduate level and
intensive instruction at a graduate level prior to undertaking this material.
Professional physicists, too, find this material challenging and requiring of
careful and subtle argumentation. How, then, is it possible for average high
school students with virtually no physics background to make significant
headway?

We start our reply to this provocative question with some caveats.
Clearly, there is much of the territory of statistical mechanics these
students did not cover. In particular, they, of course, did not cover the
analytic differential and statistical techniques that make up a large part
of statistical mechanics instruction. What is interesting is that despite
not being able to use the analytic techniques, these high school students
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were able to deeply engage with the ideas, models and thought experi-
ments that are central to the study of statistical mechanics. The multi-agent
modeling environment together with the GasLab toolkit afford more direct
engagement with these core ideas and experiments – enabling a much
larger and younger segment of the population to appreciate the beauty and
explanatory power of these ideas. By enabling students to shift perspec-
tives from the micro-level of the particles to the macro-level of the gas and
to vary properties at each level and immediately see the consequences at
another level, GasLab fosters a more general shift in student perspective, a
perspective of emergence, through which they come to fluently see the
properties of the gas as causally arising from the properties and inter-
actions of individual gas molecules. This new perspective serves as the
substrate for an emerging literacy in dynamic systems, an ability to decode
large-scale patterns into their component elements and interactions and to
understand how a change in the properties of the elements could affect
the behavior of the system. To be more fully literate in this domain, they
would eventually need to master some of the analytic and symbolic tech-
niques that would enable them to do more exact analyses and predictions
of system behavior. Only a small number of students will likely choose to
achieve this higher level of literacy, but, even for those, it seems likely that
when they encounter the mathematical techniques of statistical mechanics,
they will make greater sense as they will be situated as augmentations of
their qualitative understandings of these systems.

GasLab provides learners with a set of tools for exploring the behavior
of an ensemble of micro-elements. Through running, extending, and
creating GasLab models, these learners were able to develop strong intui-
tions about the behavior of the gas at the macro level (as an ensemble gas
entity) and its connections to the micro level (the individual gas molecule).
In a typical high school physics classroom, learners usually address these
levels at different times. When attending to the micro level, the focus
is, typically, on the exact calculation of the trajectories of two colliding
particles. When attending to the macro level, the focus is on “summary
statistics” such as pressure, temperature, and energy. Yet, it is in the
connection between these two primary levels of description that the great
explanatory power resides.

Two major factors enable students using GasLab to make the connec-
tion between these levels – the replacement of symbolic computation with
simulated experimentation and the replacement of “black-box” summary
statistics with learner-constructed summary statistics. The traditional
secondary physics curriculum segregates the micro- and macro-levels of
description because the mathematics required to meaningfully connect
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them is thought to be out of reach of high school students. In the GasLab
modeling toolkit, the formal mathematical techniques can be replaced with
more concrete experimentation with simulated particles. This experimen-
tation enables learners to get immediate feedback on their theories and
conjectures. In traditional curricula learners are typically handed concepts
such as pressure as “received” physics knowledge. The concept (and its
associated defining formula) is, thus, for the learner, a “device” built by
an expert, which the learner can neither inspect nor question. Learners
do not come to see that this concept represents a summary statistic – a
way of averaging or aggregating the behavior of many individual particles
(see e.g., Wilensky, 1997b). Most fundamentally, the learner has no access
to the design space of possibilities from which this particular summary
statistic was selected. In the GasLab context, learners must construct their
own summary statistics. As a result, the traditional pressure measure is
seen to be one way of summarizing the effect of the gas molecules on
the box, one way to build a gauge. The activity of designing a pressure
measure is an activity of doing physics, not absorbing an expert’s “dead”
physics.

These two factors, the ability to act on the model and to “see” its
reactions and the ability to create interpretations of the model in the form
of new computational objects which, in turn, can be acted upon make a
significant difference in the kinds of understandings students can construct
of the behavior of gas molecule ensembles. Through such activities, the
students came to understand the gas as a concrete entity,23 much in the
same way they experience physical entities outside the computer. Through
engaging with GasLab, high-school students have access to the powerful
ideas and explanations of statistical thermal physics. These constructive
modeling and model-based reasoning activities can provide students a
powerful way of apprehending the physics and chemistry of gases – one
that eludes even many professional scientists who learned this content in a
traditional manner.24

6. IMPLICATIONS FOR THE PEDAGOGY OF MODELING

Despite the rapid rate of infiltration of computer-based modeling and
dynamics systems theory into scientific research and into popular culture,
computer-based modeling has only slowly begun to impact education
communities. While computer-based models are increasingly used in the
service of pedagogic ends (Buldyrev et al., 1994; Chen and Stroup, 1993;
Doerr, 1996; Feurzeig, 1989; Horwitz, 1989; Horwitz et al., 1994; Jackson
et al., 1996; Mandinach and Cline, 1994; Mellar et al., 1994; Roberts et
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al., 1983; Repenning, 1994; Shore et al., 1992; Smith et al., 1994; White
and Frederiksen, 1998; Wilensky, 1997; Wilensky and Resnick, 1999;
Wilensky and Reisman, in press; Stieff and Wilensky, 2003), there remains
significant lack of consensus about the proper role of modeling within the
curriculum.

6.1. Model Construction Versus Model Use

One tension that is felt is between students using already-constructed
models of phenomena versus students constructing their own models to
describe phenomena. At one extreme is the use of pre-constructed models
purely for demonstration of phenomena. This use of modeling employs the
computer to animate and dynamically display the structures and processes
that describe the phenomena, much the way playing an animated movie
might do so. At the other extreme, learners are involved in constructing
their own models of phenomena de nova. Between these extremes are other
kinds of modeling activities: One of particular interest is student use of
pre-constructed models as investigative tools for model-based inquiry –
activities that may involve learner modification and extension of the initial
models provided to them. Here, students are given starting models but are
also involved in model design and development.

For the use of models to provide classroom animations, I employ the
term “demonstration modeling”. While such demonstration models can
be visually striking, they are not very different from viewing a movie of
the phenomenon in question. The computational medium is being used
merely for delivery. From a constructivist point of view, this delivery
model is unlikely to lead to deep learning, as it does not engage with the
learner’s point of entry into the phenomena to-be-understood. Nor does
this approach take advantage of the computer’s interactivity to give the
learner a chance to probe the model and get the feedback necessary to
construct mental models of the phenomena observed.

Constructivists might be happier with the “from scratch” modeling
activity, as it requires the learner to start where she is at and interact with
the modeling primitives to construct a model of the phenomenon. That
special breed of constructivist called constructionists (Papert, 1991) would
argue that this externalized construction process is the ideal way to engage
learners in constructing robust mental models. The learner is actively
engaged in formulating a question, formulating tentative answers to her
question and through an iterative process of reformulation and debugging,
arriving at a theory of how to answer the question instantiated in the model.
This process is an act of doing and constructing mathematics and science
instead of viewing the results of an expert’s having done the mathematics
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and science and handing it off to the learner. On the epistemological side,
this lesson that mathematics and science are ongoing activities in which
ordinary learners can be creative participants is an important meta-lesson
of the modeling activity. These considerations can be summarized in the
table given below:

Model observation Model construction

(demonstration models) (model based inquiry)

Student’s role Passive Active

Student’s activity Viewing “received” mathematics Constructing mathematics

Communication Transmitting/receiving ideas Expressing ideas

Student goal View output of mathematical
description

Symbolize, express, and refine
mathematical description

Source of question The expert The learner

Source of solution The expert The learner (tentative)

Learning style Single step Through debugging and successive
refinement

Design of learning
parameters
(content, sequence)

Experts must anticipate relevant
parameters for learning

Learner can construct parameters
relevant to their learning

Feedback Limited Constant, immediate, specific

In reply to these powerful arguments offered on behalf of model con-
struction, an argument advanced on the side of demonstration modeling
is that the content to be learned is placed immediately and directly to
the attention of the learner. In contrast, in the process of constructing a
model, the learner is diverted into the intricacies of the modeling language
itself and diverted away from the content to be learned. Since there can be
quite a bit of overhead associated with learning the modeling language, the
model construction approach could be seen as inefficient. Moreover, there
is skepticism as to whether students who are not already mathematically
and scientifically sophisticated can acquire the knowledge and skills of
model design and construction.

6.2. Selecting the Appropriate “Size” of Modeling Primitives

Like most tensions, this tension between model observation and model
construction is not really dichotomous. There are many intermediate states
between the two extremes. Demonstration models can be given change-
able parameters that users can tune to explore the effect of modifying
initial settings on the behavior of the model. If there are large numbers
of such parameters, as in the popular Maxis simulation software packages
(1992a, 1992b), the parameter space can be quite vast in its exploratory
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potential. This takes demonstration models several steps in the direc-
tion of model construction. On the other hand, even the most “from
scratch” modeling language must contain primitive elements. These primi-
tive elements remain black boxes, used for their effect but not constructed
by the modeler. Not too many constructionist modelers would advocate
building the modeling elements from the binary digits, let alone building
the hardware that supports the modeling language. The latter can serve
as an absurd reductio of the “from scratch” label. So, even the die-hard
constructionist modelers concede that not all pieces of the model need be
constructed – some can be simply handed off.

As I place myself squarely in the constructionist camp, the challenge
for us is to construct toolkits that contain an appropriate set of primitives.
One important dimension to attend to in selecting a set of primitives, is the
level or grain-size of the primitives. In constructing a modeling language,
it is critical to design primitives not so large-scale and clunky that they
can only be put together in a few possible ways. If we fail at that task,
we have essentially reverted to the demonstration modeling activity since
the learners construct a model from these large pieces that can only be put
together in our pre-conceived way. To use a physical analogy, we have not
done well in designing a dinosaur modeling kit if we provide the modeler
with three pieces, a t-rex head, body and tail. On the other hand, we must
design our primitives so that they are not so “small” that putting them
together is seen by learners as far removed from the objects they want to
model. If we fail at that task, learners will be focused at an inappropriate
level of detail and so will learn more about the modeling pieces than the
content domain to be modeled and, furthermore, the effort involved in
construction becomes too great. To reuse the physical analogy, designing a
dinosaur modeling kit to consist of large numbers of small metal hardware
units may make constructing many different kinds of dinosaurs possible,
but it will be tedious and removed from the functional issues of dinosaur
physiology that form the relevant content domain.25

This places modeling language designers face to face with the challenge
of fine-tuning the grain-size of the primitive modeling elements to be given
to learners. Modeling language designers who choose to make their primi-
tive elements on the large side, we call demonstration modeling designers,
whereas those that tend to keep their primitives small, we call construc-
tionist modeling designers. Demonstration modeling designers have no
choice but to make the pieces from which the models are built semantically
interpretable from within the model content domain. Constructionist
modeling designers, though, can make the underlying model elements
content neutral,26,27 thus creating a modeling language that is general
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purpose, or they can choose modeling elements that have semantic inter-
pretation in a chosen content domain, thus creating a modeling toolkit for
that content domain. We note that in speaking of primitive elements, we
can speak more broadly than just the primitive operations of the modeling
language. The above discussion could refer to the primitive tasks included
in the graphical user interface or even more broadly the primitive student
activities afforded by the pedagogy.28

6.3. General Purpose vs. Content Domain Modeling Languages

Both of these choices, to build content domain modeling languages or to
build general purpose modeling languages, can lead to powerful modeling
activities for learners. The advantage of the content domain modeling
language is that learners can enter more directly into content issues of the
domain (issues that will seem more familiar to them and to their teachers,
and possibly relevant to some desired curricular content). A disadvantage
is that the primitive elements of the language, which describe important
domain content, are opaque to the learner. Another disadvantage is that
the language can be used only for its specific content domain, though that
disadvantage may be nullified by designing a sufficiently broad class of
such content domain modeling languages. The advantage of the content-
neutral primitives is that all content domain structures, since they are
made up of the general-purpose elements, are inspectable, modifiable, and
constructible by the learner. The disadvantage is that the learner must
master a general-purpose syntax before being able to make headway on
the domain content. What we’d like is a way for learners to be able to
begin at the level of domain content, but not be limited to unmodifiable
black-box primitives at that level.

In the Connected Learning projects, the solution we have found to this
dilemma is to build so-called “extensible models” (Wilensky, 1997). In
the spirit of Eisenberg’s programmable applications (Eisenberg, 1991),
these are content-specific models that are built using the general purpose
NetLogo modeling language. This enables learners to begin their investiga-
tions at the level of the content. Like the group of high schoolers described
in the earlier section of this paper, they begin by inspecting a pre-built
model such as Gas-in-a-Box. Using pre-built parameter modulators (e.g.,
sliders on the interface), they can adjust the values of parameters of the
model such as mass, speed, and location of the particles and readily
conduct experiments at the level of the content domain of ideal gases. But,
since the Gas-in-a-Box model is built in NetLogo, the students have access
to the workings of the model. They can look “under the hood” and see
how the particle collisions are modeled. Furthermore, they can modify the
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primitives, investigating what might happen if, for example, collisions are
not elastic. Lastly, students can introduce new concepts, such as pressure,
as primitive elements of the model and conduct experiments on these new
elements.

This extensible modeling approach enables learners to dive right into
the model content, but places no ceiling on where they can take the model.
Mastering the general purpose modeling language is not required at the
beginning of the activity, but happens gradually as learners seek to explain
their experiments and modify and extend the capabilities of the model so
as to suit their individual inquiry processes.

When engaged in classroom modeling, the pedagogy used in the
Connected Learning projects has four basic stages: In the first stage, the
teacher presents a “seed” model to the whole class. Typically, the seed
model is a simply coded model with relatively simple rules. The model is
projected on a screen so the whole class can view it. The teacher engages
the class in discussion as to what is going on with the model. Why are they
observing that particular behavior? How would it be different if model
parameters were changed Is this model a good model of the phenomenon
it is meant to model? In the second stage, students run the model (either
singly or in small groups) on individual computers. Here they engage
in systematic “search” of the parameter space of the model. They make
hypotheses and test them against the model behavior often producing lab
reports of their results. In the third stage, each modeler (or group) proposes
an extension to the model and implements that extension in the NetLogo
language. Modelers that start with Gas-in-a-Box, for example, might try to
build a pressure gauge, a piston, a gravity mechanism or heating/cooling
plates. The results of this model extension stage are often quite dramatic,
and the extended models are added to the project’s library of exten-
sible models and made available for others to work with as new “seed”
models. In the final stage, students are asked to propose a phenomenon
to be modeled and to build the model “from scratch” using the NetLogo
modeling primitives.

6.4. Phenomena-Based vs. Exploratory Modeling

When learners are engaged in creating their own models, two primary
avenues are available. A modeler can choose a phenomenon of interest
in the world and attempt do duplicate that phenomenon on the screen.
Or, a modeler can start with the primitives of the language and explore
the possible effects of different combinations of rules sets. The first
kind of modeling, which I call phenomena-based modeling (Wilensky,
1997b; Resnick and Wilensky, 1998) is also sometimes called backwards
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modeling (Wilensky, 1997b) because the modeler is engaged in going
backwards from the known phenomenon to a set of underlying rules that
might generate that phenomenon. In the GasLab example, Harry knew
about the Maxwell-Boltzmann distribution and tried creating rules which
he hoped would duplicate this distribution. In this specific case, Harry
did not have to discover the rules himself because he also knew the
fundamental rules of Newtonian mechanics that would lead to the M-B
distribution. The group of students who worked on modeling Boyle’s law
came closer to pure phenomena-based modeling as they tried to figure
out the “rules” for measuring pressure. Phenomena-based modeling can
be quite challenging, as discovering the underlying rule-sets that might
generate a phenomenon is inherently difficult – it is a fundamental activity
of practicing scientists. In practice, most GasLab modelers mixed some
knowledge of what the rules were supposed to be with adjustments to those
rules when the desired phenomenon did not appear.

The second kind of modeling is sometimes called “forwards” modeling
(Wilensky, 1997b) because modelers start with a set of rules and try to
work forwards from these rules to some, as yet, unknown phenomenon.
The patterns that arise from playing with and adjusting the rule sets might
suggest a familiar phenomenon and thus serve as the seed for a model of
that phenomenon.29

6.5. New Forms of Symbolization

In a sense, modeling languages are always designed for phenomena-
based modeling. However, once such a language exists, it also becomes a
medium of expression in its own right. Just as, we might speculate, natural
languages originally developed to communicate about real world objects
and relations, but, once they were sufficiently mature, they were also
used for constructing new language objects and relations. Shakespeare’s
Hamlet, if you will, is a new linguistic phenomenon built out of the rules
of natural language. Similarly, learners can explore sets of rules and primi-
tives of a modeling language to see what kinds of emergent effects may
arise from their rules. In some cases, this exploratory modeling may lead
to emergent behavior which resembles some real world phenomenon and
then phenomena-based modeling resumes. In other cases, though the emer-
gent behavior may not strongly connect with real world phenomena, the
resulting objects or behaviors can be conceptually interesting or beautiful
in themselves. In these latter cases, in effect, the modelers have created
new phenomena, objects of study that can be viewed as new kinds of
mathematical objects–objects expressed in the new form of symbolization
afforded by the modeling language.
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6.6. Aggregate vs. Object-Based Modeling

In a previous section, we discussed the selection of modeling language
primitives in terms of size and content-ladenness. Yet another distinction
is in the conceptual description of the fundamental modeling unit. To date,
modeling languages can be divided into two kinds: so-called “aggregate”
modeling engines (e.g., STELLA (Richmond and Peterson, 1990), Link-
It (Ogborn, 1994), VenSim (Ventana, 2002), Model-It (Jackson et al.,
1996)) and “agent-based” modeling languages (e.g., NetLogo (Wilensky,
1999), StarLogo (Resnick, 1994); StarLogoT (Wilensky, 1997), Agent-
sheets (Repenning, 1993), Cocoa (Smith et al., 1994), Swarm (Langton and
Burkhardt, 1997), ASCAPE (Parker, 2001) and Repast (Collier, 2000)).
Aggregate modeling languages use “accumulations” and “flows” as their
fundamental modeling units. For example, a changing population of
rabbits might be modeled as an “accumulation” (like water accumulated
in a sink) with rabbit birth rates as a “flow” into the population and rabbit
death rates as a flow out (like flows of water into and out of a sink).
Other populations or dynamics – e.g., the presence of “accumulations”
of predators – could affect these flows. This aggregate based approach
essentially borrows the conceptual units, its parsing of the world, from
the mathematics of differential equations.

The second kind of tool enables the user to model systems directly
at the level of the individual elements of the system. For example, our
rabbit population could be rendered as a collection of individual rabbits
each of which has associated probabilities of reproducing or dying. The
agent-based approach has the advantage of being a natural entry point for
learners. It is generally easier to generate rules for individual rabbits than
to describe the flows of rabbit populations. This is because the learners
can literally see the rabbit-agents and can control an individual rabbit’s
behavior. In NetLogo, for example, students think about the actions and
interactions of individual agents or creatures. NetLogo models describe
how individual creatures (not overall populations) behave. Thinking in
terms of individual creatures seems far more intuitive, particularly for the
mathematically uninitiated. Students can imagine themselves as individual
rabbits and think about what they might do. In this way, NetLogo enables
learners to “dive into” the model (Ackermann 1996) and make use of what
Papert (1980) calls “syntonic” knowledge about their bodies. By observing
the dynamics at the level of the individual creatures, rather than at the
aggregate level of population densities, students can more easily think
about and understand the population dynamics that arise.30

There are now some very good aggregate computer modeling languages
– such as STELLA (Richmond and Peterson 1990) and Model-It (Jackson
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et al., 1996). These aggregate models are very useful – and superior to
agent-based models in some contexts, especially when the output of the
model needs to be expressed algebraically and analyzed using standard
mathematical methods. They eliminate one “burden” of differential equa-
tions – the need to manipulate symbols – focusing, instead on more
qualitative and graphical descriptions of changing dynamics. But, concep-
tually, they still rely on the differential equation epistemology of aggregate
quantities.

Some refer to agent-based models as “true computational models”
(Wilensky and Resnick, 1999) since they leverage computational media in
a fundamentally more powerful way than most computer-based modeling
tools. Whereas most tools simply translate traditional mathematical
models to the computer (e.g., numerically solving traditional differential-
equation representations), agent-based languages such as NetLogo provide
new representations that are tailored explicitly for the computer. Too often,
scientists and educators see traditional differential-equation models as
the only approach to modeling. As a result, many students (particularly
students alienated by traditional classroom mathematics) view modeling
as a difficult or uninteresting activity. What is needed is a more plural-
istic approach, recognizing that there are many different approaches to
modeling, each with its own strengths and weaknesses. A major challenge
is to develop a better understanding of when to use which approach, and
why. A promising new project (Wilensky and Stroup, 1999) attempts to
integrate these two types of modeling environments and enable users to go
back and forth between these two types of modeling and reasoning.

6.7. Concreteness vs. Formalism

Critiques of computer-modeling have come from both sides of the
“concrete-abstract divide”. Some critics have worried that the models are
not sufficiently formal and rigorous and others that they are not sufficiently
concrete and real-world.

On the one hand, some mathematicians and scientists have criticized
computer models as insufficiently rigorous (see Tymoczko, 1979). As
discussed in the previous section, it is not always easy, for example, to
get a hold of the outputs of a NetLogo model in a form that is readily
amenable to symbolic manipulation. Moreover, there is as yet no formal
methodology for verifying the results of a model run. Even in highly
constrained domains, there is not a formal verification procedure for
guaranteeing the results of a computer-based experiment; much less any
guarantee that the underlying assumptions of the modeler are accurate.
Computational models, in general, are subject to numerical inaccuracies
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dictated by finite precision. Agent-based models, in particular, are also
vulnerable to assumptions involved in transforming a (perhaps) continuous
world into a discrete model. These difficulties lead many formalists to
worry about the accuracy, utility, and especially the generality of a model-
based inquiry approach (Wilensky, 1996). These critiques raise valid
concerns, concerns that must be reflected upon as an integral part of the
modeling activity. As we recall, Harry had to struggle with just such an
issue when he was unsure whether the drop in the average speed of the
gas particles was due to a bug in his model code or due to a “bug” in his
thinking. It is an inherent part of the computer modeling activity to go back
and forth between questioning the model’s faithfulness to the modeler’s
intent (e.g., code bugs) and questioning the modeler’s expectations for the
emergent behavior (e.g., bugs in the model rules). Though the formalist
critic may not admit it, these limitations are endemic to modeling per se
– including formal methods such as differential equations. Only a small
set of the space of differential equations is amenable to analytic solution.
Most perturbations of those equations lead to equations that can only be
solved through numerical techniques. The game for formal modeling, then,
becomes trying to find solvable differential equations that can be said to
map onto real world phenomena. Needless to say, this usually leads to
significant simplifications and idealizations of the situation. The classic
Lotka-Volterra equations (Lotka, 1925), for example, which purport to
describe the oscillations in predator/prey populations assume that popula-
tions of predators and prey vary continuously and that birth rates and
predation rates are numerically constant over time. These assumptions,
while reasonable to a first approximation, do not hold in real world popula-
tions and, therefore, the solution to the differential equations is unlikely to
yield accurate predictions. A stochastic model of predator/prey dynamics
built in an agent-based language will not produce a formal equation as
a result, but may produce better predictions of real world phenomena.
Moreover, modeling also involves the deliberation over formal relations
– it is the forms of expression of those relations that varies. In the case of
models, the formal elements are the model rules. Conversely, since agent-
based models can be refined at the level of causal rules, adjusting them
is also more clearly an activity of trying to successively refine content-
based rules until they yield satisfactory results (see e.g., Wilensky and
Reisman, 1998; in press). Perhaps though, part of the discomfort with
multi-agent models on the part of the formalist critics results from the
symbolic form in which the model is captured. The history of mathe-
matics and physics accustoms us to consider a physical phenomenon as
captured by a model only when the symbolic form is an equation. When
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a phenomenon is captured by a set of rules as in a multi-agent model, it
doesn’t fit the paradigm and is rejected as incomplete. However, if we take
the perspective that tools and forms of knowledge co-evolve, we might
predict that the advent of widespread use of such models will lead to the
acceptance of a new symbolic form for capturing system change, the form
of agent-based rule-sets.

On the other hand, some educator critics of computer-based modeling
have expressed concern that the activity of modeling on a computer
removes children too much from the concrete world of real data (Tyack
and Cuban, 1997; Stoll, 1999; Cordes and Miller, 2000). While it is
undoubtedly true that children need to have varied and rich experiences
away from the computer, the fear that computer modeling removes the
child from concrete experience with phenomena is overstated. Indeed
the presence of computer modeling environments invites us to reflect on
the meaning of such terms as concrete experience (Wilensky, 1991). We
come to see what we call ‘concrete experience’ as mediated by the tools
and norms of our culture, and as such, subject to revision by a focused
and enlightened cultural and/or pedagogic effort. This is particularly so
with respect to scientific content domains in which categories of exper-
ience are in rapid flux and in which all experience is mediated by tools
and instruments. In the GasLab case, it would be quite difficult to give
learners “real-world” experience with the gas molecules. A real world
GasLab experience would involve apparatuses for measuring energy and
pressure that would be black boxes for the students using them. The
range of possibilities for experiments that students could conduct would
be much more severely restricted and would most probably be limited
to the “received” experiments dictated by the curriculum and the tools it
incorporates. Indeed, in a significant sense, the computer-based GasLab
activity gives students a much more concrete understanding of the gas,
seeing it as a macro-object that is emergent from the interactions of large
numbers of micro-elements.

7. CONCLUDING REMARKS

In closing, a few additional remarks. As I have attempted to show in
this paper, the use of model-based inquiry has the potential for signifi-
cant impact on learning in this new century. We live in an increasingly
complex and interconnected society. Simple models will no longer suffice
to describe that complexity. Our science, our social policy, and the require-
ments of an engaged citizenry require an understanding of the dynamics of
complex systems and the use of sophisticated modeling tools to display and
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analyze such systems. There is a need for the development of increasingly
sophisticated tools that are designed for learning about the dynamics of
such systems and a corresponding need for research on how learners, using
these tools, begin to make sense of the behavior of dynamic systems. It is
not enough to simply give learners modeling tools. Careful thought must
be given to the conceptual issues that make it challenging for learners to
adopt a systems dynamics perspective. The notion of levels of descrip-
tion, as in the micro- and macro-levels we have explored in this paper, is
central to a systems dynamics perspective, yet is quite foreign to the school
curriculum. Behavior such as negative and positive feedback, critical
thresholds, dynamic equilibria are endemic to complex dynamic systems.
It is important to help learners build intuitions and qualitative understand-
ings of such behaviors. Side by side with modeling activity, there is a need
for discussion, writing, and reflection activities that encourage students to
reexamine some of the basic assumptions embedded in the science and
mathematics curriculum: Assumptions that systems can be decomposed
into isolated sub-systems, that causes add up linearly, that the causes have
deterministic effects. In the Connected Learning projects we have seen, for
example, how the ‘deterministic mindset’ (Resnick and Wilensky, 1993;
Wilensky, 1997b) prevents students from understanding how stable proper-
ties of the world, such as Harry’s Maxwell-Boltzmann distribution, can
result from probabilistic underlying rules.

A pedagogy that incorporates the use of agent-based modeling tools
for sustained inquiry has considerable promise to address such concep-
tual issues. By providing a substrate in which learners can embed their
rules for individual elements and visualize global effects, this pedagogy
invites learners to connect micro-level simulation with macro-level obser-
vation. By enabling them to control the behavior of thousands of agents
in parallel, it invites them to see probabilism underlying stability and
statistical properties as useful summaries of the underlying stochasm. By
providing visual descriptions of phenomena that are too small or too large
to visualize in the world, they invite a larger segment of society to make
sense of such invisible phenomena. By providing a medium in which
dynamic simulations can live and which responds to learner conjectures
with meaningful feedback, it gives many more learners the experience of
doing science and mathematics. A major challenge is to develop tools,
pedagogy and policy that will bring this new form of literacy to the large
majority of students and citizens.
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NOTES

1 The Connected Learning projects began at the MIT Media Lab in the late 1980s, moved
to Tufts University in 1994 and to Northwestern University in 2000.
2 Developed at the Center for Connected Learning and Computer-based Modeling, Star-
LogoT is freely downloadable from http://ccl.northwestern.edu/cm/.
3 Developed at the Center for Connected Learning and Computer-based Modeling,
NetLogo is freely downloadable from http://ccl.northwestern.edu/netlogo/.
4 In the first five years of the Connected Probability project, students primarily used
StarLogo (Connection Machine version) and StarLogoT. Since the late 1990s, students
have primarily modeled in NetLogo.
5 StarLogo (Resnick, 1994; Wilensky, 1995a), developed at the MIT Media Laboratory,
was the first version of logo to be developed as a multi-agent language.
6 Both StarLogoT and NetLogo permit users to change the dimensions of the patch grid,
and thus the number of patches, though this is not as typical a use of the languages as is
changing the number of turtles.
7 Since NetLogo is Java-based, it can run on a large variety of computers. In most of our
recent classroom work, students ran NetLogo on personal computers in our classroom or
computer labs.
8 As noted, Harry built this model in a version of StarLogo that ran on a connection
machine parallel supercomputer. At the time Harry was building his model, StarLogo
was not nearly as “user-friendly” as NetLogo is currently. This necessitated my working
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together with Harry in constructing his model. Harry specified the behavior he wanted
while I did most of the coding. As StarLogoT and NetLogo got more robust and easy to
use, subsequent students were able to program the GasLab extensions themselves.
9 Since the model was implemented in a general-purpose computer language, Harry could
have calculated the exact collision points. The fact that he chose not to do so was partly due
to the comparative ease of doing it stochastically. But, the primary reason for his choice lay
in his inspiration from the original Maxwell (1860) papers, which had to take the stochastic
approach for reasons of computational tractability.
10 Harry’s reasoning here appear to show one of the prototypical misconceptions about
randomness. In previous work (Wilensky, 1993, 1995), I have shown many examples of
this confusion in which random is interpreted to mean all possibilities are equally likely,
rather than governed by some distribution. Harry’s reasoning can also perhaps be thought
of as an assimilation of individual collision events in the model in terms of some intuitive
(“primitive”) sense of ‘balance’ or ‘compensation (see also diSessa, 1993).
11 Although no law of energy conservation was explicitly programmed into the model,
Harry knew that since the collisions were elastic, conservation of energy must hold true of
the simulated gas.
12 The fact that Harry was not content to get the correct result but felt the need also
to understand what was wrong with his previous reasoning marks him as a sophisticated
reasoner. A laudable goal for an inquiry-oriented curricular intervention would be to instill
this habit of mind (Goldenberg, 1996) in learners.
13 A source of confusion in many a physics classroom: Why do we need these two
separate quantities, energy = mv2 and momentum = mv. The algebraic formalism masks
the big difference between the scalar energy and the vector momentum.
14 As an example, suppose we have two particles each starting at speed 5. Then the sum
of squares of their velocities is 50. After their collision, this sum of squares must stay
constant. Say, one particle speeds up to 7 and the other slows down to 1 so that the sum
of the squares of their speeds is still 50. But, originally the sum of their speeds was 10
and their average speed was 5, yet after the collision the sum of their speeds is 8 and their
average speed has dropped to 4.
15 Elsewhere we have described the condition of being very familiar with a formula but
not understanding the rationale behind the formula as “epistemological anxiety” (Wilensky,
1997b). In this episode, we might say that Harry’s epistemological anxiety about energy
was relieved.
16 To do this, they issued the simple NetLogo command: ‘setxy 0 0’. Though the code for
doing this is quite simple, this is not an experiment that can be replicated in the laboratory
– a case of the model as an instantiation of ideal gas theory rather than of a real-world
instantiation.
17 This is one affordance of the GasLab environment that has been quite confusing to
students and teachers in the Connected Chemistry Curriculum. They are used to seeing
pressure as a flat line, not the ragged line they get in a GasLab model. We have taken this
design constraint as a curricular focus, asking students to speculate why the graphs are
different and asking them what interventions they could make to make it flatter. This focus
has led to many productive discussions about what is a stable measure, what counts as a
“fidelous” simulation and what simplifications are allowable when constructing a model.
18 diSessa (1980) has argued that physics instruction should teach the concept of force in
terms of momentum flow instead of as mass∗acceleration. This formulation fits better with
student intuitions as well as expanding the applicability and importance of Newton’s third
law.
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19 Such as taking a sampling of fixed size small imaginary boxes within the physical box.
20 In this regard, the students, though intrigued by the philosophical conundrum, chose
the simpler pressure formulation absent any experimental consequence to changing it.
21 He was ignoring the high speed limitation imposed by energy considerations.
22 As one example of these reinvented thought experiments, they constructed a model of
a divided box with a small opening in the divider in which a propeller is embedded. They
measured the work done on the propeller by the particles hitting it and the propeller’s
consequent motion. A version of their model is downloadable from http://ccl.north-
western.edu/netlogo/models/GasLabSecondLaw.
23 In the sense of understanding its reactions to typical human perturbations (see
Wilensky, 1991; Noss and Hoyles, 1996b).
24 When giving lectures on Harry’s story in university physics departments, I have often
seen physicists confused by the same issues as was Harry. For example, though they know
that the Boltzmann distribution is asymmetric, they are often surprised to see more “blues”
than “reds”. They are not used to seeing the gas as a visual colored ensemble and do
not readily convert their intuitions from the symbolic representations to the agent-based
visualization.
25 Typically, a hallmark of a good toolkit is that the desired application of the pieces,
to a large degree, emerges from interacting with them. For instance, the dino “primitives”
would probably constrain a construction of some large organism – perhaps a reptile – rather
than a sonnet or an oil refinery.
26 This is a simplification. Even so-called content neutral sets of primitives have afford-
ances that make it easier to model some content domains than others. NetLogo, for
example, makes it much easier to model phenomena that can be viewed as accumulations
of large numbers of locally interacting elements. Processes that are composed of a small
number of larger elements are less naturally modeled in NetLogo.
27 Yet a second simplification is the dichotomous distinction between contentful model
elements and neutral model elements. In selecting a set of primitive model elements,
designer can choose to carve up the world in ways that more closely approximate the
content domain and ways that are quite different than the content domain – there are a
multiplicity of world slices and associated primitive sets.
28 Similar points have been made, more generally, in relation to the design of external
representations (see e.g., Norman, 1991; Zhang, 1993).
29 In a recent book, Wolfram (2002) employs the forwards modeling approach by
exploring the outcomes of possible rule sets of cellular automata.
30 As one teacher comparing students’ work with both STELLA and NetLogo models
remarked: When students model with STELLA, a great deal of class time is spent on
explaining the model, selling it to them as a valid description. When they do NetLogo
modeling, the model is obvious, they do not have to be sold on it.”
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